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Abstract

Though recent studies have made significant progress in
morph attack detection by virtue of deep neural networks,
they often fail to generalize well to unseen morph attacks.
With numerous morph attacks emerging frequently, gener-
alizable morph attack detection has gained significant at-
tention. This paper focuses on enhancing the generalization
capability of morph attack detection from the perspective of
consistency regularization. Consistency regularization op-
erates under the premise that generalizable morph attack
detection should output consistent predictions irrespective
of the possible variations that may occur in the input space.
In this work, to reach this objective, two simple yet effec-
tive morph-wise augmentations are proposed to explore a
wide space of realistic morph transformations in our consis-
tency regularization. Then, the model is regularized to learn
consistently at the logit as well as embedding levels across
a wide range of morph-wise augmented images. The pro-
posed consistency regularization aligns the abstraction in
the hidden layers of our model across the morph attack im-
ages which are generated from diverse domains in the wild.
Experimental results demonstrate the superior generaliza-
tion and robustness performance of our proposed method
compared to the state-of-the-art studies.

1. Introduction
In face recognition systems, the face is tightly tied to an

individual’s identity [37, 50]. By disrupting this particular
link, morph attacks may pose a potential hazard [42, 39,
35]. As a result, morph attack detection plays an important
role in face recognition systems [5]. Morph attacks take
place when a single morphed image can be used to prove the
existence of two or more different people. Morphed images
are crafted by interpolating facial landmarks or the latent
representations between two or more individuals.

Despite the success of previous morph attack detection
studies in recent years [27, 5, 34], their performance dimin-
ishes significantly on unseen morph attacks in real-world
scenarios. A morph detection model should be general-

Figure 1. Illustration of the proposed SM augmentation for an
identity sample in the Twin dataset [29]. The face images in the
green and red bounding boxes correspond to the input bona fide
and generated self-morphed images, respectively.

izable to out-of-sample distributions, independent of the
training distribution. Previous studies in morph detection
[36, 40] mainly overlook the domain shift issue in the real
world and benchmark their methods on intra-domain sce-
narios. That is, the same methods are generally adopted in
both training and test phases to create morph images. More-
over, generalization performance to post-processing opera-
tions such as print-scan conversion or JPEG compression
are not taken into account in these works. As such, they ob-
tain satisfactory performance on limited test sets, but strug-
gle to retain its performance beyond their training regime.
Using unlabeled target data, the domain adaptation (DA)
methodology can be employed to mitigate the domain shift
challenge [22]. However, in practical settings, we are not
provided with the unlabeled target domain. To address this
challenge in a more general setting, domain generalization
methodology has attracted much attention recently [51]. It
aims to learn the domain invariant features without access-
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ing target domain data.
Recently, a few studies have been conducted to enhance

the generalization of morph attack detection. For example,
Damer et al. [6] embrace the observation that fusing several
detectors which are trained on different types of morph at-
tacks generalize better to new morph attacks. Also, in [5],
the pixel-wise supervision is incorporated into the binary
classification to empower the morph detector with the gen-
eralization capability. However, these works [6, 5] typically
rely on the diverse morph images generated from different
morph attacks, which can be challenging to provide. More-
over, their generalization ability is restricted to certain situ-
ations far from real-world scenarios.

In this paper, we approach the generic morph attack de-
tection differently by learning consistent feature represen-
tations. Our approach relies on the consistency regular-
ization concept [2, 38, 10], that a generic model should
predict consistent results regardless of the plausible varia-
tions that the input images may undergo. Various factors
may induce these variations, including brightness, lighting,
image style, camera sensors, and the type of morphing at-
tacks. Thus, a model with higher consistency under plausi-
ble common image corruptions such as noise, blur, contrast
and compression corruptions is expected to generalize bet-
ter to new unexplored domains [10, 54, 1]. Bearing these
insights in mind, the consistent predictions are imposed on
our model across a wide range of morph-wise augmented
images. Building upon this concept, we can minimize the
soft output class distributions between different morph at-
tack variations. However, this minimization would not nec-
essarily align the abstraction in the hidden layers of our
model across morph attack images generated from different
domains. To overcome this issue, we regularize our model
to ensure consistent learning at both the logit and feature
representation levels. For this objective, several regulariza-
tion branches are first integrated into the intermediate lay-
ers of our model and the embedding levels are computed at
these branches. Then, we jointly regularize feature repre-
sentation as well as final soft output class distribution. To
learn the domain-shared feature representation, adversarial
feature learning [23] is adopted among the morph-wise aug-
mented images at different feature representation levels. In
this respect, a feature extractor competes with a domain dis-
criminator to learn a domain-shared feature representation
and the domain discriminator determines whether the in-
put images come from the intact morph images or the aug-
mented ones. An overview of our proposed architecture is
illustrated in Figure 3.

To encourage our model to learn generic representation
for morph attack detection, we incorporate cross-domain
morph attacks into our consistency regularization. Note
that blindly exposing a model to random image transforma-
tions does not necessarily enhance the cross-domain perfor-

mance. Rather, it could hurt the inter-domain performance
of our morph attack detection. With this consideration in
mind, we propose two morph-wise augmentations, namely
Inter-domain Style Mixup (ISM), and Self-morphing (SM)
augmentations, to explore a wide space of realistic morph
transformations in our consistency regularization. The ISM
augmentation employs the photo-realistic style transfer [45]
to synthesizes unseen morph attacks with new styles, while
keeping the content of the input morph images unchanged.
Also, the SM augmentation synthesize morph attacks with
minimal visual artifacts using several instances of the same
identity. The motivation of the proposed SM augmentation
stems from the fact that in realistic morph attack scenarios,
the visible morphing artifact are further post-processed and
eliminated carefully. This process results in hardly recog-
nizable but valuable morph images, which still contain im-
perceptible morphing artifacts. Our major contributions in
this paper are

• We regularize morph attack detection model to pre-
dict consistent results regardless of potential variations
caused by diverse morph attacks, image quality, and
environmental situations.

• We propose two morph-wise augmentations to explore
a wide space of realistic morph attack transformations
in our consistency regularization.

• We carry out extensive evaluations on several datasets
to validate the generalization capability of our morph
attack detection.

The remainder of this paper is structured as follows. Sec-
tion 2 provides a literature review of recent research in
morph detection, domain generalization, and state-of-the-
art data augmentation methods. Section 3 describes our
methodology in detail, including our proposed morph-wise
data augmentation and the proposed consistency regulariza-
tion. We provide comprehensive evaluations in section 4 to
assess the impact of synthetic morphs and proposed con-
sistency regularization on the generalization performance.
In this section, we also evaluate the generalization and ro-
bustness performance of our proposed morph detector com-
pared with the state-of-the-art studies. Finally, Section 5
concludes this paper.

2. Related Work
2.1. Morph Detection

Morph attack detection studies [6, 7, 35, 34, 27, 5, 41,
21] can be categorized into single and differential morph
detection. Single morph detection attempts to distinguish
the morphed image from the bona fide one. Differential
morph detection, on the other hand, compares the potential



morphed image with a second reliable image of the probe
such as a live capture to make its prediction. Recently, deep
learning models have been widely used for morph detection.
With the advent of deep learning, several morph detection
studies have been carried out in recent years. Soleymani
et al. [40] train a disentangling network that produces dis-
entangled representations for landmarks and facial appear-
ance. They generate triplets of images, whereby each in-
termediate image takes the landmarks from one image and
the appearance from the other image. To improve unknown
re-digitized morph attacks detection, authors in [5] adjust
pixel-wise supervision in the training to capture more infor-
mative morphing artifacts. Besides, they make a morphing
dataset accessible to the public, which comprises digital and
re-digitized morph attacks as well as bona fide images. Us-
ing a convolutional neural network, a de-morphing-based
method is suggested in [30] to unravel the chip image and
identify morphing presentation assaults in actual automated
border control systems. Damer et al. [4] create bona fide
face images of non-existing people and develop a synthetic-
based morph attack detection testset with StyleGAN2-ADA
[19], whereby the legal and ethical difficulties associated
with biometric data use can be mitigated. Equipped with
SMDD dataset in [4], Ivanovska et al. [16] train Xception
and HRNet networks to demonstrate the potential of syn-
thetic morph data and justifies its importance for morph de-
tection models across three limited morph datasets.

2.2. Domain Generalization

In supervised learning studies [26, 25], the training data
is assumed to be from the same distribution as the test
data . However, in most real-world scenarios with out-of-
distribution (OOD) data, this assumption could be violated,
and consequently, these algorithms suffer significant per-
formance drops on an OOD data [23, 54]. Domain general-
ization is intended to learn domain-invariant representations
that are generalizable to an unseen domain based on labeled
source domains [51]. A number of studies in this area have
been made with respect to data augmentation, domain align-
ment, ensemble learning, and self-Supervised learning. Re-
garding data augmentation, the studies [46, 15, 43, 44] sim-
ulate domain shift through transferring the styles of source
domain with external styles to learn domain-invariant rep-
resentations. In the domain alignment category, some re-
searchers [31, 3, 52] work on normalization operations to
eliminate information that aggravate domain shift issue. Al-
though domain generalization has achieved impressive re-
sults in image classification, object detection and semantic
segmentation, little attention has been paid to the general-
ization capabilities of morph attack detection. In addition,
the existing studies [6, 5] do not learn the invariant represen-
tations to the application-specific textural distortion. There-
fore, we encourage our model to learn domain-invariant

morphing attack feature representation which is found ben-
eficial to mitigate domain shift challenge.

2.3. Data Augmentation

Consistency-based methods rely on generating diverse
yet reasonable augmentation of the input data. Data aug-
mentation is one of the most effective solutions to improve
model performance generalization without incurring com-
putational cost in the inference time. Expanding the di-
versity of the training data with data augmentation can be
regarded as a useful regularizer to mitigate overfitting is-
sue [17, 9, 47]. It can also enhance the robustness of deep
neural networks against input distribution shifts. Conven-
tional data augmentations include simple label-invariant im-
age transformations such as flipping, translation, jittering,
and random cropping. As an example, CutOut randomly
removes a square region in the input samples [9]. Recently,
different studies on data augmentation have proposed to
synthesize mixed samples and employ a sequence of im-
age transformations. For instance, Mixup is the seminal
study that linearly interpolates between two or more input
samples to synthesize new samples [47]. Another group of
studies such as style randomization [17] utilizes neural style
transfer [18] to modify the distribution of low-level features
such as color and texture information in the training sam-
ples [53, 17]. Based on the observations outlined in [13],
they leverage Stylized ImageNet to mitigate the texture bias
in deep neural networks and improve the generalization per-
formance against distribution shifts.

3. Methodology
3.1. Problem Definition

In the context of domain generalization, it is assumed
that the data from a source domain DS is accessible to train
our model. The ultimate objective is to train a model ca-
pable of performing as well as possible on data from un-
seen domains DT , without requiring additional model up-
dates based on target domain DT . With no prior knowl-
edge on DT , we regularize our model to learn semantic
consistency between several different landmark-based and
GAN-based morphing attacks. These attacks include Print
and Scan [48], StyleGAN2 [39], WebMorph [39], OpenCV
[39], and FaceMorpher [39] attacks. By doing so, we en-
force our model to learn consistent representations in re-
spect to different morphing attack artifacts rather than the
domain-specific features relevant to the identity informa-
tion. Moreover, considering diversity and realism, we pro-
pose two morph-wise augmentations to synthesize novel
morph domains and enrich the training source domain in
the consistency regularization. In what follows, the pro-
posed morph-wise augmentations are first explained. Then,
the consistent regularisation learning is addressed.



Figure 2. Illustration of the proposed ISM augmentation for an
identity sample in the Twin dataset [29]. The face images in the red
bounding box correspond to the input face image and the others
indicate the augmented ones with the same class label.

3.2. Morph-wise Augmentation

Self-morphing Augmentation. The key idea in SM Aug-
mentation is that hardly detectable morph attacks in real-
ity with imperceptible morphing artifacts could enforce our
model to learn more generalizable representations. As such,
the SM Augmentation lies in the guidance of such high-
quality morph attacks with minimal visible morphing arti-
facts, which are synthesized by two look-alike subjects. To
promote the effectiveness of morph attack images, different
instances of the same identity are employed in our morphing
attacks. Formally, let xi represents an instance i, which be-
longs to the identity x. First, xi is randomly augmented with
different image transformations, including Color, Gaussian
noise, Blurring, Contrast, Brightness, Shear, Translate, and
Compression operations. Then, the output self-morphed
image would be calculated as follows:

xSM
ij = Ψ(x̂i, xj), (1)

where x̂i, xj represent the augmented and pristine in-
stances of identity x, and xSM

ij is the output self-morph
image. Also, Ψ denote the adopted morphing attacks,
which include the StyleGAN, OpenCV, and FaceMorpher
approaches. The SM Augmentation enriches the diversity
of morph attacks so that our model can explore a large space
of morphing artifacts and would not overfit to visible mor-
phing artifacts. Figure 1 represents an example of SM aug-
mentation.

Inter-domain Style Mixup Augmentation. ISM Aug-
mentation aims to cover unconstrained scenarios that may
occur in the real-world morph attacks in our consistency
regularization. Equipped with the photorealistic style trans-
fer method WCT2 [45], ISM Augmentation manipulates the
low-level style information in the source domain without
compromising the high-level semantic information. This
operation is formulated as follows:

xISM
ij = Ω(xco

i , xst
j ), (2)

where Ω is the ISM transformation, the xco
i , xst

i , and xISM
ij

indicates the content image, the style image, and the output
augmented image with a shared ground-truth label. Recall
that the generated morph (or bona fide) images contain the
content of the source morph (or bona fide) images and the
style of the target morph (or bona fide) images. As such,
the output generated synthetic images share identity infor-
mation with the source images and low-level features with
the target images. In a quest to find a dataset from a range
of possibilities that can be used as the target domain, we opt
for the FFHQ dataset [20]. An example of ISM augmenta-
tion is shown in Figure 2.

3.3. Consistency Regularization

The baseline model is built from a feature extraction
module with several levels (expressed as K = κ1 ◦κ2 ◦ ...◦
κK) and a linear classifier cf . Each level of the model is
followed by a feature alignment module γi and an auxiliary
shallow classifier ci. The feature alignment module γi bal-
ances the feature dimension among different depths of the
model so that the semantic abstractions would be regulariz-
ing throughout the network. Using the auxiliary classifier
αi and baseline model, the outputs at different levels can be
obtained as below:

α1(x) = c1 ◦ γ1 ◦ κ1(x), (3)

αi(x) = ci ◦ γi ◦ κi(x)... ◦ κ1(x), (4)

Baseline(x) = cf ◦ κf (x) ◦ κf−1(x) ◦ ... ◦ κ1(x). (5)

While the logit outputs contain limited probabilistic in-
formation over classes, the feature representations at deep
and shallow levels of the network encode richer informa-
tion, which respectively capture the category-level seman-
tic information and boundary content in the input images.
Thus, an intuitive solution to setting up a powerful clas-
sifier is to incorporate a hierarchy of feature representa-
tions at several levels as Fcat = Cat([F1, ...., FN ]). To
do so, the feature representation Fi is extracted at differ-
ent levels by means of the auxiliary classifiers ci as Fi =
γi ◦ κi(x)... ◦ κ1(x), where i ∈ 1, .., N − 1, and N − 1
is the number of levels in the baseline model. Afterwards,
a linear classifier ccat operates on top of the concatenated
features as given by:

αcat(x) = ccat ◦ PWConv (Cat([F1, ...., FN ])) , (6)
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Figure 3. Illustration of the proposed architecture.

where PWConv denotes the point-wise convolution layer.
Then, on a mixed set of raw and the morph-wise augmented
images, the auxiliary classifiers (ci∈1,...,N−1,cat) and base-
line backbone are trained using the standard cross-entropy
(CE) loss function given as:

Lcls =

N+1∑
i=1

LCE (σ(αi(x); τ)), y) , (7)

where x and y are the input sample and its groundtruth
and LCE indicates the CE loss function. Also, αN (x) and
αN+1(x) denote the final prediction of the baseline model
and ccat is the classifier, respectively. Here, σ(α(x); τ) de-
notes the Softmax operation with temperature τ . An in-
crease in τ > 1 leads to a softer probability distribution.
The operation would be a normal Softmax if τ = 1.

Prediction-level Consistency Regularization To en-
courage the model to yield the same output distribution,
we begin our consistency regularization with matching the
class posterior distributions between predictions of the aux-
iliary classifiers αi(x) for the source DS and augmented tar-
get domain DT . Ideally, for even an unlabeled example, a
robust model should produce consistent predictions no mat-
ter how it has been deformed and distorted. To achieve this,

the Kullback–Leibler (KL) divergence minimization is ap-
plied as bellow:

Llabel =

N+1∑
i=1

DKL

(
σ(αi(x

s); τ), σ(αi(x
t); τ)

)
, (8)

where xs ∈ DS , xt ∈ DT , and temperature scaling τ pro-
duces the soft output probability. Note that in the training
process of morph class, DT includes the morph samples that
are either augmented by the ISM and SM augmentations or
are generated by a morph attack different from xs. This reg-
ularizes a consistent posterior distribution with more com-
prehensive consistency whereby the classes with near-zero
probabilities would not be simply discarded.

Embedding-level Consistency Regularization We ar-
gue that a highly generalized model should behave con-
sistently in feature representation space regardless of the
styles and domains of the input images. Such representa-
tions encode the beneficial contents relevant to image in-
tensity and spatial correlation. To fully meet this require-
ment, the feature representation Fi∈1,..,N−1 at different lev-
els of the backbone model is extracted separately. After-
wards, the feature representation Fi are matched between
the source DS and generated target domains DT by the



Table 1. Cross-morph evaluations of the proposed method with the
state-of-the-art studies on FRGC datasets. The results are in terms
of APCER1 (@BPCER=1%), APCER5 (@BPCER=5%), APCER
(@BPCER10=10%), EER, and AUC metrics. GAN refers to the
StyleGAN2 [39].

Method APCER1% APCER5% APCER10% EER AUC

M
IP

G
A

N

ConvNext [24] 17.40 3.07 1.20 16.33 99.17
Inception [16] 61.98 36.68 23.82 17.26 91.12
Residual [35] - - - 6.67 -

GRL 00.00 00.00 00.00 4.28 99.99

St
yl

eG
A

N ConvNext [24] 44.60 14.52 2.80 7.65 97.57
Inception [16] 50.60 32.39 25.56 17.26 94.89

GRL 00.00 00.00 00.00 00.00 100.00

O
pe

nC
V ConvNext [24] 60.68 29.66 12.65 11.50 95.27

Inception [16] 00.00 00.00 00.00 00.00 100.00
GRL 00.00 00.00 00.00 00.00 100.00

Jensen-Shannon Divergence (JSD). We also integrate the
discriminator Dsci∈1,..,N (fed by the feature representation
Fi) into our regularization framework to classify samples in
the source DS domain from the generated target one DT .
These operations can be summarized as follows:

Lemb =

N∑
i=1

DJS

(
Fi(x

s), Fi(x
t)
)
+ ηlog (Dsci(Fi(x

s)))

+ ηlog
(
1−Dsci(Fi(x

t))
)
,

(9)
where Dsci∈1,..,N is trained with the CE loss function, and
DJS refers to the JSD loss function. Compared with simple
KL-divergence and Mean Square Error (MSE), JSD regu-
larizes higher degree of consistency for feature represen-
tations and encourages more flexible optimization. Also,
η is the weight parameter that adjusts the importance of
JSD regularization compared to CE optimization. Mini-
mization in the Equation 9 realizes an adversarial process
wherein the JSD regularization attempt to fool the discrimi-
nator Di∈1,..,N by learning indistinguishable feature repre-
sentations.

Overall Loss Finally, the overall objective function in our
training optimization can be summarized as follows:

Ltotal = Lcls + µLlabel + δLemb, (10)

where δ, and µ indicate the weighting parameters that bal-
ance the impact of different loss functions. In the inference
step, the discriminators Di∈1,..,N and the auxiliary classi-
fiers are detached and removed from the backbone model,
thereby incurring no extra computational overhead com-
pared to the baseline model.

4. Experiments

This section provides the explanation about the test and
train datasets, the implementation details and evaluation
protocols. Also, a comparative evaluation is performed to
demonstrate that the proposed method with generalizable
representation learning (called GRL) significantly outper-
forms its competitors in respect to the generalization and
accuracy performance.

4.1. Evaluation Settings

To fully assess the generalization capability of our morph
attack detection, the experimental evaluations are carried
out in two settings. In the first setting, we study the gen-
eralization performance of our method from one morph at-
tack to the unseen attacks. More specifically, the bona fide
images remain unchanged, yet the domain discrepancy ex-
ists in the morph attack and morph artifacts. In this set-
ting, the FRGC dataset [33] is adopted as the training data
and the morph attacks are generated via the FaceMorpher
method [39]. Also, the target domain belongs to the FRGC
morph faces which are created by the other morph attacks
such as StyleGAN2, MIPGAN, and OpenCV approaches.
When employed in an identification document, images may
undergo various post-processing operations such as JPEG
compression, resizing, and print-scan transformations, lead-
ing to the new types of artifacts in addition to the morph
ones. In this regard, to benchmark the robustness of our
method against these artifacts, we craft the printed-and-
scanned MIPGAN (MIPGAN-PS) and JPEG compressed
(MIPGAN-JPG) test sets using the FRGC images.

In the second setting, to perform morph detection on a
cross-domain dataset, we employ the Twins morph dataset
[29] as the training set. The Twins dataset is composed of
9,052 bona fide and 12,991 morphed images. To generate
high-quality morphs in this dataset, identical twin pairs are
selected as the contributing subjects in the landmark-based
and Generative Adversarial Network (GAN)-based morph-
ing methodologies. The FaceMorpher library [39] and the
pre-trained StyleGAN2 model [19] are utilized as the for-
mer and latter methodologies, respectively. To corroborate
the effectiveness of morph detection method over morph
images with different distributions compared to the training
set, FRGC [33], AMSL [28], FERET [32], VISAPP17 [28],
and FRLL [8, 39] datasets are targeted in our experimental
evaluations. To fully study the generalization capability of
our morph detection model, we also benchmark our model
against a wide range of landmark-based and GAN-based
morphing attacks. These attacks consists of Print and Scan
[48], StyleGAN2 [39], WebMorph [39], OpenCV [39], and
FaceMorpher [39] attacks. At last, we also conduct abla-
tion experiments to validate the importance of SM and ISM
augmentations in our proposed consistency regularization.



Table 2. Cross-domain comparison of the proposed GRL with the state-of-the-art studies. The evaluations are in terms of the EER metric.

Methods
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G
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A
PP

17
LM

A
-D

RD

E
E

R

SPL-MAD [11] 12.09 15.72 5.78 12.92 4.67 30.21 28.95 25.76 19.54 15.57 18.42 - 29.54

MixFacenet [16] 15.18 12.35 4.39 8.99 3.87 - - - - - - - 23.72

Inception [16] 10.79 9.86 5.38 11.37 3.17 - - - - - - - 19.01

PW-MAD [16] 15.18 16.65 2.42 16.64 2.20 - - - - - - - 20.39

Hamza [14] - - - - - 13.5 - 11.5 - - - - - -

Quality [12] 7.91 7.13 5.41 7.04 3.60 12.29 13.99 10.80 24.48 14.32 24.17 - 25.09

OrthoMAD [27] 14.80 15.23 0.73 6.54 0.98 - - - - - - - - -

Residuals (LMA) [34] - - - - - - - - - 0.17 - 13.92 - -

Mutual [40] 3.11 - - - - - - - - - - - 4.69 -

Scale-Space Gradients [35] - - - - - - - 0.98 - - - 6.67 -

GRL 1.53 5.23 1.05 5.54 1.79 6.80 8.39 7.75 0.06 0.24 0.12 0.40 0.00 13.09

Table 3. Robustness evaluation of the proposed method against
post-processing artifacts compared with the state-of-the-art stud-
ies on FRGC MIPGAN dataset. The results are in terms of
APCER1 (@BPCER=1%), APCER5 (@BPCER=5%), APCER
(@BPCER10=10%), EER, and AUC metrics. PS and JPG refer
to the MIPGAN-PS and MIPGAN-JPG test sets.

Method APCER1% APCER5% APCER10% EER AUC

PS

ConvNext [24] 95.71 75.90 60.50 31.19 76.11

Inception [16] 86.88 71.48 54.48 27.40 77.73

Residual [35] - - - 9.63 -

GRL 67.60 19.41 9.63 10.84 95.28

JP
G

-1
12 ConvNext-112 [24] 95.71 75.90 60.50 31.19 94.73

Inception-112 [16] 76.97 49.13 37.35 21.48 86.65

GRL-112 39.75 6.024 1.74 5.67 98.08

JP
G

-6
4 ConvNext-64 [24] 61.98 36.68 23.82 17.77 91.36

Inception-64 [16] 91.83 75.23 57.69 27.65 78.21

GRL-64 37.75 16.46 9.10 9.50 96.63

GRL-32 65.59 42.83 27.84 16.33 90.75

Evaluation Metrics. To gauge the performance of our
morph attack detection, the Attack Presentation Classifica-
tion Error Rate (APCER) is adopted. This metric computes
the ratio of morph attacks which are incorrectly classified
as bona fide. Also, to gain a comprehensive performance
of the morph attack detection, the Area-Under-the-Curve
(AUC) and Detection Equal Error Rate (D-EER) are com-
puted. It is worth noting that the D-EER reports the classi-
fication error where APCER is equal to BPCER.

Implementation Detail. To pre-process the training data,
the MTCNN model [49] is utilized to detect and align face
images. Then, the captured faces are re-scaled to 512× 512
resolution. The ConvNext network [24] is also selected as
the backbone model. In order to train our backbone model,

the Stochastic Gradient Descent (SGD) with momentum 0.9
is employed. The initial learning rate, batch size, and the
total number of epochs are set to 1e−4, 64, and 50, respec-
tively. The hyperparameters used in Equations 7, 9, and 10
are set to τ = 0.1, η = 0.1, µ = 0.05, and δ = 0.1.

4.2. Results on Unseen Morph Attacks

In this evaluation setting, we measure how well the
learned representations in the domain-specific morph arti-
facts may transfer to other types of morph artifacts. From
Table 1, we can observe that the proposed method achieves
much higher generalization performance under all evalua-
tion metrics over the baseline model (ConvNext) and other
morph detection models when tested on the MIPGAN,
StyleGAN2, and OpenCV morph attacks. For instance,
compared to the baseline model, our approach improves the
APCER1% on MIPGAN, StyleGAN2 and OpenCV morph
attacks from 17.4%, 44.60%, and 60.68% to 0%. The rea-
son behind such a pronounced generalization is that the
proposed consistency regularising enforces the model to
learn domain-agnostic feature representations. These re-
sults demonstrate the effectiveness of the proposed GRL to
greatly benefit the out-of-distribution generalization of the
morph attack detection.

4.3. Results on Unseen Post-processing Artifacts

The objective of this experiment is to benchmark how
robust the GRL is against new types of artifacts induced by
post-processing operations. The vulnerability assessments
of our method against Print/Scan and JPEG compression
operations are presented in Table 3. The FRGC dataset is
the target test set wherein the morph attacks are generated
by the MIPGAN approach. It is evident from the results
in this analysis that the proposed consistency regulariza-
tion equipped with the morph-wise augmentations can po-



tentially gain considerable robustness against unseen post-
processing artifacts in morph attack generation compared
with vanilla morph attack detection studies. In Print/Scan
and JPEG compressed morph images, our morph detec-
tion model significantly outperforms the other studies. It
is worth highlighting that the performance of the proposed
GRL against compressed images with resolution 32 × 32
surpasses the baseline model against compressed images
with resolution 128× 128.

4.4. Results on Unseen Datasets

As discussed previously, in the second setting, we ex-
plore the generalization capability of the proposed GRL to
a wide range of unseen bona fide images, the domain of
which are far away from our training set. In addition, since
the distribution of morph images is also of great importance,
unseen morph attacks are also integrated into the test data
as well. As reported in Table 2, our GRL remarkably out-
performs the state-of-the-art methods. In our evaluation,
the best results of other studies are reported for compari-
son evaluations. For instance, in OrthoMAD, the best per-
formance with the SMDD training set are reported. This is
also the case for other studies. An in-depth analysis in Table
2 reveals that the superiority of GRL over the state-of-the-
art studies such as Quality [12] and SPL-MAD [11] is more
noticeable on FRGC dataset than the others. The results
validate that the state-of-the-art studies significantly lag be-
hind the proposed GRL in both out-of-distribution and in-
distribution morph attack detection. Note that on some test
sets such as FRLL, the proposed GRL achieves better re-
sults on in-distribution morph attacks compared to the out-
of-distribution morph attacks; however, this gap cannot be
observe in other test sets such as FRGC. In short, taking
these results into account, we can substantiate the general-
ization capability of GRL in out-of-distribution morph at-
tack detection while retaining its high in-distribution per-
formance for morph attack detection.

4.5. Ablation Study

To determine the contribution of SM, and ISM augmen-
tations and also the embedding- and prediction-level consis-
tency regularizations in the proposed morph detection, we
eliminate them from the proposed GRL and follow the sec-
ond setting of our training as mentioned in subsection 4.1.
Then, the trained degraded versions of GRL are assessed
individually on the MIPGAN test set. The results in Table
4 verify that each one of the proposed components, namely
SM, and ISM augmentations, Llabel and Lemb consistency
regularizations, plays an important role in the generalization
and robustness performance of the proposed morph detec-
tion. Interestingly, SM augmentation shows higher gains
in AUC and EER metrics than ISM augmentation. ISM
augmentation synthesizes high-quality morphs images with

Table 4. Ablation evaluations of the proposed method on MIPGAN
test set. The results are in terms of EER, and AUC metrics.

Metric Baseline + SM + ISM + Llabel + Lemb GRL

EER 11.24 4.21 9.47 6.74 1.79 0.4

AUC 96.03 99.18 97.45 97.91 99.50 99.95

Table 5. Ablation studies on the weight parameters, number of em-
beddings. The results are in terms of EER, and AUC metrics.

µ δ Nlevel SM + ISM + Llabel + Lemb AUC EER

0.05 0.1 3 ✓ 99.95 0.4
0.5 0.1 3 ✓ 99.58 1.65
0.1 0.1 3 ✓ 99.83 0.73
0.05 0.1 1 ✓ 98.64 5.69

minimal visual artifacts using a wide range of instances of
the same identity, which is vital for morph detection. Fur-
thermore, Lemb consistency regularization leads to more
significant improvements in AUC and EER metrics com-
pared to Llabel consistency regularization. Moreover, we
perform an additional ablation study to assess the impact of
weight hyperparameters and embedding levels on general-
ization performance (see Table 5). Reducing the weight of
embedding-level consistency regularization (δ) compared to
prediction-level consistency regularization (µ) resulted in
decreased performance on the MIPGAN test set. Addition-
ally, a significant drop of 1.34% occurred when the number
of embedding levels was reduced from three to one.

5. Conclusions
In this paper, we present a morph attack detection with

strong generalization ability to different morph attacks. To
make our detector generalize better to unseen face morph
attacks, we propose the ISM and SM morph-wise aug-
mentations to explore a wide space of realistic morph at-
tack artifacts in our consistency regularization. The ISM
augmentation synthesizes unseen morph attacks with new
styles, whilst preserving the content of the input morph im-
ages. Moreover, the SM augmentation generates realistic
morph attacks with imperceptible visual morph artifacts.
To improve the generalization performance of our detector
against unseen face morph attacks, we encourage our model
to predict consistent output regardless of the input varia-
tions simulated for different domains. To this end, we reg-
ularize our model to learn consistently at the logit and fea-
ture representation levels. Experimental results on several
datasets demonstrate the generalization ability of our pro-
posed model while keeping high in-domain performance.
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