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Abstract

The task of deepfakes detection is far from being solved
by speech or vision researchers. Several publicly available
databases of fake synthetic video and speech were built to
aid the development of detection methods. However, exist-
ing databases typically focus on visual or voice modalities
and provide no proof that their deepfakes can in fact imper-
sonate any real person. In this paper, we present the first re-
alistic audio-visual database of deepfakes SWAN-DF, where
lips and speech are well synchronized and video have high
visual and audio qualities. We took the publicly available
SWAN dataset of real videos with different identities to cre-
ate audio-visual deepfakes using several models from Deep-
FaceLab and blending techniques for face swapping and
HiFiVC, DiffVC, YourTTS, and FreeVC models for voice
conversion. From the publicly available speech dataset Lib-
riTTS, we also created a separate database of only audio
deepfakes LibriTTS-DF using several latest text to speech
methods: YourTTS, Adaspeech, and TorToiSe. We demon-
strate the vulnerability of a state of the art speaker recog-
nition system, such as ECAPA-TDNN-based model from
SpeechBrain, to the synthetic voices. Similarly, we tested
face recognition system based on the MobileFaceNet ar-
chitecture to several variants of our visual deepfakes. The
vulnerability assessment show that by tuning the existing
pretrained deepfake models to specific identities, one can
successfully spoof the face and speaker recognition systems
in more than 90% of the time and achieve a very realistic
looking and sounding fake video of a given person.

1. Introduction

The original predictions that deepfakes would pose a
significant danger to society1 are turning out to be correct
with more and more reports of money extortion with voice

1https://edition.cnn.com/interactive/2019/01/business/pentagons-race-against-
deepfakes/

cloning2, duping politicians using video deepfakes3, or us-
ing deepfake pornography for revenge or harassment on-
line4.

Many databases with deepfake videos were created
to help develop and train deepfake detection methods.
One of the first freely available databases was Deepfake-
TIMIT [32], followed by the FaceForensics database with
deepfakes generated from 1000 Youtube videos [49], and
which was later morphed into FaceForensics++ with more
types of deepfakes and a separate set of original and deep-
fake videos provided by Google and Jigsaw [50]. Sev-
eral independent extensions of FaceForensics++ were also
proposed, including the HifiFace [57] and DeeperForen-
sics [21] datasets. Another 5000 videos-large database
of deepfakes generated from Youtube videos is Celeb-DF
v2 [38]. Facebook [8] also created their own database with
more than 100K deepfake videos, which was used in Deep-
fake Detection Challenge 2020 hosted by Kaggle5. Mobio-
DF[19] is a dataset of 45K videos but with an unusually
larger set of real videos compared to deepfakes. However,
the largest database of deepfake videos to date is the Ko-
rean Deepfake (KoDF) dataset [35] with about 175K fake
videos.

One of the important issues with the most of the exist-
ing deepfake databases is that very little is known about the
quality of the deepfake videos in terms of their ability to
actually impersonate a targeted person. Besides a limited
study of face recognition vulnerability [32], the authors of
datasets do not provide any justification of whether their
deepfakes even look like a person, let alone a specific per-
son. It means that without a verification of how fake those
deepfakes are, even a slight distortion of an original video
(e.g., an applied color correction) may be considered as a
deepfake. This actually happens, as we can observe some
videos from Facebook [8] dataset, which are labeled as be-

2https://www.nbc15.com/2023/04/10/ive- got- your- daughter- mom- warns-
terrifying-ai-voice-cloning-scam-that-faked-kidnapping/

3https://www.theguardian.com/world/2022/jun/25/european-leaders-deepfake-
video-calls-mayor-of-kyiv-vitali-klitschko

4https://edition.cnn.com/2023/02/16/tech/nonconsensual-deepfake-porn/index.
html

5https://www.kaggle.com/c/deepfake-detection-challenge

ar
X

iv
:2

31
1.

17
65

5v
1 

 [
cs

.C
V

] 
 2

9 
N

ov
 2

02
3

https://edition.cnn.com/interactive/2019/01/business/pentagons-race-against-deepfakes/
https://edition.cnn.com/interactive/2019/01/business/pentagons-race-against-deepfakes/
https://www.nbc15.com/2023/04/10/ive-got-your-daughter-mom-warns-terrifying-ai-voice-cloning-scam-that-faked-kidnapping/
https://www.nbc15.com/2023/04/10/ive-got-your-daughter-mom-warns-terrifying-ai-voice-cloning-scam-that-faked-kidnapping/
https://www.theguardian.com/world/2022/jun/25/european-leaders-deepfake-video-calls-mayor-of-kyiv-vitali-klitschko
https://www.theguardian.com/world/2022/jun/25/european-leaders-deepfake-video-calls-mayor-of-kyiv-vitali-klitschko
https://edition.cnn.com/2023/02/16/tech/nonconsensual-deepfake-porn/index.html
https://edition.cnn.com/2023/02/16/tech/nonconsensual-deepfake-porn/index.html
https://www.kaggle.com/c/deepfake-detection-challenge


ing deepfake, to only have a moving patch of Gaussian noise
as the only visible difference from the original real version.
The lack of clear understanding of what constitutes a deep-
fake in a dataset leads to an over-fit problem, when detection
algorithms, trained on such so called deepfakes, may end up
detecting distortions that are irrelevant to those manifested
in the realistic and dangerous deepfakes.

Another important issue, often overlooked by the au-
thors of deepfake databases and the researchers who de-
velop detection methods, is that the blending techniques
used during face swapping process (or reenactment) ar-
guably have as much effect on the accuracy of the detec-
tion as the generative adversarial networks (GANs) used to
generated fake faces. This effect is well illustrated by the
authors of [55], who demonstrate that uncompressed GAN-
generated images can be detected with a nearly 100% ac-
curacy, while the accuracy of the same detection methods
degrade significantly on deepfake videos, where a similarly
GAN-generated image is blended in and blurred into the
compressed frame. It shows the possibility that many pro-
posed deepfake detection methods may detect the distor-
tions that come from blending and compression instead of
the signatures that come from GANs. Arguably, this is why
deepfake detection methods do not generalize well when
they are tested on a database that used the same GAN archi-
tecture as the training videos but different blending meth-
ods [10, 33, 29].

Looking at the voice deepfakes, there are fewer
databases that rely on neural networks for text to speech
or voice conversion methods. The most notable database is
the one used in ASVSpoof challenge in 2019 and 2021 [59],
which has a separate subset of audio deepfakes. These
deepfakes were generated by several modern text to speech
models to train and test detection methods but the meth-
ods generate either a voice of a single speaker or a limited
pre-defined set of multiple speakers. No identity transfer
was done by the methods used to generate these fakes and
that is why the authors did not provide identity informa-
tion for samples in the deepfake subset. WaveFake [12]
is the latest dataset of deepfake speech that used public
LJSpeech [18] dataset of the single-speaker recordings as
the original source to generate the fake samples. Until re-
cently, most of the work in deep learning based methods
that generate fake speech focused on producing the realis-
tically sounding voice samples and little was done to pre-
serve identity in that sample. However, recent advances in
text to speech and voice conversion methods, allow to cre-
ate datasets of truly deepfake speech which would preserve
or transfer personal identity into the generated fake sample.

In this paper, we present the first high fidelity pub-
licly available dataset of realistic deepfakes SWAN-DF (see
examples in Figure 1) where both faces and voices ap-
pear and sound like the target person. The SWAN-DF

dataset is based on the public SWAN database [45] of
real videos recorded in HD on iPhone and iPad Pro (in
year 2019). For 30 pairs of people, we swapped faces
and voices using several autoencoder-based face swapping
models form the well-known open source repo DeepFace-
Lab6 [42] and voice conversion (or voice cloning) meth-
ods, including zero-shot YourTTS [4] and various models
from FreeVC [36]. In addition to the audio-visual deep-
fake dataset, we also built LibriTTS-DF database (from a
well-known LibriTTS [61] database), which contains fake
speech samples for 39 speakers generated with either text
to speech methods that preserve intended identity, includ-
ing our own adaptation of Adaspeech TTS model [5] and
diffusion-based TorToiSe TTS7 or YourTTS [4] zero-shot
voice conversion approach.

For video deepfakes, we also have put an effort into
creating a large variety of different versions of generated
videos in terms of models and blending techniques used.
We have employed three different models with resolutions
160px, 256px, and 320px, all pretrained on a large variety
of faces by the contributors of DeepFaceLab. For each of
60 people pairs from SWAN database, we have tuned each
model type. And then, we also generated several version
videos for each of this model, where we use different mask-
ing, color correction, and other blending parameters. In to-
tal, we generated more than 20 deepfake variants for each
video of each pair of people. These variations should allow
to train and also test detection models that are invariant to
the blending methods but instead focus on the distortions
that are specific to deepfakes themselves, such as inconsis-
tencies in accessories, issues with hair, eyes and teeth, geo-
metrical facial distortions, etc.

To show how well different audio and visual deepfake
generation methods preserve identity, we conducted an ex-
tensive vulnerability analysis using the ECAPA-TDNN-
based state of the art speech recognition model from
SpeechBrain8, and MobileFaceNet [6], a popular pretrained
PyTorch face recognition model9.

To allow researchers to use the database in a transparent
manner and verify and reproduce our vulnerability evalua-
tions, we provide the generated audio and video samples,
list of files and splits into subsets, source code for vul-
nerability analysis and a jupyter notebook with complete
results and graphs as an open-source Python package10.
Our Mobio-DF and LibriTTS-DF databases with examples
of deepfake videos and voices can be found at the demo
page11.

6https://github.com/iperov/DeepFaceLab
7https://github.com/neonbjb/tortoise-tts
8https://speechbrain.github.io/
9https://github.com/foamliu/MobileFaceNet

10Source code: https://gitlab.idiap.ch/bob/paper.ijcb2023.av-deepfakes
11Database: https://swan-df.github.io/

https://github.com/iperov/DeepFaceLab
https://github.com/neonbjb/tortoise-tts
https://speechbrain.github.io/
https://github.com/foamliu/MobileFaceNet
https://gitlab.idiap.ch/bob/paper.ijcb2023.av-deepfakes
https://swan-df.github.io/


Original source Original target 160px, no correction 160px, color adjusted 256px, params tuned 320px, params tuned

(a) Original source (b) Original target (c) 160px, no correction (d) 160px, color adjusted (e) 256px, params tuned (f) 320px, params tuned

Figure 1. Examples of deepfakes (cropped to face) from the SWAN-DF database. Face of the ‘target’ is placed into video of the ‘source’.



2. Related work

The generation approaches of synthetic faces can be
split in four different categories i) completely synthetically
generated images (identity is usually not preserved) using
StyleGANs [22, 23], ii) morphed images when faces of two
people are morphed12 [11, 51], iii) face swapping based
video deepfakes [34, 8, 50], and iv) reenactment based
deepfake videos [21, 13, 9], which grew out of the idea of
using a recurrent network to synthesize mouth texture di-
rectly from the voice [52].

Methods for detecting visual fakes range from those
based on simple visual or facial features [62, 60, 2, 37],
binary classifiers trained on fake images [55, 17] and
videos [50, 41, 40], to the methods that try to generalize to
new deepfake methods or various post-processing blending
techniques [3, 33, 29].

The state of the art in text to speech and voice con-
version is represented by probabilistic generative models,
particularly those based on diffusion [20, 14], but also
flow [48, 47, 16] or a combination or both [58, 26]. Such
techniques originated in the image processing or computer
vision literature. They are characterized by an iterative con-
version from a simple distribution (that lends itself to sam-
pling) to a complicated distribution representative of speech
(but difficult to sample from). At each iteration, a DNN is
used to guide the conversion; in flow it is a transformation,
in diffusion a denoizing process.

Similar to the work on detecting visual deepfakes, meth-
ods for detection of synthetic speech are also struggling
with generalization to unseen attacks as is evident from the
latest ASVspoof challenge and related work [59, 56]. Al-
though the latest detection methods more and more rely on
the end-to-end systems for feature extraction and modeling,
the earlier work was often based on acoustic features [53]
and classical GMM-like modeling [30, 31].

3. Generative methods used in the database

Our main goal is to create an audio-visual database of
people speaking on camera where both video and audio
channels are completely generated and which would look
and sound as realistic as possible. We explored different
methods for generating fake speech and fake faces and set-
tled on the models by DeepFaceLab6 [42] for fake face
swapping and FreeVC [36] for voice conversion. In this sec-
tion, we describe the methods and their variations that we
used to generate audio-visual deepfakes for our SWAN-DF
database. In addition, we describe the other speech gener-
ative methods that we could only use to create audio deep-
fakes resulted in LibriTTS-DF dataset.

12https://github.com/yaopang/FaceMorpher

3.1. Video deepfakes

As a source of original videos, we selected 46 different
identities from a publicly available SWAN database [45],
which was recorded in 2019. The videos in HD (resolution
720 × 1280) include a person looking into iPhone or iPad
Pro frontal camera and saying a set of phrases. From these
46 identities, we manually matches 60 pairs of people for
face swapping process. In the selection process, we tried
to match accessories, such as eye glasses, head and facial
hair styles, skin colors, and genders. A well matched pair
of faces typically leads to a visually more realistic deep-
fake. Since SWAN dataset has 16 videos with sound per
each person, swapping faces for 60 pairs of people, results
in 16× 60 = 960 of the deepfakes per a given model archi-
tecture and a blending process (see frames extracted from
the original and deepfake videos in Figure 1 or view the
videos on the demo page11).

To generate video deepfakes, we used a well known
open source repository DeepFaceLab6, which implemented
two main GAN-based architectures the authors call DF and
LIAE [42]. We used three pretrained models provided by
the DeepFaceLab community that can generate faces of
160×160 (DF architecture), 256×256 (LIAE architecture),
and 320 × 320 (LIAE architecture) resolutions. The mod-
els are pretrained on the large datasets of ‘whole faces’ (in
DeepFaceLab terminology a facial area that includes chin
and the half of a forehead) of several identities that allows
models to learn the generic structure of a face and reduces
the time required to tune the model to a specific pair of iden-
tities.

For each of the three model architectures and for each
pair of identities, we tuned the pretrained model for 50K
iterations, which resulted in about 4 hours for 160px resolu-
tion model, 13 hours for 256px resolution, and 20 hours for
320px resolution on Tesla P40 GPU. Through the trial and
error, we have selected some of the specific training param-
eters for each of the model and we provide these parame-
ters in our open source packages10. For the model of 160px
resolution, we trained three different variants, including i)
training face together with its face mask and with color cor-
rection on, ii) no masked training and no color correction,
and iii) with mask training but no color correction. For the
other two resolutions, we only trained model that included
mask training and had no color correction switched on. In
total, we tuned five different types of models for each of the
60 swap-pairs.

Arguably, an important part of what constitutes a deep-
fake and makes it different from the real image, from a
forensics point of view, is the blending technique that was
used to place-in the generated face of a target into the origi-
nal video frame of a source (see Figure 1). A DeepFaceLab
GAN model typically generates a square image, in addition,
it also learns mask of a face. This mask is used to cut off

https://github.com/yaopang/FaceMorpher


(a) Face deepfakes with 256px resolution model (b) Voice deepfakes with YourTTS (c) Voice deepfakes with FreeVC

Figure 2. Score histograms of MobileFaceNet face and SpeechBrain speaker recognition models evaluated on the real videos (SWAN
database) and a variant of generated deepfakes (SWAN-DF). The dotted vertical line marks the threshold computed on the validation set.

the face from the generated image and replace the source
face with it. During the replacement process, the smooth-
ing, blurring, warping, and color correction techniques can
be applied to make the generated face look naturally fit-
ting into the destination frame. These techniques, which
we refer to as blending, change the appearance of the re-
sulted frame, introduce some unique distortions, and there-
fore impact the methods trained to detect the deepfakes.
One could argue that the existing deepfake detection meth-
ods detect mostly the residues from the blending techniques
rather than the patterns left by the GANs used to generate
faces [55]. Therefore, to offset the lack of the variation of
blending techniques in the existing deepfake datasets, we
have used more than 20 variants of deepfakes using differ-
ent sets of blending parameters for the five models that we
have trained for each swap pair. Each variation results in a
differently looking deepfake face and we believe such vari-
ability in the dataset will be useful for the research commu-
nity.

For ethical reasons, we selected not to publish open
source code that makes it easier to create deepfakes, besides
what is already available in DeepFaceLab repository6, and
also not to publish our trained models. We do however pro-
vide all of the parameters for training and blending that we
have used in the process10.

3.2. Audio deepfakes

We generated speech deepfakes using four voice conver-
sion methods: YourTTS [4], HiFiVC [24], DiffVC [43],
and FreeVC [36] and two text to speech methods:
Adaspeech [5] and TorToiSe TTS7. We did not use text to
speech methods for our video deepfakes, since the speech
they produce is not synchronized with the lip movements in
the video. There are efforts to correct this issue by using an
additional model, e.g., Wav2Lip13 [44], to synchronize lips
in video with a given speech, but they suffer from many vis-
ible artifacts and often produce unconvincing results. One
notable effort that used the combination of a TTS method
and Wav2Lip is the FakeAVCeleb [25] audio-visual dataset,
but the quality of the resulting videos is questionable. Some

13https://github.com/Rudrabha/Wav2Lip

commercial systems use text to speech and then speech to
video approaches to generate AI assistants, notably Synthe-
sia14, but the synchronization issue persists there as well.

Therefore, we used voice conversion methods
(YourTTS, HiFiVC, DiffVC, and FreeVC) to generate
fake speech for the SWAN-DF dataset, but we used text
to speech methods (Adaspeech and TorToiSe TTS) with
only one YourTTS voice conversion to generate a separate
dataset based on LibriTTS [61]. We used the test-clean
subset of LibriTTS dataset with 39 speakers to generate
deepfakes. We took a random 30 utterances from a speaker
to either tune a model (Adaspeech) or compute speaker
embeddings (TorToiSe or YourTTS). We then generated
fake samples from the same utterances used for tuning.

A brief summary and the parameters of the speech deep-
fake methods used are as follows:

• Adaspeech [5]: a text to speech model specifically
designed to be adapted to a custom voice and acous-
tic conditions. This model was further modified by
us to allow adapting to a new voice with the aim of
preserving the speaker identity. The model was pre-
trained to generate spectrograms from text on the pop-
ular VCTK corpus [54] of speech from 109 speak-
ers reading 400 sentences for 300K iterations. This
pretrained model was adapted (tuned) for each of 39
speakers from LibriTTS [61] dataset using 30 utter-
ances of that speaker for 4K iterations. The adapted
model is then used to generate the user-specific spec-
trograms from the provided text. HifiGan [28] vocoder
pretrained on LJSpeech [18] database is then used to
generate the final synthetic speech samples.

• TorToiSe TTS7: a text to speech model is based on the
autoregressive and diffusion encoders and is inspired
by and very similar to DALLE [46] for images. The
author of this zero-shot generative model argues that
it requires just a few seconds of reference speech to
generate a high fidelity speech from any textual input.
The model is pretrained on a set of speech databases,

14https://www.synthesia.io/tools/text-to-speech-video-maker

https://github.com/Rudrabha/Wav2Lip
https://www.synthesia.io/tools/text-to-speech-video-maker


(a) TorToiSe TTS (b) YourTTS

Figure 3. Vulnerability results of SpeechBrain speaker recognition model when evaluated on the original LibriTTS data and voice deepfakes
generated by TorToiSe TTS and YourTTS models. The dotted vertical line marks the threshold computed on the validation set.

including a private one collected by the author, to-
taling about a million hours of speech. To generate
our LibriTTS-DF database, we used 30 utterances per
speaker to compute the latent vectors of the model and
then we produce the same but synthetic 30 samples
from the corresponding text. The preset ‘fast’ of the
model was used during the generation process.

• YourTTS [4]: originally a text to speech model based
on the end-to-end VITS [27] but with an addition of a
separate speaker embedding (from a speaker recogni-
tion model [15]) to encode speaker identity. The inclu-
sion of speaker encoding allows the use of YourTTS
in a zero-shot voice conversion manner by simply sub-
stituting the embedding of one speaker with the em-
bedding of another. We used the provided model pre-
trained on VCTK [54] and LibriTTS [61] datasets. For
our LibriTTS-DF dataset, we converted each speaker
to a randomly chosen 5 other speakers, using only
10 utterances for speaker encoding. For SWAN-DF
dataset, we used all 16 available utterances per each
speaker for the encoding and converted the voices for
the same pairs of speakers as in video deepfake swap-
ping (see Section 3.1 for details).

• HiFiVC [24]: a zero-shot many-to-many voice con-
version system that relies on automated speech recog-
nition (ASR) features, pitch tracking inspired by PPG-
VC [39], and their version of the waveform prediction
model that extends HiFi GAN [28]. We used provided
model pretrained on VCTK dataset [54] without any
tuning. We used the same number of utterances as for
YourTTS method to compute the speaker embeddings
during the conversion.

• DiffVC [43]: another zero-shot many-to-many voice
conversion method designed for the general case when
source and target speakers do not belong to the training
dataset. Since the authors emphasized that no tuning is
required and for the provided model pretrained on Lib-

riTTS dataset [61], we used this method as is. Please
note that we used this method to generate deepfakes for
SWAN-DF dataset, which is very different from Lib-
riTTS. We used the same number of utterances as for
YourTTS method to compute the speaker embeddings
during the conversion.

• FreeVC [36]: an end-to-end model for voice conver-
sion based on the approach proposed in VITS [27].
The model relies on WavLM features [7] and a com-
putationally heavy augmentation technique based on
the resizing of spectrograms to several spectral bands,
which allow to exclude noise from the data when learn-
ing speech characteristics. The provided model is pre-
trained on VCTK speech corpus [54] and we have
adapted it to the acoustic domain of our database by
tuning the model on the mixture of subset from VCTK
and data from SWAN dataset. We then convert voices
for SWAN-DF using the same swap pairs as we did for
video deepfakes (see Section 3.1 for details). By using
different tuning parameters of the FreeVC model, we
produced 5 different variants of data.

We obtain the complete audio-visual deepfakes by com-
bining the videos produced by face swapping and the speech
generated using voice conversion methods. We can match
all face with all voice deepfakes, thus obtaining a very large
set of videos where visual and voice channels are different.
With 960 videos/utterances in SWAN-DF for one deepfake
variant, with more than 20 variations of face swapping, and
8 voice conversion variants, we can get more than 150K
video combinations.

4. Vulnerability assessment of deepfakes
To evaluate how realistic the generated deepfakes are, we

used the ECAPA-TDNN-based model from SpeechBrain9,
one of the best performing speaker recognition systems, and
MobileFaceNet [6], which is one of the popular and practi-
cal face recognition models10.



Model, training params Blending Method IAPMR
160px, no mask no blending 96.27
160px, mask training seamless, mlk color 95.22
160px, mask training + color overlay, no color 96.43
256px, mask training params tuned 96.78
256px, mask training overlay, no color 97.36

Table 1. Vulnerability of face recognition to selected variants of
video deepfakes from SWAN-DF dataset.

4.1. Evaluation protocol

We assess the vulnerability of the speaker and face
recognition to the deepfakes in the same way as the vul-
nerability of the biometric systems is assessed to the pre-
sentation attacks, as per the recommendation presented in
the standard [1]. Therefore, we report false match rate
(FMR), which is similar to false positive rate (FPR), and
false non-match rate (FNMR), which is similar to false neg-
ative rate (FNR), and impostor attack presentation match
rate (IAPMR), which is the proportion of attacks that are
incorrectly accepted as genuine samples by a biometric sys-
tem (for details, see ISO/IEC 30107-3 standard [1]).

We split the deepfakes of our SWAN-DF and LibrtiTTS-
DF databases into development and evaluation subsets
roughly equal in size. We also ensured that the identities
in the different subsets do not overlap. To compute the met-
rics, we define the threshold on the development set that
corresponds to equal error rate (EER) computed on the real
original data. We use this threshold when computing FMR
and FNMR on the scores of the real data from the evalu-
ation set, and also to compute IAPMR rate, when instead
of the scores for zero-effort impostors, we use the scores
corresponding to deepfakes.

To demonstrate the accuracy of the selected recognition
systems, we evaluated them on the real video data assuming
no deepfake attacks are present. For both systems, we used
the pretrained models provided by the respective reposito-
ries. We used only two real samples to enroll each identity
and the rest of the samples from the identity were used for
computing the error rates. Using the EER threshold from
the development set, SpeechBrain on the real audio from
evaluation set resulted in very low 0.3% FMR and 0.0%
FNMR values for the SWAN-DF dataset and 1.99% FMR
and 1.82% FNMR values for the LibriTTS-DF dataset.
Similarly, MobileFaceNet resulted in low 0.0% FMR and
0.05% FNMR values when computed on the real videos
from evaluation set of SWAN-DF database. The red (zero-
effort impostors) and blue-colored (bona fide samples) his-
tograms in Figure 2 and Figure 3 illustrate well the low
FMR and FNMR values, since these histograms are clearly
separated.

Approaches IAPMR
HiFiVC 0.00
DiffVC 8.09
YourTTS 27.43
FreeVC, not tuned 15.44
FreeVC, tuned 70K iterations 92.59
FreeVC, tuned 109K iterations 94.21

Table 2. Vulnerability of speaker recognition to selected voice con-
version based deepfakes from SWAN-DF dataset.

4.2. Vulnerability to SWAN-DF

Table 1 shows the IAPMR rates, computed for each
video frame separately, using MobileFaceNet [6] on the se-
lected face deepfake variants we generated for SWAN-DF
database. The high IAPMR rates in the table mean that
more than 95% of the deepfake frames were recognized by
MobileFaceNet as corresponding to the claimed real iden-
tity. This demonstrates that the evaluated face recogni-
tion model is highly vulnerable to the generated deepfake
videos. Figure 2a also illustrates this result by showing how
the scores (yellow histogram) for deepfake variant gener-
ated using 256px model (see the fourth row of Table 1) are
next to the bona fide scores (blue histogram) and almost
completely on the right side of the threshold (the dotted ver-
tical line).

Table 2 shows similar IAPMR rates for the voice deep-
fakes generated with several voice conversion algorithms.
The results in this table are quite different from those for
the face deepfakes. The table shows that some voice con-
version algorithms, notably HiFiVC and DiffVC, pose no
threat to SpeechBrain speaker recognition system as it did
not confuse the speech generated by these algorithms with
the claimed real identities. FreeVC without any tuning and
zero-shot YourTTS show IAPMR rates above 15%, which
are not that small, considering that FMR and FNMR for real
voices are very close to zero (see Section 4.1). It appears
that without tuning, the identities do not transfer well to the
generated speech and do not pose a great threat to the recog-
nition system. However, if we tune the model, such as the
domain transfer we have done for FreeVC model, we can
achieve the vulnerability level comparable to the face deep-
fakes with IAPMR rates higher than 92%. Also, the last two
rows of the Table 2 show that the longer tuning leads to the
higher IAPMR rate.

Figure 2b and Figure 2c illustrate the differences be-
tween zero-shot approaches like YourTTS and when we use
the tuned model like FreeVC (tuned for 109K iterations).
These figures show that for the tuned model, the histogram
of the deepfake scores shifts very near to the blue histogram
of the bona fide scores.



Approaches IAPMR
YourTTS 80.06
Adaspeech 83.51
TorToiSe 86.61

Table 3. Vulnerability of speaker recognition to voice conversion
based deepfakes from LibriTTS-DF dataset.

4.3. Vulnerability to LibriTTS-DF

Vulnerability evaluation on LibriTTS-DF database is in-
teresting in a sense that it allows us to observe two important
points i) the differences between voice deepfakes generated
using text to speech and zero-shot voice conversion methods
and ii) the different between using audio dataset recorded
in the room with acoustic isolation like LibriTTS and the
dataset recorded in a standard noisy office environment like
SWAN.

Table 3 shows IAPMR rates for zero-shot YourTTS, for
zero-shot advanced diffusion-based TorToiSe TTS model
and for Adaspeech, where the pretrained TTS model was
tuned for each speaker. Surprisingly, the results show high
IAPMR rates for all methods, with TorToiSe, despite being
zero-shot model, being the most threatening to SpeechBrain
speaker recognition system. Also note that from a personal
subjective experience, TorToiSe TTS model produces the
most realistic and pleasant to the ear audio utterances. Fig-
ure 3a shows how much more the scores for deepfakes gen-
erated by TorToiSe are close to the bona fide scores. Com-
paring with Figure 3b, it can be noted that, although IAPMR
values are comparable, the scores for deepfakes of YourTTS
model are noticeably nearer to the red distribution than the
scores of TorToiSe deepfakes.

Comparing the result for YourTTS in Table 3 with the
results in Table 2, we can notice that IAPMR value 80.06%
for LibriTTS-DF is significantly higher than 27.43% value
for SWAN-DF. Figure 2b and Figure 3b illustrate this phe-
nomena as well. In both cases, we used the same pretrained
YourTTS model and similar approach on how we have gen-
erated voice conversion deepfakes. Therefore, the differ-
ence can be explained by the fact that the original SWAN
dataset was recorded in an office environment using con-
sumer smartphone and tablet, which had a significant ef-
fect on the resulted generative speech. Subjectively, the ut-
terances produced by YourTTS for SWAN-DF dataset are
much more noisy with a lot of metallic sounds compared to
the same in LibriTTS-DF.

5. Conclusion

In this paper, we presented SWAN-DF database of high
quality audio-visual deepfake that pose a high threat to state
of the art speaker and face recognition systems. We also
generated more than 20 face swapping variants using the

combination of different models and blending techniques.
We used 8 different voice conversion methods from 5 dif-
ferent models to generate voice deepfakes. Such large vari-
ation of the deepfakes in both audio and visual domains
will allow researchers to develop multimodal, more robust,
and generalizable methods for deepfakes detection. In addi-
tion to the database of audio-visual deepfakes, we released
a LibriTTS-DF database of only voice deepfakes, which we
generated using both voice conversion and text to speech
method, including TorToiSe, one of the latest diffusion-
based models.

The deepfakes will remain to be a serious threat to the
identity protection systems and a challenge for an automatic
and human detection. Therefore, such high fidelity datasets
like SWAN-DF and LibriTTS-DF play a key role in helping
to overcome these challenges.
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