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Abstract

Continuous Authentication (CA) using behavioural bio-
metrics is a type of biometric identification that recognizes
individuals based on their unique behavioural characteris-
tics, like their typing style. However, the existing systems
that use keystroke or touch stroke data have limited accu-
racy and reliability. To improve this, smartphones’ Iner-
tial Measurement Unit (IMU) sensors, which include ac-
celerometers, gyroscopes, and magnetometers, can be used
to gather data on users’ behavioural patterns, such as how
they hold their phones. Combining this IMU data with
keystroke data can enhance the accuracy of behavioural
biometrics-based CA. This paper proposes BehaveFormer,
a new framework that employs keystroke and IMU data
to create a reliable and accurate behavioural biometric
CA system. It includes two Spatio-Temporal Dual Atten-
tion Transformer (STDAT), a novel transformer we intro-
duce to extract more discriminative features from keystroke
dynamics. Experimental results on three publicly avail-
able datasets (Aalto DB, HMOG DB, and HuMIdb) demon-
strate that BehaveFormer outperforms the state-of-the-art
behavioural biometric-based CA systems. For instance,
on the HuMIdb dataset, BehaveFormer achieved an EER
of 2.95%. Additionally, the proposed STDAT has been
shown to improve the BehaveFormer system even when only
keystroke data is used. For example, on the Aalto DB
dataset, BehaveFormer achieved an EER of 1.80%. These
results demonstrate the effectiveness of the proposed STDAT
and the incorporation of IMU data for behavioural biomet-
ric authentication. The code is available at https://
github.com/DilshanSenarath/BehaveFormer.

1. Introduction

The rapid development in the mobile phone industry has
enabled people to easily carry out vital applications through
their smartphones. These include applications regarding
communication, finance, health, transportation and many
more. Most of these mobile applications require access to
sensitive user data. Since mobile devices could easily be
shared or stolen, these sensitive data may get exposed eas-
ily. Thus, the requirement for robust security has made au-
thentication a major area of importance in the mobile phone
industry.

Existing mobile authentication methods can be catego-
rized into two main categories which are knowledge-based
and physiological biometrics-based. Knowledge-based au-
thentication methods include pin codes, passwords and pat-
tern unlocks. Physiological biometrics includes finger-
prints, face and iris recognition. However, both these au-
thentication methods have security vulnerabilities. Guess-
ing, sniffing, social engineering attacks, and shoulder surf-
ing attacks are vulnerabilities of knowledge-based authen-
tication methods [25]. Presentation attacks, replay attacks
and data simulation are vulnerabilities that can occur with
physiological biometrics [27]. Both these categories of au-
thentication are one-time/session-based authentication sys-
tems. Once authenticated, there is no authentication per-
formed until the current session is terminated. Furthermore,
both these categories of authentication systems require the
users’ active participation to carry out a specific authenti-
cation task which hinders the usability [16]. CA aims to
address these issues.

CA focuses on continuously authenticating the user
while the user is using the device. Since the verification
is done throughout the session, the issues caused by one-
time authentication systems no longer occur. Furthermore,
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CA does not require the active participation of the user, in-
creasing usability. CA is achieved passively through be-
havioural biometrics. Behavioural biometrics can be de-
fined as the use of unique behavioural traits of the user such
as typing, use of touch gestures, and gait data to identify
the user. Among these, the most commonly used and pop-
ular behavioural biometric is Keystroke Dynamics, which
is the analysis of the user’s typing behaviour for identifica-
tion. Furthermore, the latest trends focus on using IMU data
in addition to keystroke dynamics or touch stroke dynamics
to increase accuracy.

Keystroke analysis can be categorized into two types; (1)
fixed text and (2) free text analysis. In fixed text analysis,
the same text that was used in the enrollment phase must
be used in the verification phase. In free text analysis, the
text that is used in the verification phase need not be the
same text which was used in the enrollment phase. Free text
analysis is considered to be more challenging than fixed text
analysis.

Most smartphones nowadays consist of IMU sensors,
since they are affordable and useful. IMU data includes ac-
celerometer data, gyroscope data and magnetometer data.
Using IMU data, characteristics such as how the device is
held and tilted while the user is using the device can be
captured. This auxiliary information can provide a means
to increase the discriminative power of biometrics such as
keystroke and touch stroke.

This study proposes BehaveFormer, a new behavioural
biometric-based authentication framework that utilizes
keystroke and IMU data. The framework includes two
Spatio-Temporal Dual Attention Transformers (STDAT),
one for keystroke data and another for IMU data. STDAT is
a novel transformer we introduce to extract more discrimi-
native features from keystroke dynamics. It employs a dual
attention module that concentrates on time and channel di-
mensions of keystroke dynamics separately. To evaluate
the BehaveFormer, both traditional (EER) and continuous
(Usability, TCR - Time to Correct Reject, FRWI - False
Reject Worse Interval, FAWI - False Accept Worse Inter-
val) evaluation metrics are used [18, 13, 17]. Our exper-
iments with three public datasets (Aalto DB, HMOG DB,
and HuMIdb) have shown that BehaveFormer outperforms
the current state-of-the-art for keystroke dynamics in vari-
ous evaluation settings. Additionally, we demonstrate the
potential of using Transfer Learning with BehaveFormer to
tackle dataset sizes in behavioural biometrics.

2. Related Work
Behavioural biometrics-based mobile CA systems have

primarily been carried out with keystroke dynamics. Ini-
tially, models were built with traditional ML classifiers [5,
11]. These methods required a significant effort in the fea-
ture extraction process. With the emergence of deep learn-

ing approaches and the popularity they had gained over
other fields, they have also been employed in keystroke dy-
namics based CA systems as well. These deep learning ap-
proaches include Multi-Layer Perceptron, Recurrent Neural
Networks, Long Short Term Memory (LSTM), and the lat-
est trend includes Transformers. Deep learning approaches
typically require a high amount of data to provide accu-
rate results [28]. The availability of large public datasets
such as AaltoDB [14] alleviated this challenge. Other than
keystroke dynamics, recent studies include IMU data to fur-
ther improve the discriminative powers of behavioural bio-
metrics. Rather than IMU data being used as a single mea-
sure for user authentication, recent studies have focused on
multimodal architectures where different types of IMU data
have been used along with other more discriminative be-
havioural biometrics which are primarily keystroke dynam-
ics and touch dynamics.

In [5], De-Marcos et al. compared seven ML classifiers
for keystroke dynamics based CA. Their investigation con-
cluded that it was feasible to use a smaller number of key
events and measurements for user identity prediction. En-
semble methods yielded the highest results. In [2], Type-
Net, a LSTM based keystroke dynamics CA system was
introduced. The training process for TypeNet was carried
out with three loss functions, with triplet loss yielding the
best results. TypeNet’s results obtaining was done for both
identification and authentication. In [21], TypeFormer, a
transformer based keystroke dynamics CA system was in-
troduced yielding the best keystroke dynamics based EER
and it was further improved in [20] (TypeFormer-BR).

In [23, 24, 22], Stragapede et al. introduced multimodal
architectures for behavioural biometrics based CA. A sep-
arate LSTM model was developed and trained for each
modality considered, and the final result was obtained with
a score-level fusion. The different modalities were based
on keystrokes, touch tasks and IMU data. The experi-
ment was carried out with different combinations of modal-
ities. For [23] (HuMINet), the best results were achieved
with keystroke, accelerometer and magnetometer combina-
tion. In [22], keystroke, linear accelerometer, gyroscope,
and magnetometer combination gave the best results. In
[24] (DuoNet), the drawing of “8” touch task, accelerom-
eter, gyroscope and magnetometer combination gave the
best results. In each of these works, the effect on a pri-
mary behavioural biometric, by the combination of IMU
data, especially accelerometer, gyroscope, and magnetome-
ter was highlighted. However, no study has considered
transformers for a multimodal architecture for behavioural
biometrics-based CA. Furthermore, we use feature-level fu-
sion rather than score-level fusion. Finally, none of these
works evaluated their systems with continuous evaluation
metrics [18, 13].



Figure 1. The overview of BehaveFormer. The top STDAT processes keystroke data, and the bottom STDAT processes IMU data. The
feature embeddings from both STDATs are concatenated to create a composite feature embedding.

3. BehaveFormer Framework
The BehaveFormer framework proposed in this paper

uses Keystroke and IMU data (accelerometer, magnetome-
ter, and gyroscope data) to improve the accuracy of be-
havioural biometric-based CA. To achieve this, we first
preprocess and extract features from Keystroke and IMU
data and then pass them to BehaveFormer. Next, we use
a novel transformer called Spatio-Temporal Dual Attention
Transformer (STDAT) to extract more discriminative fea-
tures from keystroke dynamics. BehaveFormer employs
two STDATs, one for each keystroke dynamic. Finally, we
combine the features from both STDATs and process them
through a linear layer to generate the final composite feature
embedding. The overview of the proposed BehaveFormer is
shown in Figure 1.

We design the training objective of BehaveFormer, L as
a Triplet Loss. L helps BehaveFormer to learn an embed-
ding function that maps the keystroke dynamics input to a
vector space such that similar data points (input sequences
from the same user) are mapped to nearby points in the vec-
tor space, while different data points (input sequences from
different users) are mapped to far away points. Let Behave-
Former’s output feature embedding for two input sequences
of user u be fu

1 (Anchor) and fu
2 (Positive), respectively,

and fv (Negative) for the input sequence of user v. Then L
is defined as,

L = max (0,D(fu
1 , f

u
2 )−D(fu

1 , fv) + α) (1)

,where D is Euclidean distance and α is a hyper-parameter.

3.1. Feature Extraction

Keystroke features: We extract Di-Gram and Tri-Gram
features (See Fig. 2) as keystroke features. Di-Grams con-
sider two consecutive key presses and Tri-Grams consider
three consecutive key presses to extract features. We ex-
tract time between different events as features, for exam-
ple UD represents the time between a key up event (U) and

Figure 2. Keystroke Feature Extraction: Di-Gram (DUdi, UDdi,
DDdi, UUdi), Tri-Gram (DUtri, UDtri, DDtri, UUtri), and
Hold Latency (HL) Illustration.

key down event (D). Similarly we extract DD, DU and UU
times. Hold Latency (HL) and ASCII code together gives
us the 10 keystroke features.

[HL,DUdi, UDdi, DDdi, UUdi, DUtri, UDtri,
DDtri, UUtri, ASCII]

ASCII code is normalized to the range [0,1] and time-
based features are represented in seconds. HuMIdb dataset
doesn’t differentiate between press and release time, there-
fore only has a subset of features; [DDdi, DDtri, ASCII].

IMU features: To incorporate IMU data, the first and
second-order derivatives are computed from the raw x, y,
z values, as well as the Fast Fourier Transform (FFT) [6].
For the FFT values, only the absolute values are taken after
FFT calculation. Ultimately, for each sensor data type, a
12-dimensional vector is generated for each timestep;

[x, y, z, x′, y′, z′, x′′, y′′, z′′, fft (x) , fft (y) , fft (z)]
Therefore after combining all IMU sensor data type fea-

tures, a 36-dimensional vector is obtained. All values are
normalised in the range of [0,10].

3.2. Spatio-Temporal Dual Attention Transformer

The success of behavioural biometric authentication
models relies on identifying the unique behavioural patterns



Figure 3. The high level architecture of Spatio-Temporal Dual At-
tention Transformer (STDAT) consisting of Gaussian Range En-
coder as the Positional Encoder, dual attention with temporal and
channel Multi-Head Attentions, Multi-Scale 2D CNN and FNN
which generates the individual modality feature embedding.

of individual users. We can use keystroke dynamics over
time to extract unique patterns to achieve this.

Our new Spatio-Temporal Dual Attention Transformer
(STDAT) improves upon the Vanilla Transformer’s encoder
part [26] to extract user-specific behavioural patterns. How-
ever, unlike previous models, [21] and [20], which utilized
two transformers as in [12] to extract time-over-channel
and channel-over-time features, we use a single transformer
with dual attention: attention over the temporal axis and at-
tention over channel axis. This approach enables STDAT to
focus on the relevant keystroke features over time, extract-
ing unique behavioural patterns for individual users. For an
overview of STDAT, refer to Fig. 3.

Suppose the pre-processed input to the STDAT is X ∈
RN×M where N is the sequence length and M is the num-

ber of features. Since the positional details samples are im-
perative in generating discriminative feature for each indi-
vidual user, we first add the positional encoding to the input
X using the Gaussian Range Encoder (GRE) proposed in
[12]. GRE is a learnable range-based positional encoding
that encodes ranges of positions instead of just one point in
contrast to other positional encodings, like absolute and rel-
ative positional encoding. With GRE, a single sequence po-
sition is defined as a normalized Probability Density Func-
tion vector of K uni-variate Gaussian Distributions. This
vector is then multiplied by a K learnable range embedding
to create the final GRE. Let G ∈ RN×M be the Gaussian
positional encoding, then the range-biased input is defined
as:

X̄ = X +G (2)

X̄ is then fed into the new dual attention block compris-
ing two Multi-Head Attention (MHA) modules: Temporal-
MHA and Channel-MHA. Temporal-MHA analyzes input
data over time to extract information from the original se-
quence, while Channel-MHA examines input data across
different channels using the transposed input. Each atten-
tion module processes its input sequence and calculates a
set of attention weights for each element in the sequence
(time-wise or channel-wise), showing the element’s impor-
tance toward the final output. These attention weights are
then used to calculate a weighted sum of the input sequence,
which forms the output of the multi-head attention module.
If the output of Temporal-MHA is VT−MHA ∈ RN×M

and the output of Channel-MHA is VC−MHA ∈ RM×N ,
then the final output of the dual attention block is V =
VT−MHA + (VC−MHA)

T . V contains discriminative fea-
tures derived considering both temporal and channel pat-
terns.

The dual attention block is followed by a residual con-
nection [7] (Add) and a layer normalization [3] (Layer-
Norm) layer. This layer adds V and X̄ and normalizes val-
ues to produce V̄ . V̄ is then fed into a Multi-scale 2D Con-
volutional Neural Network (M2D-CNN) block consisting
of several 2D convolution layers with different kernel sizes,
each followed by Batch Normalisation layer [9], Dropout
Layer [8] and ReLU activation function. 2D convolutional
enables extracting features from V̄ considering both tem-
poral and time axes, ultimately increasing the discrimina-
tiveness of the output feature embedding. The output of the
M2D-CNN block is then passed to another Add and Norm
layer, which adds it to V̄ and normalizes it to produce the
final output of the dual attention block.

The STDAT model is made up of multiple dual attention
blocks, with each block taking the output of the previous
one and generating a new feature embedding for the next
block. The last block’s output is then passed through a Fully
Connected Neural Network (FNN) consisting of two fully
connected layers using ReLU activation functions. The



Dataset Subjects Sessions Actions Modalities
Aalto DB [14] ∼260,000 15 Typing Keystroke
HMOG DB [19] 100 24 Reading, Typing, Map navigation Keystroke, Raw touch event, IMU

HuMIdb [1] 599 1-5
Typing, Swipe, Tap, hand gesture,
finger writing

Keystroke, Touch, IMU, Light, GPS,
WiFi, Bluetooth, Orientation,
Proximity, Microphone

Table 1. An overview outlining the number of subjects and sessions, as well as the various types of actions and modalities available within
the three datasets (Aalto DB, HMOG DB, and HuMIdb) used in the study.

FNN’s output is the feature embedding for the Keystroke
dynamic input.

4. Experimental Study
We use three publicly available datasets which are Aalto

DB, HMOG DB and HuMIdb. All three datasets contain
keystroke data but only HMOG DB and HuMIdb contain
touchstroke and IMU data. An overview of these datasets is
provided in Table 1.

4.1. Pre-processing

In data pre-processing, we filter out users based on data
availability and then split the remaining data into training,
testing, and validation sets.

Aalto DB had 60,000 users after filtering for data avail-
ability. These users were randomly divided into three sets:
training (30,000), testing (1,000), and validation (400) sets.
HMOG DB had only 99 users left after filtering for IMU
data availability. These users were randomly divided into
training (69), testing (15), and validation (15) sets. For Hu-
MIdb, 428 users were selected after removing those without
keystrokes. These users were randomly divided into train-
ing (328), testing (65), and validation (35) sets.

The IMU data is synchronized with keystroke sequences
during the final pre-processing step. This is done by aver-
aging the IMU data within a dynamic time period for each
keystroke sequence. The resulting IMU data sequence is
then standardized to a fixed size of 100.

4.2. Implementation Details

The BehaveFormer is implemented using PyTorch [15]
using Adam optimizer [10] and a learning rate value of
0.001. In addition, the α hyper-parameter in the training
objective of BehaveFormer is set to 1.

Next, we will provide details about the optimal hyper-
parameters of the proposed model. To begin with, we uti-
lized 20 Gaussian distributions for the GRE. For keystroke-
STDAT, we used 6,5 and 5 dual attention blocks for Aalto
DB, HMOG DB, and HuMIdb, respectively. On the other
hand, IMU-STDAT consisted of five dual attention blocks
for both HMOG and HuMidb datasets. The Multi-scale
2D CNN used in both types of STDATs had three convo-
lutional layers with kernel sizes of 1, 3, and 5. The fi-

nal feature embedding size of both STDATs was 64. For
the Temporal-MHA and Channel-MHA, Keystroke-STDAT
used 5 and 10 attention heads for both Aalto and HMOG DB
datasets, while three heads were used in Temporal-MHA
and ten heads in Channel-MHA in HuMIdb. In contrast,
IMU-STDAT utilized 6 and 10 heads for the Temporal-
MHA and Channel-MHA in both HMOG DB and HuMIdb
implementations.

4.3. Verification Protocol

The evaluation process employs the enrollment-
verification approach [2]. The models are trained using
a distinct set of users and assessed using the remaining
users. A proportion of each test user’s data is allocated
for enrollment, while the remaining data is used for veri-
fication. During the evaluation process of a user, all other
testing users are considered imposters, while each metric
is computed for every user in the test set, with an average
taken across all users.

The process of subject authentication involves compar-
ing the enrollment feature embedding fu,e belonging to a
particular subject u in the test set with a verification feature
embedding fv,a. The comparison is made between either
the same subject (genuine match v = u) or another subject
(impostor v ̸= u). To compute the test score, we calculate
the average Euclidean distances between each fu,e and fv,a
as shown in Equation 3.

sau,v =
1

E

E∑
e=1

∥fu,e − fv,a∥ (3)

where E is the number of enrollment samples and a is the
verification sample of subject v.

4.4. Performance of BehaveFormer Across Datasets

First, we conducted a performance evaluation of Be-
haveFormer on multiple datasets using various metrics.
In this experiment, we trained two versions of Behave-
Former: one using only Keystroke data and the other us-
ing both Keystroke and IMU data. Overall results of Be-
haveFormer’s performance on Aalto DB, HMOG DB, and
HuMIdb datasets are displayed in Table 2. BehaveFormer
has demonstrated high usability and low EER across all
datasets. Moreover, the version of BehaveFormer trained



Modality Dataset EER Usability TCR FRWI FAWI

Keystroke
Aalto DB 1.80 0.99 12.70 0.01 0.51
HMOG DB 5.10 0.95 216.87 0.23 8.39
HuMIdb 12.04 0.91 24.92 0.03 1.16

Keystroke+IMU HMOG DB 3.62 0.97 161.72 0.66 6.12
HuMIdb 2.95 0.99 17.19 0.00 0.60

Table 2. Performance of BehaveFormer Across Datasets. The top three rows correspond to BehaveFormer trained solely on keystroke data
(K), while the last two rows show its performance when trained on both keystroke and IMU data (K+IMU). The reported metrics include
EER and Usability (as fractions), TCR (in seconds), and FRWI and FAWI (in minutes).

(a) HMOG DB (b) HuMIdb

Figure 4. The DET curves generated for the keystroke only scenario and keystroke combined with IMU data (best performing IMU data
combination) scenario we consider for BehaveFormer.

with both keystroke and IMU data outperformed the version
trained solely on keystroke data, indicating that combining
keystroke data with IMU data has improved the discrimina-
tiveness of the learned feature embedding.

To further assess the impact of adding IMU data
on BehaveFormer’s performance, we compared the best-
performing models with and without IMU data. We plotted
their Detection Error Trade-off (DET) curves in Fig. 4. The
curves show the global FAR, FRR, and EER values, with
the local EER values listed in the legend. By comparing
the two curves, it’s clear that adding IMU data improved
BehaveFormer’s performance.

Next, we demonstrate that BehaveFormer can learn
unique feature embedding for different subjects. Using t-
SNE graphs, we visualized the feature embedding space
of BehaveFormer for ten subjects across three datasets, as
shown in Fig.5. In all datasets, the embeddings for each
subject were distinct and well-separated. For instance, the
mean Silhouette score for AaltoDB, HMOG DB, and Hu-
MIdb was 0.91, 0.69, and 0.75, respectively. High Sil-
houette scores indicate low intra-class and high inter-class
variability, meaning BehaveFormer can learn unique feature
embeddings for each subject.

4.5. Comparative Study

We compare the performance of proposed Behave-
Former with the following state-of-the-art behavioural
biometric-based CA systems.

• TypeNet [2] - TypeNet is a free-text keystroke bio-
metric CA system using a deep recurrent neural net-
work and trained with triplet loss for authentication
and identification at a large scale.

• HuMINet [23] - A multimodal architecture with two
LSTM layers in each model. These models are com-
bined at the score level using either a weighted or non-
weighted method.

• DuoNet [24] - This system uses the same multimodal
structure as HuMINet but also goes through an extra
training stage. During this second phase, the feature
embeddings from the initial training process are uti-
lized to train a completely new model.

• TypeFormer [21] - Follows a modified transformer ar-
chitecture with two encoders: Temporal and Channel
Modules. Each encoder consists of a Multi-Head Self-
Attention mechanism and a Multi-Scale Keystroke
CNN to extract temporal and channel features.

This experiment compares BehaveFormer and other state-
of-the-art behavioural biometric-based CA models. We



(a) Keystroke only - Aalto DB (b) Keystroke with IMU data - HMOG DB (c) Keystroke with IMU data - HuMIdb
Figure 5. 2D graphical visualisation of the latent space through tSNE considering 10 subjects (different colours represent different subjects)
[4]. Used parameters: perplexity = 14(AaltoDB), 7(HMOGDB), 4(HuMIdb), init =′ pca′, n iter = 1000, n components =
2, learning rate =′ auto′.

Modality Study Model Type EER (%)
AaltoDB HMOG DB HuMIdb

Keystroke

TypeNet LSTM 8.00* 8.67 12.40
HuMINet LSTM 15.10 13.37 12.19*
DuoNet LSTM 12.51 36.21 12.19*
TypeFormer Transformer 3.15* 17.48 20.76
BehaveFormer Transformer 1.80 5.10 12.04

Keystroke+IMU
HuMINet LSTM – 19.97 3.96*
DuoNet LSTM – 46.47 7.58*
BehaveFormer Transformer – 3.62 2.95

Table 3. Comparison of BehaveFormer with state-of-the-art keystroke dynamics models. The top six rows correspond to BehaveFormer
compared with models solely trained on keystroke data. The bottom three rows correspond to BehaveFormer compared to models trained
on keystroke and IMU data. The results taken from the respective original papers are marked by an asterisk (*), while others are from our
implementations of the existing models.

tested two scenarios: training solely with keystroke data and
training with both keystroke and IMU data. The results are
shown in Table 3. When trained with only keystroke data,
BehaveFormer outperforms the existing for both Aalto DB
and HuMIdb by achieving an EER of 1.80% and 12.04%,
respectively, which is an improvement of 29.3% and 1.23%.
Similarly, BehaveFormer, trained with the keystroke and
IMU data, outperforms the existing models trained with
both keystroke dynamics. For example, BehaveFormer
achieves the best EER of 2.95% on HuMIdb, which is an
improvement of 25.76% over the state-of-the-art.

To better understand how these models perform in a CA
environment, we evaluated them using specific CA evalu-
ation metrics, such as Usability, TCR, FRWI, and FAWI
[18, 13]. Table 4 presents the results of this evaluation. We
observe that BehaveFormer maintains its superior perfor-
mance across all CA evaluation metrics.

4.6. Transfer Learning

The small size of available datasets often limits be-
havioural biometrics research. One way to overcome this

limitation is through transfer learning which involves train-
ing a model on a large dataset for a specific task and then
transferring the learned features to a second model trained
on a different task. To demonstrate transfer learning in be-
havioural biometrics, we compared the performance of a
BehaveFormer model trained from scratch with the HMOG
dataset versus a BehaveFormer model pre-trained on Aalto
DB, which was then fine-tuned on HMOG DB. The model
trained from scratch achieved an EER of 5.10%, a Usabil-
ity score of 0.95, a TCR of 216.87 seconds, an FRWI of
0.23 min, and a FAWI of 8.39 min. On the other hand, the
BehaveFormer model using transfer learning achieved an
EER of 4.48%, a Usability score of 0.95, a TCR of 220.88
seconds, an FRWI of 0.55 min, and a FAWI of 7.46 min.
The use of transfer learning resulted in a 12.16% improve-
ment in EER, highlighting its potential in overcoming small
dataset issues in behavioural biometrics research.

4.7. Ablation Study

Finally, we conducted an ablation study to reinforce our
selection of background sensor data from the IMU stream.



Model
Aalto DB HMOG DB HuMIdb

Usab. TCR FRWI FAWI Usab. TCR FRWI FAWI Usab. TCR FRWI FAWI

K

TypeNet 0.92 16.94 0.09 1.16 0.93 321.68 0.49 11.05 0.86 23.55 0.01 1.04
TypeFormer 0.89 18.31 0.11 1.40 0.83 377.83 1.54 14.99 0.82 31.32 0.05 1.43
HuMINet 0.89 50.47 0.11 71.26 0.87 267.49 0.73 11.59 0.89 25.16 0.03 1.13
DuoNet 0.91 47.27 0.09 52.95 0.84 531.92 0.53 18.49 0.90 25.92 0.02 0.97
BehaveFormer 0.99 12.70 0.01 0.51 0.95 216.87 0.23 8.39 0.91 24.92 0.03 1.16

K+IMU
HuMINet 0.82 394.14 0.93 15.57 0.92 20.31 0.02 0.96
DuoNet 0.61 615.52 1.00 18.61 0.96 16.57 0.02 0.70
BehaveFormer 0.97 161.72 0.66 6.12 0.99 17.19 0.00 0.60

Table 4. Evaluation of keystroke dynamics with CA evaluation metrics. The reported metrics are Usability (as a fraction), TCR (in seconds),
and FRWI and FAWI (in minutes). Best result for each dataset for each evaluation criteria is highlighted in bold.

Modalities HMOG DB HuMIdb
EER (%) Usability TCR FRWI FAWI EER (%) Usability TCR FRWI FAWI

K 5.10 0.95 216.87 0.23 8.39 12.04 0.91 24.92 0.03 1.16
K, A 4.95 0.95 234.23 0.90 8.47 6.26 0.96 20.77 0.02 0.77
K, G 4.52 0.96 188.60 0.59 6.61 6.78 0.96 21.25 0.02 0.90
K, M 4.86 0.96 204.50 0.48 6.92 4.39 0.97 17.87 0.00 0.64
K, A, G 3.81 0.97 166.74 0.66 6.33 4.38 0.97 19.10 0.00 0.78
K, A, M 4.0 0.97 236.87 0.66 7.76 4.81 0.96 20.12 0.00 0.75
K, G, M 4.19 0.96 159.51 0.31 5.67 7.91 0.93 25.83 0.00 0.97
K, A, G, M 3.62 0.97 161.72 0.66 6.12 2.95 0.99 17.19 0.00 0.60

Table 5. Ablation study for varying data modalities used for training. The modalities tested include Keystroke (K), Accelerometer (A),
Magnetometer (M) and Gyroscope (G).The reported metrics are EER and Usability (as fractions), TCR (in seconds), and FRWI and FAWI
(in minutes). Best result for each column is highlighted in bold.

During this process, we tested various combinations of data
modalities such as Keystroke (K), Accelerometer (A), Mag-
netometer (M), and Gyroscope (G). We analyzed HMOG
and HuMIdb datasets and summarized the results in Ta-
ble 5. Our research revealed that combining keystroke data
with all three types of IMU data (K, A, G, M) produced
the best results, with an EER of 3.62% and 2.95% for the
two datasets, respectively. Furthermore, our findings indi-
cate that using all IMU sensors consistently leads to high
performance for the CA evaluation metrics.

5. Discussion
The proposed BehaveFormer model outperforms state-

of-the-art CA systems in both keystroke-only and IMU-
enhanced scenarios. The learned feature space achieves
high separation among different identities. The ablation
study further demonstrates the positive impact of using IMU
data (especially all three types of IMU data we have used in
the research) on the overall system. Therefore, this shows
how more discriminative features can be extracted with the
use of IMU data for keystroke dynamics. While Behave-
Former outperforms previous work across all three datasets,
we observe that AaltoDB shows the best performance (1.8%
EER), while HMOG DB (5.1%) and HuMIdb (12.04%) per-
form at a comparatively lower level. This can be attributed
to the training dataset size difference, with Aalto DB hav-
ing 60,000 viable users compared to only 69 and 328 for

HMOG and HuMIdb, respectively. The lack of large-scale
data is a common limitation when applying deep learning
techniques for behavioural biometrics, and it also affects
BehaveFormer. However, to overcome this limitation, we
showcased how we could utilize the larger dataset to pre-
train the weights of BehaveFormer before specializing it to
a smaller dataset with transfer learning. This approach out-
performs training from random weights, demonstrating the
effectiveness of transfer learning in small dataset scenarios.

6. Conclusion and Future Work
Our study introduces two novel components: STDAT, a

transformer architecture capable of capturing both time and
channel axis features, and BehaveFormer, a multi-modal
architecture that combines two STDAT components for
keystroke and IMU data. Our results demonstrate that Be-
haveFormer outperforms state-of-the-art keystroke CA sys-
tems in both keystroke-only and keystroke combined with
IMU data scenarios. Notably, our observations indicate that
incorporating all three types of IMU data (Accelerometer,
Gyroscope, Magnetometer) significantly enhances the ac-
curacy of keystroke biometrics.

Moreover, we explore the possibility of utilizing trans-
fer learning to overcome the constraints of small datasets
and learn a well-separated feature space. We believe that
BehaveFormer can be applied to any behavioural biometric
that involves multiple data modalities captured over time. In



future work, we aim to extend the use of BehaveFormer and
its transfer learning capabilities to other behavioural bio-
metric applications.
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A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, ed-
itors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

[16] S. Rasnayaka and T. Sim. Who wants continuous authenti-
cation on mobile devices? In 2018 IEEE 9th International
Conference on Biometrics Theory, Applications and Systems
(BTAS), pages 1–9, 2018.

[17] D. Senarath, S. Tharinda, M. Vishvajith, S. Rasnayaka,
S. Wickramanayake, and D. Meedeniya. Re-evaluating
keystroke dynamics for continuous authentication. In 2023
3rd International Conference on Advanced Research in
Computing (ICARC), pages 202–207, 2023.

[18] T. Sim, S. Zhang, R. Janakiraman, and S. Kumar. Continu-
ous verification using multimodal biometrics. IEEE Trans.
Pattern Anal. Mach. Intell., 29(4):687–700, 2007.
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