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Abstract

In recent years, deep face recognition methods have
demonstrated impressive results on in-the-wild datasets.
However, these methods have shown a significant decline
in performance when applied to real-world low-resolution
benchmarks like TinyFace or SCFace. To address this chal-
lenge, we propose a novel classification consistency knowl-
edge distillation approach that transfers the learned clas-
sifier from a high-resolution model to a low-resolution net-
work. This approach helps in finding discriminative rep-
resentations for low-resolution instances. To further im-
prove the performance, we designed a knowledge distilla-
tion loss using the adaptive angular penalty inspired by the
success of the popular angular margin loss function. The
adaptive penalty reduces overfitting on low-resolution sam-
ples and alleviates the convergence issue of the model in-
tegrated with data augmentation. Additionally, we utilize
an asymmetric cross-resolution learning approach based on
the state-of-the-art semi-supervised representation learning
paradigm to improve discriminability on low-resolution in-
stances and prevent them from forming a cluster. Our pro-
posed method outperforms state-of-the-art approaches on
low-resolution benchmarks, with a three percent improve-
ment on TinyFace while maintaining performance on high-
resolution benchmarks.

1. Introduction
One of the key factors of the recent advances in Face

Recognition (FR) is the introduction of large-scale datasets
[6, 25, 26, 27]. Publicly available training benchmarks,
such as CASIA-WebFace [52], MS1MV2/3 [13, 6], and
WebFace4M [57], are rich in width (thousands of identi-
ties) and depth (number of images per identities) [9]. How-
ever, large-scale training datasets consist of web-crawled
images and mostly contain high-resolution instances [35].
As a result, there is a notable difference between training
and real-world testing statistics [7]. In particular, the im-
ages captured by security cameras exhibit a lower image
resolution than the samples used for training, as seen in Fig.

Figure 1. Our method aims to improve FR performance on LR in-
put while maintaining the discriminability of the original HR em-
beddings. To achieve this, we propose to share the class proxies
between student and teacher networks while asymmetrically push-
ing the LR feature embeddings to have higher mutual information
with their HR counterparts.

2 [3]. This disparity leads to a huge performance gap in FR
between High-Resolution (HR) and Low-Resolution (LR)
since LR data are underrepresented during training [38].
Biased training loss favors over-represented samples, hin-
dering learning under-represented variations [5]. Therefore,
studies have focused on developing better training objec-
tives to solve this generalization problem [37, 38].

Whether a set of samples or a proxy represent an iden-
tity, FR training criteria can be categorized as proxy-less
or proxy-based methods [9]. The former is based on pair-
wise similarities, such as contrastive or triplet loss learn-
ing [37, 40]. In the latter, a prototype (proxy) represents
a person’s identity and the network tries to learn a classi-
fication task (weights of the classifier represent the identi-
ties’ proxy). In large-scale datasets, challenges concerning
computationally expensive sample-mining of the proxy-less
loss functions have led the current state-of-the-art (SOTA)
FR training loss functions toward proxy-based approaches,
such as L-Softmax [27], SphereFace [26], CosFace [47],
and ArcFace [6]. Despite the remarkable improvement in
numerous benchmarks, such as CFP-FP, LFW, CPLFW, and
CALFW, significant performance degradation occurs when
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a FR is trained on these datasets and then applied to LR
images [42, 38].

Two primary approaches have been explored to combat
this: 1) construction-based and 2) projection-based meth-
ods. Construction-based methods involve enhancing the vi-
sual quality of the LR input before recognition, i.e., Face
Super Resolution (FSR). This way, the FR process is sep-
arated into two tasks: identity-preserving FSR and Super
Resolved Face Recognition (SRFR). Among face genera-
tion modules, special attention has been placed on Gener-
ative Adversarial Networks (GANs) [45, 17, 1]. Despite
the remarkable outputs concerning image quality and hu-
man perception, GANs add high-frequency components to
the synthesized images, which negatively affects the recog-
nition process [49]. Furthermore, since multiple HR faces
exist for each LR image, FSR is an ill-posed problem [15].
Also, face images suffer from several other covariates (nui-
sance) factors, such as head pose, illumination, and expres-
sion. These factors result in a large gap between feature em-
beddings of HR and SR faces in the identity metric space,
which significantly deteriorates the final FR performance
[49].

Projection-based methods aim to create a shared embed-
ding that can accommodate HR and LR images. To this
end, synthetic LR data can be used to increase the resolu-
tion diversity of the dataset [42, 20]. However, due to the
fixed-angular margin in conventional FR methods, they suf-
fer from convergence problems and cannot fit well with data
augmentations such as down-sampling or random cropping
[55]. To address this issue, methods have been proposed
to adaptively tune the margin based on the difficulty of the
samples [23, 30]. MagFace proposes to use the feature norm
as the image-quality measure and tunes the margin. The
adaptive margin has resolved the convergence problem to
some extent. However, the performance still severely dete-
riorates when dealing with LR images [38]. For instance,
typically the face verification accuracy on LFW is above
99%. However, the performance on Tinyface is around
59%. Furthermore, nourelahi et. al. [32] demonstrate that
training a model on the perturbed data costs worse perfor-
mance on the original samples while increasing the robust-
ness.

Another line of work is to use Knowledge Distillation
(KD) to obtain resolution agnostic face representation [43].
The main idea is to transfer the prior knowledge from HR
images to train a model on the LR instances [42]. A teacher
network trained on HR images guides the LR model to-
ward capturing discriminative features from LR instances.
Since FR is an open-set problem, forcing the LR model
to share the embedding space with the HR model is essen-
tial. A straightforward solution is to directly minimize the
Euclidian distance between LR and HR model representa-
tions, which aligns the embedding spaces; we call it Feature

Figure 2. Top: Samples from the training datasets are mainly
high-quality images. Bottom: TinyFace contains real-world low-
quality instances. Comparing the top with the bottom, the gap
between training and low-resolution testing benchmarks is appar-
ent.

Distillation (FD). Previous methods mainly focused on FD
because the embedding of the HR model includes more in-
formation than the LR model. In practice, it is shown that
more than a FD is needed to align the models’ representa-
tions [42, 38]. Enforcing a sample-level restriction on cross-
resolution FR in a rigorous manner can be sub-optimal, as
it eliminates the effect of negative instances and cause the
network to prioritize factors such as the pose, glasses, or
other facial attributes.

In this paper, we propose the Classification Consistency
Face (CCFace) recognition paradigm, which takes advan-
tage of KD and unsupervised representation learning to en-
force a consistency between logits and feature embeddings
of HR, and LR pairs, see Fig. 3. CCFace shares the same
proxy between the HR and LR images and uses the output
score of the HR images as a measure of sample hardness
to tune the margin penalty of LR samples. In this manner,
the training objective is relaxed for the LR inputs to alle-
viate the overfitting and convergence problem. As the HR
embedding is more discriminative, we use two asymmetric
methods to maintain the model’s performance on HR im-
ages: 1) updating the proxies only from HR loss, 2) apply-
ing Asymmetric Cross-Resolution (ACR) learning between
the HR and LR images with the detached features of HR
inputs. Contributions of this work can be summarized as
follows:

• We introduce a framework to maintain the consistency
between HR and LR face recognition by sharing the
proxies between different resolutions and asymmetri-
cally updating the proxies via gradient from HR pre-
diction.

• We introduce sample-mining in tuning the angular
margin for LR samples to relax the training for hard
samples and reduce overfitting.

• We asymmetrically apply contrastive learning to align
the representation of HR and LR images without harm-
ing the discriminative power of the model on the orig-
inal HR images.



2. Related Works

2.1. General Face Recognition

FR is among the oldest and most surfed problems in
computer vision and has matured over the years from uti-
lizing handcrafted features and local descriptors toward us-
ing deep learning-based models [37]. Existing deep net-
work architectures, such as CNNs and ViT variants [6, 8],
are dominant feature extractors in this area [6, 25]. The
critical issue is how to train the deep model using a large-
scale dataset and prevent overfitting [38]. Deep FR training
schemes are either proxy-less or proxy-based. The former
utilizes a tuple of similar and dissimilar images. It encour-
ages the network to map the faces with the same identity
to close representations and faces with distinct identities to
distant representations [37]. The fact that these loss func-
tions directly supervise sample-wise similarities is aligned
with the final objective of the FR system. However, the
sampling process required for these methods becomes chal-
lenging in large-scale datasets, which leads to convergence
problems [21]. Therefore, most of the research has been
dedicated to classification-based loss functions, such as L-
Softmax [27], SphereFace [26], CosFace [47], and ArcFace
[6].

2.2. Low-Resolution Face Recognition

LR facial images lack the details of their HR counterpart,
such as eyes and skin texture. Therefore, learning discrim-
inative representations from LR samples are much harder,
and applying general FR learning methods results in un-
satisfactory performance [42]. Two main approaches have
been surfed for LR face recognition: 1) construction-based
and 2) projection-based methods [54, 48, 2, 19, 42, 10, 56].

Construction-based methods are based on super-
resolving the LR input prior to recognition. Apart from
the ill-posed nature of the FSR problem, the main scheme
of FSR is not optimized for discrimination, resulting in the
unsatisfactory performance of the subsequent FR task [37].
To alleviate this, Zhang et al. [54] use the face verification
loss in the identity metric space to guide the reconstruction
model toward preserving identity information. Several stud-
ies focused on dividing the FSR into different sub-tasks.
Wang et al. in [48] dedicated one network to reconstruct-
ing global details and the other to enhancing local details.
Cao et al. [2] used Reinforcement Learning (RL) to local-
ize regions and a local network to attend to the specified
regions. Current FSR methods produce visually appealing
results; however, their integration with the FR model de-
grades the overall performance [42]. Also, these methods
are computationally intensive [42].

The projection-based approaches try to map both HR and
LR images to a unified embedding [10, 56]. To this end, var-
ious works focused on distilling well-constructed features

from HR teacher to LR student module [56]. Zhu et al. [56]
utilized the general KD approach of using soft-logits predic-
tion of the teacher module to guide the student module for
the task of LR classification. Numerous studies applied in-
termediate representation distillation from the HR network
to improve LR performance [33, 10]. However, the consis-
tency between HR and LR representations was not imposed,
deteriorating the performance on cross-resolution scenarios.
Among the facial parts, key parts are essential in FR, such
as eyes and ears [22]. Kumar et al. in [22] force the model
to generate key points using an auxiliary layer which guides
the network toward focusing more on key facial character-
istics. These methods mainly focused on improving the re-
sults of the LR images and did not maintain the performance
of the original HR imagery. Also, guiding the LR network
using the proxies of the HR network has not yet been ex-
plored for LR face recognition. Therefore, we investigate
a prediction consistency knowledge distillation approach to
improve the performance on LR images and preserve the
model performance on HR images.

2.3. Knowledge Distillation

Knowledge distillation (KD), first proposed in [14], is a
form of model compression that transfers knowledge from
a robust teacher model into a small student model. Since
its introduction, numerous distillation techniques have been
developed [36, 44, 42]. FitNet [36] directly reduces the Eu-
clidian distance between the student and teacher network.
Combining representation learning with KD, CRD [44] uti-
lizes contrastive objective to increase the mutual informa-
tion between the teacher and student model. Despite the
remarkable improvement in conventional KD, these meth-
ods are mainly designed for closed-set classification and
are incompatible with FR. For instance, in [14] Kullback-
Leibler (KL) divergence between soft logits of teacher and
student network is used to distill knowledge. In an open-set
problem such as FR, obtaining the discriminative feature is
most important. Furthermore, consistency between features
obtained from the teacher and student model is essential
because cross-resolution embedding of a specific identity
must be close to each other.

3. Method
This section begins with a preliminary proxy-based FR

loss function. Then, we explain our proposed classifica-
tion consistency framework and how we prevent overfitting
and alleviate the convergence problem. Then, we analyze
the embedding of the FR module when dealing with LR in-
stances and show that LR samples form a cluster well sep-
arated from other classes. Then, we introduce our asym-
metric cross-resolution framework based on state-of-the-art
representation learning methods to restrain the LR samples
from forming a cluster.



3.1. Preliminary

The majority of FR models consist of feature extractor
F : I → X mapping input faces I from image space to
an embedding space X . At the top of the feature extractor,
there is a classifier W : X → Ŷ to predict the input identity
from the embedding. Using gradient descent, both the fea-
ture extractor and classifier will be trained end-to-end. To
this end, the widely used Softmax cross-entropy is applied
on the predicted labels [18]:

Li = −log
e
WT

yi
xi∑C

j=1 e
WT

j xi
, (1)

where xi ∈ Rd is the d-dimensional representation of i-th
input. W ∈ Rd×C represents the learnable matrix where
each column Wj is the proxy of j-th class. When both the
xi and Wj are mapped to a unit hypersphere, then the dot
product Wjxi reflects the cosine of the angle between rep-
resentation and proxy:

Li = −log
es cos(θyi )∑C
j=1 e

s cos(θj)
. (2)

The introduction of angular penalty to the classifica-
tion framework has been shown to be effective in increas-
ing inter-class separability and intra-class compactness.
SphereFace [26] argues that large-margin classification bet-
ter aligns with open-set FR and introduces multiplicative
angular margin for learning more discriminative features
(period of the cos(θyi

)). CosFace proposes using a vertical
shift of the function cos(θyi), which leads to more pow-
erful feature discrimination and improved stability. Arc-
Face suggests using additive angular margin (phase shift of
cos(θyi

)), which has more clear geodesic interpretation and
also improves the performance. In Eq. 3, ms,mc, and ma

show the angular penalty introduced by SphereFace, Cos-
Face, and ArcFace, respectively.

Li = −log
es cos(msθyi+ma)−mc

es cos(msθyi+ma)−mc +
∑C

j=1
j ̸=yi

es cos(θj)
. (3)

3.2. Classification Consistency

Here unlike conventional KD approaches, the teacher
and student networks have the same architecture. In-
stead, the teacher network only sees the original im-
ages, and the student network the down-sampled in-
stances. Given a training set D, the LR samples are ob-
tained from down-sampling with varying interpolations (s):
DLR : {(ILR

i , yi) : I
LR
i = Ii ↓s)}Ni=0, s ∈ S. N is the to-

tal number of samples. As presented in Fig. 4, ft(.) and
fs(.), map the HR and LR faces to a d-dimensional embed-
ding space; xHR

i = ft(Ii) and xLR
i = fs(I

LR
i ).

Figure 3. Maximum similarity between classifier proxies, before
and after applying CCFace to a model trained by LR instances.

As discussed in section 3.1, in the current SOTA FR ob-
jective functions, the similarity between features is guided
through the cosine angle between features and softmax
proxies. Therefore, the inter-class discrepancy increases if
the proxies are well distributed on the hypersphere. Re-
cently, numerous studies have been conducted on uni-
formly distributing the proxies on the hypersphere [24].
In Fig. 3, we show our studies on the inter-class similar-
ity from the proxies’ viewpoint. We illustrate the maxi-
mum inter-class cosine value in two scenarios: 1) model
trained on the original MS1MV2 dataset, 2) model trained
on the down-sampled version of MS1MV2. This observa-
tion shows that naively training on the LR samples will re-
sult in poor discrimination (increase in inter-class similar-
ity). The inter-class similarity is drastically increased in the
model trained on LR images. Therefore, features being su-
pervised through these proxies would not achieve preferred
discriminability.

To overcome this issue, we propose sharing the teacher
network’s proxies with the student model: WHR =
WLR = W . However, the student model does not adjust
the proxies and only uses them as a part of its forward prop-
agation. Also, both networks are being trained using con-
ventional large-angular margin loss function:

LHR
i = −log

e
scos(θHR

yi
+m)

es cos(msθyi+m) +
∑C

j=1
j ̸=yi

escos(θ
HR
j )

, (4)

LLR
i = −log

e
scos(θLR

yi
+mLR)

es cos(θyi+mLR) +
∑C

j=1
j ̸=yi

escos(θ
LR
j )

, (5)

where m and mLR are the angular margins applied to HR



Figure 4. a) The general framework of proxy-based face recognition training has convergence issues when there are many hard samples
(augmented data). b) The original knowledge-distillation paradigm in which the predicted probability of the teacher model is used as the
target for the student model. c) Feature distillation derived from Knowledge-distillation. The similarity between teacher and student model
features is being directly supervised only via positive pairs. d) Classification consistency framework in which the teacher model knowledge
is transferred to the student model through the classifier proxies and the feature similarity supervision.

Figure 5. left: Singular value spectrum of embedding spaces.
right: A visualization of hypersphere embeddings of the train-
ing dataset (every color represents an identity) generated by t-SNE
[27].

and LR samples, respectively. In this way, the feature repre-
sentation of LR images is implicitly forced to move toward
HR representation in high-dimensional embedding space.
In the following section, we explain how we utilize the HR
model prediction to tune the angular margin of the LR sam-
ples. Also, we further elucidate why simultaneously train-
ing two models helps the final performance of the student
model.

3.3. Cross-resolution Angular Margin Adaptivity

Generally, there are three types of samples on the origi-
nal training dataset: 1) easy, 2) hard, and 3) unrecognizable
[38]. Applying augmentation on different samples can pro-
duce different types of samples, whether unrecognizable or
hard. Angular margin helps the model push the features
toward the corresponding positive proxy, i.e., by reducing
the value of cos(θ). Larger margin results in more loss and
eventually more gradient to adjust the network weights. For
a better illustration of the effect of angular margin on the
loss and the magnitude of the gradient that the loss imposes

on the network, we conduct a simple experiment. In a 2k
classification problem, we changed the value of cos(θyi

)
from zero to one while the negative similarity scores with
all of the classes are fixed to 0.1, cos(θj) = 0.1; j ̸= yi.
Reducing the Eq. 3 to ArcFace:

Li = −log
es cos(θyi+ma)

es cos(θyi+ma) +
∑C

j=1
j ̸=yi

es cos(θj)
, (6)

by deriving the gradient of Eq. 6 with regard to xi:

∂Li

∂xi
= (pi,yi − 1)

∂cos(θyi −m)

∂cos(θyi)
wyi +

C∑
j=1
j ̸=yi

pi,jwj

=

C∑
j=1

wj(pi,j − 1(yi = j))(
∂cos(θj −m(yi = j))

∂cos(θj)
),

(7)

pi,j =
exp(s cos(θj +m(yi = j)))

exp(s cos(θyi +m)) +
∑C

j=1
j ̸=yi

es cos(θj)
, (8)

where we denote withm[E] the indicator vector which out-
puts m if the event E is true and 0 otherwise. Note that the
feature and softmax proxies are mapped to the unit hyper-
sphere: ||wj || = 1. Therefore, in Eq. 7 only the term
(pi,yi

− 1(yi = j))(
∂cos(θj−m(yi=j))

∂cos(θj)
) affects the gradient

magnitude. In Fig. 6, we illustrate the gradient magnitude
and the loss function value, which shows that the larger an-
gular margin results in more adjustments for the backbone.
Therefore, applying the same angular margin on HR and
LR samples can result in a convergence problem or overfit-
ting of the student model [20, 30, 38]. We propose dynam-
ically tuning the LR samples’ margin value based on the
HR samples’ difficulty. One of the well-established sample



Table 1. Verification performance comparison on the IJB-B and
IJB-C datasets.

Method
IJB-B IJB-C
TAR@FAR: 0.0001

CurricularFace 94.80 96.10
MagFace 94.51 95.97
Mv-Arc-Softmax 93.6 95.2
Ours 94.91 96.29

difficulty measures is the softmax’s output score. Here, we
utilized the probability output of the teacher network to tune
the margin value in the student model:

mLR = max(0,m ∗ cos(θyi)), (9)

where max(.) is for cases when the original sample is either
unrecognizable or extremely hard for the teacher model.
Therefore, applying margin on the LR version of that sam-
ple is not preferred [38]. Since both models are being simul-
taneously trained, Eq. 9 helps the student model to ignore
hard samples at the beginning of the training. Then at the
final epochs, the model is able to concentrate more on the
hard instances.

3.4. Asymmetric Cross-Resolution Learning

Here, we describe the Asymmetric Cross-Resolution
Learning (ACR) learning of CCFace in detail. To begin
with, we first discuss the need for the ACR learing. Then
we describe our asymmetric loss function, which is based
on the state-of-the-art approaches for representation learn-
ing.

During the training of angular-based FR algorithms, the
network maps the hard instances of each class near the deci-
sion boundary [30]. The general idea is that the LR version
of images would also be mapped near the class boundary
since they are hard samples for the network [7]. However,
studies have shown that the LR samples tend to cluster with
each other [35, 7]. Fig. 5 shows this counterintuitive phe-
nomenon, which we validate in the following experiment.
We experimented with the representation obtained from the
original and down-sampled training instances. First, we
randomly picked 1000 samples and computed their repre-
sentations, X ∈ R512×1000. Then, we compute the covari-
ance matrix, C ∈ R512×512:

C =
1

N

N∑
i=1

(xi − x̄)(xi − x̄)T , (10)

where N = 1, 000 is the number of samples. Fig. 5 shows
the singular value decomposition of C in logarithmic scale
and sorted order. As can be seen in this figure, the differ-
ence between the order of magnitude of singular values does
not imply the dimensional collapse. From the observation
in Fig. 5, we can conclude that dimensional collapse is not

Figure 6. Shows the curves for the loss values (left) and the gradi-

ent received to the backbone (right) versus pyi =
e
s(cos(θyi

))∑C
j=1 e

s(cos(θj))
,

when cos(θyi) changes from -1 to 1.

happening in LR samples, and LR instances are forming a
cluster well separated from the other classes. An explicit so-
lution is reducing the pairwise distance between the normal-
ized HR and LR representation of every subject presented
in a mini-batch:

Lfd =
1

2N

N∑
i=1

||x
LR
i

xLR
i

− xHR
i

xHR
i

||2, (11)

where N is the number of samples in a mini-batch. Lfd

reduces the discrepancy between (HR, LR) pairs; However,
rigidly adopting such a sample-level constraint to the cross-
resolution FR is sub-optimal, i.e. no negative instances are
in Eq. 11. Using Lfd, the network may be induced to fo-
cus on the frontal pose, the glasses, or other non-identity
facial attributes instead of the identity features of the HR-
LR image pair. To increase the cross-resolution intra-class
compactness, the network should consider different sam-
ples of an identity. Furthermore, to prevent LR represen-
tations from forming a cluster, the loss function should in-
crease the inter-class discrimination among LR representa-
tions. To this end, we proposed ACR to promote discrim-
ination among the LR images and increase the mutual in-
formation among the HR and LR counterparts of the same
subject:

h(xLR, xHR) = exp(
1

τ

xLR · xHR

||xLR|| · ||xHR|| ),
(12)

Lacr,i = − log
1

|Pi|
∑
p∈Pi

h(xHR
p , xLR

i )∑
j∈Ni

h(xLR
j , xLR

i )
. (13)

In Eq. 13, Ni is a set of all negative LR samples presented
in the mini-batch for xi (Ni ≡ n ∈ B : yn ̸= yi), Pi is a
set of all positive HR samples (Pi ≡ p ∈ B : yp = yi) and
|Pi| is its cardinality. To maintain the performance on orig-
inal HR data and since the HR representations have good
intra-class compactness and inter-class discrimination, the
detached HR features are used in Eq. 13. Therefore, Eq.
13 asymmetrically forces the LR representation to increase
their mutual information with their HR counterparts [37].



Figure 7. Samples of SCFace. The first column shows the high-
quality mugshot instances. For every distance {d1, d2, d3}, im-
ages are taken using seven different cameras.

Also, it penalizes the similarity between negative LR repre-
sentations, which prevents them from forming a cluster.

4. Experiments
4.1. Datasets.

We report our experiments based on using MS1MV2 as
the training dataset [13, 6]. The MS1MV2 dataset is a re-
fined version of the MS-Celeb-1M dataset with 85k iden-
tities and 4 million images. Images were down-sampled
using random interpolation to construct the HR and LR
pairs. For evaluation, we report our results on LFW, CFP-
FP, AgeDB, CPLFW, and CALFW. To validate the pro-
posed method’s performance on real-world LR faces, we
also report our results on the TinyFace [4] and SCFace [46]
datasets. We used an aligned version of these datasets in
which samples are resized to 112 by 112 [20]. Also, we
report our performance on IJB-B and IJB-C as benchmarks
which contain both HR and LR samples.

IJB-B and IJB-C: IJB-B [50] contains around 21.8K
images (11.8K faces and 10K non-face images) and 7k
videos (55K frames). A total of 1,845 identities are pre-
sented in this dataset. Our experimental protocols follow
the standard 1:1 verification, which contains 10,270 posi-
tive and 8M negative matches. There are 12,115 templates
in the protocol, each of which consists of multiple images
or frames. Consequently, a template-based matching pro-
cess is used. Specifically, we average over the instances in
a template to obtain the global feature vector for each tem-
plate. IJB-C [29] is the extended version of IJB-B, includ-
ing 31.3K images and 117.5K frames from 3,531 identities.
The testing protocol of IJB-C is similar to IJB-B.

SCFace: SCface [16] is a challenging cross-resolution
FR dataset. It contains HQ mugshot and LQ images cap-
tured by surveillance cameras. The images were taken
from 130 subjects in an uncontrolled indoor environment
using five video surveillance cameras at different distances
di ∈ {4.2, 2.6, 1.0} (meter); five images at each distance.
Also, one frontal mugshot image for each subject is ob-
tained using a digital camera, Fig. 7. In an experiment simi-
lar to [16], we employ frontal mugshot images as our gallery
and samples taken by surveillance cameras as probes.

Table 2. Identification accuracy on TinyFace
Architecture DataSet Acc@1 Acc@5

AT [53] ResNet50 CASIA 36.54 50.62
HORKD [10] ResNet50 CASIA 45.49 54.80
A-SKD [42] ResNet50 CASIA 47.91 56.55
URL [41] ResNet100 MS1MV2 63.89 68.67
CurricularFace [16] ResNet100 MS1MV2 63.68 67.65
CCFace ResNet100 MS1MV2 65.71 69.25

4.2. Metrics.

There are two primary approaches to validating an FR
paradigm’s performance: 1) Recognition and 2) Verifica-
tion. Recognition is a 1:N task where the network should
calculate the similarity score of a given probe image with
all the samples in the gallery and determine the identity of
the probe image. Face verification is a 1:1 task where the
network should determine whether a given pair of images
represent the same identity. We report the verification re-
sults on the LFW, CFP-FP, AgeDB, CPLFW, IJB-B, IJB-C,
and CALFW datasets (TAR@FAR from ROC for IJB-B and
IJB-C [12]). The result for identification is reported on the
SCFace and TinyFace datasets.

4.3. Implementation details.

We followed the ArcFace setup for preprocessing [6].
All the images are resized to 112×112, aligned to a canoni-
cal view, and pixel values are normalized to [−1, 1]. To pro-
duce synthetic low-resolution samples, we randomly apply
different down-sampling interpolations on the IHR, includ-
ing bilinear, nearest neighbor, and bicubic. Also, the size of
the LR image is uniformly sampled from {(16× 16), (20×
20), (32×32)}. Together, there would be twenty-seven dis-
tinct augmentations. The experiments are conducted with
ResNet100 as the backbone [6, 39] unless mentioned. The
model is trained for 24 epochs with the Arcface loss. The
optimizer is SGD, with the learning rate starting from 0.1
decreased by a factor of 10 at epochs {10, 16, 22}. The op-
timizer weight-decay is set to 0.0005, and the momentum
is 0.9. During training, the mini-batch size on each GPU is
512, and the model is trained using two Quadro RTX 8000.
After training is finished, we disregard the teacher model
and only use the student model for evaluation.

4.4. Performance Comparison

In this section, we assess CCFace’s performance against
the SOTA methods, such as CurricularFace, MagFace, and
URL, using TinyFace, SCFace, IJB-B, and IJB-C datasets.
Results in Table 1 demonstrate CCFace’s competitive per-
formance against other methods. Showing the efficacy of
alignment between teacher and student model. Since IJB-B
and IJB-C contain both HR and LR samples, this perfor-
mance shows the ability of the proposed method to gener-



Table 3. Identification accuracy on SCFace

Method Distance
d1 d2 d3

SKD [11] 43.5 48.0 53.50
CGAN [43] 44.81 49.61 54.30
MDS [31] 60.3 66.0 69.5
DMDS [51] 61.5 67.2 62.9
VGGFace [34] 41.3 75.5 88.8
DCR [28] 73.3 93.5 98.0
CCFace (r50,MS1MV2) 74.8 94.01 99.47

alize across a wide range of resolutions. Table 2 demon-
strates the results on TinyFace. According to this result,
CCFace can effectively boost the discrimination power over
the LR data, which results in over 3 percent improvement
in TinyFace data. To evaluate the performance of CCFace
for cross-resolution scenarios, Table 3 shows the identifica-
tion result on the SCFace dataset. CCFace could improve
the results of the previous methods by more than one per-
cent. Success across datasets with varying quality levels,
from LR to HR, shows the efficacy in alignment between
teacher and student embedding space, and maintaining the
discriminability on both HR and LR images.

5. Ablation Study
5.1. Impact of Augmentation

One of the major issues with angular-margin-based loss
functions, which are dominant in FR, is that their integration
with data augmentation is challenging [38]. In order to alle-
viate this issue, we use the output probability of the teacher
network to tune the margin value for augmented samples;
see section 3.3 for more detail. Table. 4 shows the student
model’s performance with different augmentation probabil-
ities. Increasing the augmentation occurrence boosts the FR
performance on the LR faces considerably; however, negli-
gible performance degradation is observed on high-quality
benchmarks. Table. 4 also shows the performance of the
student model without using an adaptive margin. Since the
augmentation process increases the chance of unrecogniz-
able instances, the performance gain is inconsistent.

5.2. Components of Proposed Training

Here, we analyze the impact of different elements within
our training paradigm on performance. Our experiments
utilize R18 as the backbone and CASIA as the training
dataset. As shown in Table. 5, training a network solely
with a single classifier results in poor performance on the
LR samples. However, sharing the classifier between the
teacher and student improves performance to some ex-
tent. Additionally, incorporating an adaptive margin into
the model enhances performance on the LQ dataset. No-
tably, the application of ACR between the teacher and stu-

Figure 8. Top: Original samples of the training dataset. Bottom:
The augmented version of training samples.

Table 4. Verification TAR@FAR:0.0001 for the IJB-B and IJB-C
datasets with different amounts of augmentation during the train-
ing.

Augmentation Prob. Adaptive Margin IJB-B IJB-C
0.0 ✓ 94.53 95.29
0.1 ✓ 94.74 95.59
0.2 ✓ 94.91 96.29
0.2 94.56 95.42

Table 5. Ablation study on the effect of the proposed method on
the performance. CR: Cross-resolution matching (every testing
pair contain one HR and one LR image), SC: Shared classifier,
AM: Adaptive angular margin.

Res CR SC AM ACR LFW CFP-FP CPLFW CALFW Age-DB

16

✓ 91.2 73.3 74.3 75.3 68.7

✓ ✓ 92.3 75.9 79.9 78.4 71.5

✓ ✓ ✓ 95.9 83.6 83.0 82.0 75.4

✓ ✓ ✓ ✓ 92.1 73.9 80.1 74.2 68.8

64

✓ 99.7 98.3 93.4 95.9 97.9

✓ ✓ 99.7 98.5 93.3 96.01 98.12

✓ ✓ ✓ 99.8 98.8 93.3 96.13 98.3

✓ ✓ ✓ ✓ 99.7 98.0 94.4 95.6 97.9

dent significantly improves the cross-quality scenario.

6. Conclusion
The proposed CCFace framework strives to maintain its

performance on a wide variety of resolutions and general-
ize well for cross-resolution FR by simply sharing the clas-
sifier between the student and teacher network. We estab-
lished that identities’ proxies constructed from HR images
are simple yet effective knowledge that can help the model
to compensate for the information loss in the LR images and
find a discriminative representation for the LR instances.
Furthermore, our method prevents LR samples from form-
ing a distinct cluster by applying pushing force directly be-
tween LR samples in a contrastive manner.
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