
Weakly Supervised Face and Whole Body Recognition in Turbulent
Environments

Kshitij Nikhal
University of Nebraska-Lincoln

knikhal2@huskers.unl.edu

Benjamin S. Riggan
University of Nebraska-Lincoln

briggan2@unl.edu

Abstract

Face and person recognition have recently achieved re-
markable success under challenging scenarios, such as off-
pose and cross-spectrum matching. However, long-range
recognition systems are often hindered by atmospheric tur-
bulence, leading to spatially and temporally varying dis-
tortions in the image. Current solutions rely on generative
models to reconstruct a turbulent-free image, but often pre-
serve photo-realism instead of discriminative features that
are essential for recognition. This can be attributed to the
lack of large-scale datasets of turbulent and pristine paired
images, necessary for optimal reconstruction. To address
this issue, we propose a new weakly supervised framework
that employs a parameter-efficient self-attention module to
generate domain agnostic representations, aligning turbu-
lent and pristine images into a common subspace. Addi-
tionally, we introduce a new tilt map estimator that predicts
geometric distortions observed in turbulent images. This es-
timate is used to re-rank gallery matches, resulting in up to
13.86% improvement in rank-1 accuracy. Our method does
not require synthesizing turbulent-free images or ground-
truth paired images, and requires significantly fewer anno-
tated samples, enabling more practical and rapid utility of
increasingly large datasets. We analyze our framework us-
ing two datasets—Long-Range Face Identification Dataset
(LRFID) and BRIAR Government Collection 1 (BGC1)—
achieving enhanced discriminability under varying turbu-
lence and standoff distance.

1. Introduction

Supervised face and person (whole-body) recognition
methods have continued to demonstrate enhanced discrim-
inability in increasingly challenging scenarios, such as
profile-to-frontal [35, 23], infrared-to-visible [7, 3], and
low-to-high resolution matching [53, 19]. These improve-
ments can be attributed to several factors, including the
increased availability of large-scale curated (annotated)
datasets, parallelism afforded by better graphics process-

Figure 1. Overview of our proposed method.

ing unit (GPU) technology and associated application pro-
gramming interfaces (APIs), and complexity of machine
learning models. However, our ability to effectively and
efficiently annotate and exploit increasing amounts of data
is quickly becoming impractical due to time and resource
constraints. This is especially true for imagery acquired
for multi-domain operations, such as operations security
(OPSEC), force protection, border patrol, criminal justice,
and counter-terrorism, which exhibit degraded quality due
to unconstrained conditions such as extended standoff dis-
tances (100–500m). A common stochastic effect observed
when capturing imagery from long-range is atmospheric
turbulence, which is caused by perturbations of the air par-
ticles of different densities. Digital imaging through tur-
bulence results in severe loss of image quality due to ran-
dom tilt—spatially varying geometric distortions caused by
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local changes in the index of refraction—and optical blur.
Recently, restoration of turbulent imagery has been stud-
ied [18, 24, 48, 16, 51], but is difficult to perform in prac-
tice and at scale due to the lack of paired ground-truth data.
While these restoration methods show some promising abil-
ity to recover coarse information from turbulent imagery,
several potential limitations or concerns arise, including (1)
necessary recovery of fine-grained details to achieve opti-
mal recognition, (2) requirements for complex generative
networks (exceeding 10 million parameters) to restore im-
ages, and (3) demands for exponentially large and precisely
annotated datasets.

Instead of bridging the nonlinear effects of turbulence by
attempting to simultaneously learn inverse effects of both
tilt and blur, we bridge the turbulence gap by applying tilt
maps—estimated from long-range query (probe) images—
to gallery images. This procedure geometrically distorts (or
warps) non-turbulent, close-range gallery images in a way
that is consistent with long-range imagery, resulting in a di-
rect alignment of discriminative regions of face and whole-
body images. This avoids the need to synthesize turbulent-
free images, which enables more reliable matching between
query and gallery images for recognition purposes. More-
over, since tilt maps are more efficiently and reliably esti-
mated compared to reconstructing high-quality images, this
unique approach is better suited for weak supervision—
optimization using significantly fewer annotated (labeled)
samples—and compact embedding networks that map long-
and close-range images to a common latent subspace.

Therefore, the primary outcome from this paper is a
new weakly supervised framework for face and whole-body
recognition (Figure 1), composed of the following individ-
ual components and their contributions:

• a parameter-efficient self-attention module that uses
domain agnostic intermediate representations to align
turbulent and pristine images into a common subspace,

• a new tilt map estimator that predicts the geometric
distortion (pixel shifts) observed from query images,

• a novel re-ranking approach that applies estimated tilt
maps to gallery imagery to improve recognition.

We analyzed our framework using the Long-Range Face
Identification Dataset (LRFID) [21] and BRIAR1 Gov-
ernment Collection 1 (BGC1) [4], which are challenging
datasets for long-range recognition. While there are ethi-
cal concerns, responsible informed consent and data stor-
age protocols have been followed. We achieve enhanced
discriminability under varying turbulence and standoff dis-
tance on both datasets, and establish a new benchmark on
BGC1 whole body dataset using a small fraction (e.g., less
than 20% supervision) of the labeled data.
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2. Relevant Literature

2.1. Learning with Limited Supervision:

Learning with limited supervision has gained attention
due to the high cost and complexity of annotating bio-
metric data. Semi-supervised learning often uses con-
trastive learning to ensure same representation is produced
on original and augmented images [46]. A newer paradigm
called meta-learning has been studied on the few-shot learn-
ing problem, to adapt to newer tasks using prior experi-
ences [6, 25]. However, the lack of cross-domain labeled
data in long-range settings make it challenging to transfer
knowledge. SimCLR [2] shows that composition of multi-
ple data augmentation operations and very large batch-sizes
( > 2048) benefits contrastive learning, yielding discrimina-
tive representations. FixMatch [36] combines consistency
regularization and pseudo-labeling on weak and strong aug-
mentations of the same input. While this has achieved suc-
cess on some tasks [2, 36], strong augmentation is insuf-
ficient to bridge large domain gaps and in most cases, de-
grades performance. Unsupervised methods [15, 26, 27]
use instance-based pseudo-labeling and agglomerative clus-
tering to progressively merge similar samples together to
optimize the representation. However, the large gap be-
tween pristine and turbulent domains has difficulty to clus-
ter inter-domain samples together. This work proposes a
method to transfer intermediate features, that has coarse but
general features, to adapt to newer tasks with limited data.

2.2. Turbulence Mitigation:

Most methods attempt to eliminate turbulence and treat it
as an image restoration task. Early methods took a physics-
based approach to restore images, with optical adaptive
techniques [28, 34] and local information fusion [42]. In
recent years, deep learning based methods have been pro-
posed in the literature. In [47], a Monte Carlo simula-
tion is used to model blur and degradation to restore tur-
bulence. [45] reconstructs a high-quality image from ob-
served images through low-rank decomposition. In [12], the
deformation field between image frames is estimated and
warped using quasiconformal maps. AT-DDPM [24] uses
Diffusion Probabilistic Models to iteratively denoise turbu-
lent images. AtFaceGAN [13] disentangles the blur and
deformation operations and generates an image with sharp
details. Physics-based models [18, 17] capture the long-
range dynamics of turbulence effects. However, the syn-
thetically restored image creates another domain gap (ide-
ally reduced) that needs to be aligned. In [33], the effect
of feature shift under turbulence is studied, showing that
face recognition models misinterpret turbulence as salient
features. In this work, we guide the generation of salient
features using pixel-level self attention and directly align
inter-domain features.



Figure 2. Our proposed method has two training phases: (1) Identity Learning where intermediate features are transformed using a self-
attention module to generate domain agnostic representations and (2) Tilt Map Learning where the geometric distortion of turbulent images
is learned by augmenting pristine images with random spatial fields. During inference, the identity model generates embeddings to compare
query and gallery images. The top-5 matches are further re-ranked by applying the learned tilt from the turbulent query image.

3. Methodology
Our proposed framework is shown in Figure 2. First, we

generate a strong domain-invariant representation for tur-
bulent and pristine images. Next, we train a tilt-predictor
to predict the geometric distortion of the turbulent image.
Finally, we apply this distortion on the gallery images to
re-rank the top matches to boost rank-1 performance of
the recognition system. The parameter efficient design of
the self-attention module makes our framework suitable for
weak supervision, requiring significantly fewer annotated
samples. Moreover, our method does not depend on corre-
sponding pairs of turbulent and pristine images.

3.1. Preliminaries

We denote gallery (or pristine) images as XG =
{xg

1, x
g
2, . . . , x

g
n} and query (or turbulent) images as XQ =

{xq
1, x

q
2, . . . , x

q
n} and the corresponding identity labels as

YG = {yg1 , y
g
2 , . . . , y

g
n} and YQ = {yq1, y

q
2, . . . , y

q
n}. Note

that the images (gallery or query) from the training and eval-
uation set are disjoint, and no optimization is done on the
evaluation set. To start, we randomly initialize a memory
bank M = {β1, β2, . . . , βnc} where nc is the number of
known classes (or identities). We address closed-set person
and face recognition, where the input query image is a sub-
ject captured from long-range, and we aim to match it with
the close-range images (e.g., driver’s license or passport
photos) of the same subject from the gallery/database. Here,
closed-set implies the assumption that subjects in query im-
ages have a mated image (or template) in the gallery.

3.2. Weakly Supervised Identification

To bridge the domain gap between pristine XG and tur-
bulent XQ images with weak supervision, we extract inter-
mediate features from a convolutional backbone network:

Fbb = backbone(xd
i ) for i . . . n, (1)

where d ∈ {g, q}. It is important to emphasize that XG and
XQ here denote the images from the training set. We empir-
ically determine stage 3 of the ResNet50 [9] network to ex-
tract intermediate features, as they are sufficiently (and ini-
tially) discriminative but still retain generic features. These
intermediate features are then fed to three (query, key, and
value) 1× 1 convolutional transforms:

F s = tanh(Convs1024−>512(Fbb)) s ∈ {q, k, v} (2)
that compress feature map from 1024 to 512 channels while
retaining spatial dimensions.

The query and key are matrix multiplied together and the
softmax operation is applied to calculate the self-attention:

Fattn = softmax(F q · F k.T ). (3)
Lastly, the attention is multiplied by the value feature to
generate the final identity representation.

Ffinal = F v · Fattn (4)
While some equations are similar to the original self-
attention model proposed in [41], the notable differences
are (a) the use of a 1 × 1 convolutional transform that
forces representations to retain salient but concise features
by compression, (b) the use of self-attention as a transfor-
mation (or projection head) rather than inserting in between
layers and (c) the use of tanh to introduce non-linearity.



The final representation is optimized using an adaptable
memory bank M that stores the centers—mean feature rep-
resentations The probability of image xi belonging to it’s
cluster center is:

P (Bi, xi) =
exp(MT

βi
f(xi))/τ∑

j ̸=i exp(M
T
βj

f(xi))/τ
(5)

where f(xi) is the mapping from the input image to the
final representation and τ is the temperature parameter of
the distribution set to 0.1 as in [27]. Then, the objective
function for identity learning is the negative log likelihood:

LID = −
n∑

i=1

log(P (βi|xi)), (6)

that minimizes intra-class variance and maximizes inter-
class separability.

3.3. Tilt Map Predictor

While the identity learner bridges the domain gap be-
tween turbulent and pristine images to a degree, we notice
relatively higher rank-5 and low rank-1 recognition scores.
This means that the network was able to retrieve the correct
identity in the top-5 matches. To this end, we propose to in-
tegrate the distortions produced by isoplanatic turbulence,
i.e., the pixel shifts are spatially varying with a constant
blur. Ignoring the spatial variance of the blur and simulat-
ing the tilt is widely used in image reconstruction literature
[1, 12, 32, 14]. To do this, we aim to predict the pixel shift
(or tilt) of the given turbulent image on a coarse-level. The
hypothesis is that applying the predicted tilt on the gallery
images will boost facial recognition performance.

We train an encoder-decoder architecture with a
ResNet50 encoder pretrained on ImageNet to predict this
effect. As no ground-truth pixel shifts are available for
the dataset, we use pristine images from the training set
augmented by a spatially correlated random Gaussian field
to mimic this effect. This field is generated by (i) gener-
ating a complex Gaussian noise with normal distribution
N ∼ CN (µ = 0, σ = 1), (ii) multiplying the noise and the
power law spectrum N × P (k), and (iii) taking the inverse
Fourier transform of this field, i.e., Re{F−1(N × P (k))}.
The resulting real component is a Gaussian random field
with spatial correlations resulting from a scale-free power
law spectrum:

P (k) = 1/kα (7)

where k is the amplitude of the power law and α is the
power law exponent. A value of α close to 1 produces a
smooth field whereas a value of 0 produces a rough field.
Figure 3 shows the result on one input image. The supple-
mentary material includes a video that shows the distortion
results. Using the power law spectrum to generate random

Figure 3. Geometric distortion is introduced to pristine (gallery)
images, warping specific facial features like eyes, nose, mouth,
jaw line, and head shape found in turbulent images. Subject has
consented to image publication.

fields is common in astrophysics [29] and the Kolmogorov
spectrum α = 5/3 is often used to model many turbulent
flows [11] and hence we set it to this number. We vary
the correlation length of the spatial field—the largest ed-
dying motion ranges of the turbulent flow—for each image
to make the network robust to varying ranges of turbulence
in the image. The decoder is trained to predict the spatial
field that distorted the image.

Mathematically, we apply a spatial pixel distortion Ψ (re-
sulting in a pixel tilt) on the image with field f varying cor-
relation length. The network d(·) is optimized by:

LTP = MSE(d(Ψ(xg
i ; fi)), fi) (8)

to minimize the difference between the real and predicted
spatial field. After convergence, we use this model to pre-
dict the pixel shift on turbulent images.

3.4. Re-Ranking using Tilt Prediction

For a given turbulent query image qk from the testing set,
we predict the distortion field fk = d(qk) and apply this
field to all the images (from the testing set) in the gallery:

ĝi = Ψ(xg
i , fk) ∀ i in XG (9)

Since we achieve high rank-5 performance (using the iden-
tity embedding in Section 3.2) and the gallery size is
much larger than 5, we restrict the use of this technique
to the top-5 gallery matches for a given query. This
keeps the re-ranking method efficient and does not de-
grade performance for low quality distortion predictions.
We also consider Gaussian blur and conclude that ap-
plying the tilt leads to a greater improvement in rank-
1 performance compared to using a combination of blur
and tilt, or solely applying blur, as seen in Table 1.



Table 1. Combining tilt and blur
Tilt Blur Rank-1
✗ ✗ 64.93
✓ ✗ 70.12
✗ ✓ 66.23
✓ ✓ 68.83

Visually, we observe that
image warping based
on tilt inherently intro-
duces a degree of blur,
rendering additional blur
inefficient in boosting
performance.

Table 2. Whole body recognition performance on the BGC1
dataset. The bracket specifies the dataset the model is pretrained
on. Bold denotes best performance.

Range Method Venue Rank-1 Rank-3 Rank-5 mAP

100m

PCB(BGC1) [39] ECCV18 11.25 21.25 35.00 23.97
PCB(Market1501) [39] ECCV18 20.62 38.75 48.75 35.17
OSNet(Market1501) [52] ICCV19 26.88 40.00 49.38 38.19
OSNet(BGC1) [52] ICCV19 27.50 39.38 56.88 40.71
BPBNet(BGC1) [37] WACV23 17.50 30.00 40.00 30.71
BPBNet(Market1501) [37] WACV23 16.88 32.50 40.00 30.50
OURS IJCB23 31.25 62.50 79.37 50.78
OURS+TP IJCB23 33.75 63.12 79.37 50.78

200m

PCB(BGC1) [39] ECCV18 12.87 24.56 35.09 25.18
PCB(Market1501) [39] ECCV18 26.90 46.20 54.97 40.48
OSNet(Market1501) [52] ICCV19 26.32 43.86 56.14 40.45
OSNet(BGC1) [52] ICCV19 14.04 34.50 47.37 30.97
BPBNet(BGC1) [37] WACV23 8.77 25.73 39.77 23.93
BPBNet(Market1501) [37] WACV23 25.73 43.86 50.88 38.88
OURS IJCB23 30.99 52.05 62.57 45.57
OURS+TP IJCB23 33.91 52.94 62.94 45.09

400m

PCB(BGC1) [39] ECCV18 9.86 25.35 33.80 23.26
PCB(Market1501) [39] ECCV18 23.94 39.44 47.18 36.67
OSNet(Market1501) [52] ICCV19 21.13 33.80 42.25 32.98
OSNet(BGC1) [52] ICCV19 16.20 38.03 49.30 32.44
BPBNet(BGC1) [37] WACV23 14.08 27.46 38.73 26.01
BPBNet(Market1501) [37] WACV23 19.72 30.28 39.44 30.02
OURS IJCB23 43.66 72.54 77.46 59.47
OURS+TP IJCB23 45.77 71.12 77.47 59.46

500m

PCB(BGC1) [39] ECCV18 8.76 18.25 27.74 19.55
PCB(Market1501) [39] ECCV18 20.44 39.42 48.18 34.50
OSNet(Market1501) [52] ICCV19 18.98 37.23 40.88 31.89
OSNet(BGC1) [52] ICCV19 10.22 24.09 38.69 24.56
BPBNet(BGC1) [37] WACV23 8.76 24.09 37.23 22.60
BPBNet(Market1501) [37] WACV23 16.06 33.58 42.34 30.17
OURS IJCB23 33.58 56.93 71.53 49.72
OURS+TP IJCB23 47.44 55.47 71.53 49.72

4. Experiments
Datasets: The LRFID [21] was collected by the US

Army C5ISR division to study facial recognition under ex-
treme atmospheric effects. It contains indoor and outdoor
enrollment (close-range) videos that are free of turbulence,
and outdoor videos captured at 350m of 100 identities.

The BGC1 [4] dataset comprises of still images and
videos that are unconstrained and variable quality from
close-range, 100m, 200m, 400m, and 500m distance ranges
for 150 identities. Unlike LRFID, both face and whole-body
(WB) images are acquired for purposes of human identifi-
cation. With multiple standoff distances, this dataset helps
benchmark robustness of methods across varying levels of
turbulence and resolution. We sample one frame from each
video for each identity at a distance range for the testing
protocol. We present one of the first analysis of whole body

intra-set matching on this dataset. In addition, we also com-
pare with existing methods for facial recognition.

In this work, we adopt a weakly supervised approach
by sampling less than 20% of the identities for training
and 80% of the identities (not belonging to the training
set) for testing. We follow the same testing protocol as
[24] to be able to benchmark and demonstrate clear and
fair comparison over previous methods. Both datasets
have obtained approvals from the IRB (Institutional Re-
view Board) and can be requested by contacting the re-
spective authors. Code available at https://git.unl.
edu/ece-unl-images-lab/recognition-in-
turbulent-environments

4.1. Quantitative Results

We present results using verification metrics, including
the Receiver Operating Characteristics (ROC) curve—True
Positive Rate (TPR) as a function of False Positive Rate
(FPR)—and the Area under the Curve (AUC)—overall sep-
arability (across all operating thresholds) between genuine
and imposter match scores. Additionally, we measure rank-
k accuracy, representing the number of correct retrievals
in the highest k matches, and the mean average precision
(mAP), representing the average measure of separability of
correct matches for each subject.

Table 2 shows the results on whole body recognition on
the BGC1 dataset across various distance ranges. We com-
pare with seminal works in supervised and domain adapt-
able person re-identification, specifically PCB [39], BPB-
Net [37], and OSNet [52]. In low turbulence setting (100m
and 200m), our method achieves an improvement of 3.75%
and 4.09% improvement in rank-1 performance over recent
methods. In addition, our tilt predictor further improves
rank-1 performance by ∼2%. Moreover, in high turbu-
lence setting (400m and 500m), our method significantly
outperforms previous methods by 19.72% and 10.14%. The
tilt prediction (TP) also boosts performance by 2.11% and
13.85% in high turbulence setting. The relatively lower
influence of tilt prediction in the 400m range may be at-
tributed to the usage of different cameras, diminishing the
impact of turbulence captured in the image. The results also
indicate a noticeable improvement in mAP scores compared
to recent methods across distances, demonstrating increased
level of separability among correct predictions. Figure 4
shows the results of verification scores across methods. Our
method is reliable in the task of verification, with an AUC
score improvement of 7.39, 6.62, 9.46, and 11.08 at the
100m, 200m, 400m, and 500m distances, respectively.

Table 3 shows the facial recognition performance on the
LRFID and BGC1 datasets. As previous methods are re-
ported on random sampling of frames, we compare with
reported scores (denoted by ∗) in [24] and also test the
methods on our sampling. For LRFID, we notice an im-

https://git.unl.edu/ece-unl-images-lab/recognition-in-turbulent-environments
https://git.unl.edu/ece-unl-images-lab/recognition-in-turbulent-environments
https://git.unl.edu/ece-unl-images-lab/recognition-in-turbulent-environments


Figure 4. ROC Curves on the BGC1 dataset where our method (green curve) significantly outperforms other methods in verification scores.

Table 3. Face Recognition performance on LRFID and BGC1 face dataset. * denotes performance reported in [24]

.

LRFID BGC1
Method Venue Rank-1 Rank-3 Rank-5 mAP Rank-1 Rank-3 Rank-5 mAP
ArcFace [5] CVPR19 40.26 62.34 71.43 53.86 30.00 43.33 50.00 40.49
ATFaceGAN* [13] FG20 47.50 65.80 82.30 - 22.00 38.00 50.00 -
GFPGAN* [43] CVPR21 57.30 79.20 85.30 - 26.00 58.00 60.00 -
MPR-NET* [49] CVPR21 34.10 64.60 74.40 - 24.00 46.00 64.00 -
AT-NET* [48] ICIP21 36.50 64.60 74.40 - 14.00 28.00 38.00 -
TurbNet [18] ECCV22 44.16 63.64 67.53 56.57 28.00 39.33 49.00 38.03
LTTGAN* [20] JSTSP23 58.50 81.70 85.30 - 20.00 54.00 62.00 -
AT-DDPM* [24] WACV23 62.20 81.70 87.80 - 32.00 56.00 66.00 -
AT-DDPM [24] WACV23 31.17 45.45 57.14 32.78 21.00 28.00 40.00 32.48
OURS IJCB23 64.93 79.22 85.07 73.99 32.00 49.00 62.00 46.21
OURS+TP IJCB23 70.12 81.80 85.07 73.99 33.00 49.00 62.00 46.21

provement of 29.86% over state-of-the-art (SOTA) facial
recognition ArcFace [5] used in the image reconstruction
methods. TurbNet [18] improves performance of ArcFace
by around 4%, and AT-DDPM’s [24] performance is im-
pacted by degradation of some facial features as seen in Fig-
ure 5. Our method outperforms reported AT-DDPM score
by 7.92% in rank-1 scores. Furthermore, the improved
separability of our method is demonstrated by the higher
mAP scores achieved by our proposed technique. TP en-
hances rank-1 performance by 5.19%, indicating that our re-
ranking approach consistently improves performance across
various datasets and distance ranges. Our performance on
the BGC1 dataset is comparable to the reported scores of
AT-DDPM since the dataset contains very low-resolution
images with varying poses and motion blur. We do not ad-
dress face pose correction in this study.

4.2. Qualitative Results

Figure 5 shows the separability of features on the LRFID
dataset using t-SNE [40]. ArcFace, intended for high reso-
lution facial recognition, clusters pristine and turbulent im-
ages, resulting in subpar performance. AT-DDPM clusters
occluded images (such as mask, hat, and sunglasses), while
low quality are similarly grouped. In contrast, our method
has better separability among identities and correctly clus-
ters the same subject across occlusions and distance ranges.

In Figure 6, we see the ranking performance on the LR-
FID dataset compared to SOTA image reconstruction meth-
ods: AT-DDPM [24] and TurbNet [18]. Although AT-
DDPM generates sharper images, the high turbulence re-
sults in artifacts in salient facial regions like the eyes and

nose, leading to decreased performance compared to Turb-
Net. TurbNet uses physics-based method for reconstruc-
tion that produces fewer artifacts, but does not reconstruct
salient regions that are used by off-the-shelf recognition
systems such as ArcFace [5]. Our approach does not fo-
cus on reconstruction, but instead directly overcomes the
domain gap between turbulent and pristine images and re-
trieves the correct identity, as seen in row 3 of the figure.

Similarly, Figure 7 shows the ranking results on the
BGC1 dataset compared to the best-performing method on
that dataset range. Our approach shows robustness to dif-
ferent poses and occlusions, varying turbulence, and is able
to accurately retrieve the identity.

4.3. Ablation Studies

Transformation Heads: In Table 4, we present a compar-
ison of different transformation heads. CBAM [44] and
Triplet Attention [22] both suffer from high parameteriza-
tion and large kernel fields resulting in low performance.
FCANet [30] utilizes a fixed basis for data representation
with minimal learning, resulting in slightly better perfor-
mance due to the reduced risk of over-fitting. LKA [8]
models long-range pixel correlations that is efficient by us-
ing depth wise dilated convolutions, and achieves a rank-1
performance of 21.90%. SAGAN [50] uses 1 × 1 trans-
formations similar to our method, but uses high degree
of compression and number of layers resulting in over-
fitting. Compared to the original self attention, we achieve
an improvement of 4.38% and 3.78% in rank-1 and mAP
scores, clearly showing the improvement of our modified
self-attention transformation head.



Figure 5. t-SNE plot showing ArcFace representations clusters turbulent and pristine images, AT-DDPM representations does not have clear
inter and intra-class separation, while ours correctly clusters identities together across occlusions and environments. Subjects appearing in
this figure consent to use their image in publications.

Figure 6. AT-DDPM and TurbNet visually improves quality of images in the LRFID dataset, but suffer from degradation of salient facial
features essential for discriminability. Our method does not synthesize new images but instead focuses on bridging the domain gap,
resulting in improved discriminability. Subjects in results consent to image publication.

Method Rank-1 Rank-3 Rank-5 mAP
CBAM [44] 13.87 22.63 29.20 23.07
FcaNet [30] 15.33 31.39 51.09 30.54

LKA [8] 21.90 38.69 49.64 35.33
Triplet Attention [22] 11.68 17.52 27.01 20.09

SAGAN [50] 16.06 24.09 30.66 24.51
AttentionConv [31] 29.20 51.82 66.42 45.94

Ours 33.58 56.93 71.53 49.72
Table 4. Comparison of transformation heads on BGC1 at 500m.

Degree of Supervision and Progressive Learning: Fig-
ure 8 shows rank-1, mAP and TAR @ 1% FAR performance
on various levels of supervision. Using only 5 identities,
we are able to attain a rank-1 performance of 48.05%, mAP
score of 60.12%, and TAR @ 1% FAR of 29.47%. How-
ever, we notice a substantial gain of 12.99% and 10.37%
in rank-1 and mAP scores, respectively, when the number
of identities were increased to 10. With increasing level
of supervision, we noticed that both rank-1 and mAP grad-

ually increased while TAR showed a significant improve-
ment. This indicates that higher levels of supervision result
in an increased level of separability between positives and
negatives. This trend continues with higher levels of super-
vision.

Figure 9 shows results of incorporating progressive
learning in our method by iteratively predicting on the unla-
beled train set and incorporating that in the training phase.
We start with 5 identities as the baseline and iteratively clus-
tered around 100 frames, which improved performance for
4 stages of training. However, at stage 4, incorrect iden-
tities were matched together, resulting in a drop in per-
formance. Although we do not address progressive learn-
ing in this work, future work can incorporate smart clus-
tering [15, 27, 10] and robustness to noisy labels [38] to
consistently improve performance.



Figure 7. Comparison of BGC1 ranking results between the best-performing method (left) for that distance range and our method (right).
Our model is robust to various poses and quality (row 1, 2, and 4) and occlusions (row 3). G00398, G00517, G00498, and G00519 did not
consent to image publication and are pixelated for privacy. Others consented for image use in publications.

Figure 8. Progressive learning performance with only 5 identities.

Figure 9. Rank and verification performance with varying super-
vision on the LRFID dataset. Results consistently improve with
minimal supervision until incorrect matches are clustered together.

5. Conclusion

Long-range and turbulent conditions significantly de-
grade the quality of face and whole-body recognition per-

formance. Despite promising trends in developing restora-
tion models and toward increasing complexity and su-
pervision, we evaluated an alternative weakly supervised
framework. Our framework learns domain-agnostic rep-
resentations for matching turbulent and pristine imagery
by leveraging a parameter-efficient self-attention transfor-
mation head with few annotated examples. Our new tilt-
map estimator helps boost rank-1 performance by predict-
ing the geometric distortion from query images to re-rank
the gallery matches. Our framework is generalizable to both
face and whole body recognition, and set new benchmarks
across multiple datasets with varying levels of turbulence.
Our research is committed to maintaining rigorous ethical
and privacy standards, and responsible use, while aiming to
maximize benefits to individuals and society.
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