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Abstract

Generative Adversarial Networks (GANs) have shown
success in approximating complex distributions for syn-
thetic image generation. However, current GAN-based
methods for generating biometric images, such as iris, have
certain limitations: (a) the synthetic images often closely
resemble images in the training dataset; (b) the generated
images lack diversity in terms of the number of unique iden-
tities represented in them; and (c) it is difficult to generate
multiple images pertaining to the same identity. To over-
come these issues, we propose iWarpGAN that disentan-
gles identity and style in the context of the iris modality by
using two transformation pathways: Identity Transforma-
tion Pathway to generate unique identities from the training
set, and Style Transformation Pathway to extract the style
code from a reference image and output an iris image us-
ing this style. By concatenating the transformed identity
code and reference style code, iWarpGAN generates iris im-
ages with both inter- and intra-class variations. The effi-
cacy of the proposed method in generating such iris Deep-
Fakes is evaluated both qualitatively and quantitatively us-
ing ISO/IEC 29794-6 Standard Quality Metrics and the Ver-
iEye iris matcher. Further, the utility of the synthetically
generated images is demonstrated by improving the perfor-
mance of deep learning based iris matchers that augment
synthetic data with real data during the training process.

1. Introduction

The iris is a thin, circular structure in the eye that con-
trols the amount of light that enters the eye by adjusting the
size of the pupil. It is located in front of the lens and behind
the cornea and is composed of muscles and pigmented tis-
sue. The distinctive nature of the iris pattern has led to its
use as a reliable biometric cue in identification and authen-
tication systems [18]. With the advent of technology, iris
sensors are now available in commercial and personal de-
vices, paving the way for secure authentication and access
control [10, 19]. However, the accuracy of iris recognition
systems relies heavily on the quality and size of the dataset
used for training. The limited availability of large-scale iris

Figure 1. Examples of real cropped iris images from publicly avail-
able datasets [2][3][26].

datasets due to the difficulty in collecting operational qual-
ity iris images, has become a major challenge in this field.
For example, most of the iris datasets available in the liter-
ature have frontal view images [2, 15], and the number of
subjects and total number of samples in these datasets are
limited. Further, in some instances, collecting and sharing
iris datasets may be stymied due to privacy or legal concerns
[24]. Therefore, researchers have been studying the texture
and morphology of the iris in order to model its unique pat-
terns and to create large-scale synthetic iris datasets. For
example, Cui et al. [6] utilized principal component anal-
ysis with super-resolution to generate synthetic iris images.
Shah and Ross [20] used a Markov model to capture and
synthesize the iris texture followed by embedding of ele-
ments such as spots and stripes to improve visual realism.
In [33], Zuo et al. analyzed various features of real iris im-
ages, such as texture, boundary regions, eyelashes, etc. and
used these features to create a generative model based on the
Hidden Markov Model for synthetic iris image generation.
These methods while successfully generating synthetic iris
images, are found lacking in terms of quality (visual realism
and good-resolution) and diversity in the generated samples
[27].

Over the past few years, deep learning-based approaches
have set a benchmark in various fields including synthetic
image generation and attribute editing, using Convolutional
Autoencoders (CAEs) [23] and Generative Adversarial Net-
works (GANs) [11, 16]. In [14, 27, 28], authors proposed
GAN-based synthetic image generation methods that input
a random noise vector and output a synthetic iris image.
While these methods address some of the concerns men-
tioned previously, the generated images are often similar to
each other [21]. Additionally, due to insufficient number
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of training samples, the generator is often over-trained to
synthesize images with patterns seen during training [21],
which affects the uniqueness of the synthesized iris images
(as shown in Figure 4).

In this paper, we address the following limitations of cur-
rent synthetic iris generators: (1) difficulty in generating
good quality synthetic iris images, (2) failure to incorporate
inter and intra class variations in the generated images, (3)
generating images that are similar to the training data, and
(4) utilizing domain-knowledge to guide the synthetic gen-
eration process. We achieve this by proposing iWarpGAN
that aims to disentangle identity and style using two trans-
formation pathways: (1) Identity Transformation and (2)
Style Transformation. The goal of Identity Transformation
pathway is to transform the identity of the input iris image in
the latent space to generate identities that are different from
the training set. This is achieved by learning RBF-based
warp function, fp, in the latent space of a GAN, whose gra-
dient gives non-linear paths along the pth family of paths
for each latent code z ∈ R. The Style Transformation path-
way aims to generate images with different styles, which
are extracted from a reference iris image, without changing
the identity. Therefore, by concatenating the reference style
code with the transformed identity code, iWarpGAN gen-
erates iris images with both inter and intra-class variations.
Thus, the contributions of this research are as follows:
(a) We propose a synthetic image generation method,
iWarpGAN, which aims to disentangle identity and style in
two steps: identity transformation and style transformation.
(b) We evaluate the quality and realism of the generated iris
images using ISO/IEC 29794-6 Standard Quality Metrics
which uses a non-reference single image quality evaluation
method.
(c) We show the utility of the generated iris dataset in
training deep-learning based iris matchers by increasing the
number of identities and overall images in the dataset.

In the remainder of this paper, we will discuss the pro-
posed method in more detail and demonstrate the advan-
tages of the proposed method in generating good quality,
unique iris images compared to other GAN-based methods.

2. Background

Generative Adversarial Networks (GANs) [11] are
generative models that typically take a random noise vector
as input and output a visually realistic synthetic image. A
GAN consists of two main components: (1) Generative
Network known as Generator (G), and (2) Discriminative
Network known as Discriminator (D) that are in compe-
tition with each other. The Generator aims to generate
realistic looking images that can fool the discriminator,
while Discriminator (D) aims to distinguish between real
and synthetic images generated by G. In the literature,

different methods have been proposed to generate generate
good quality biometric images such as face, iris and
fingerprint. Some of these methods are discussed below:

Generation using Random Noise: Kohli et. al. [14]
proposed a GAN-based approach to synthesize cropped iris
images using iris Deep Convolution Generative Adversarial
Network (iDCGAN). While this method generates good
quality cropped iris images of size 64×64, unrealistic dis-
tortions and noise were observed when trained to generate
high resolution images. In [27], Yadav et. al. overcame this
issue by utilizing Relativistic Average Standard Generative
Network (RaSGAN) that aims to generate good quality
high resolution iris images. However, since RaSGAN
generates synthetic images from a random noise vector,
it is hard to generate irides with intra-class variations.
Also, as shown in Figure 4, the uniqueness of generated
images is limited and the network was often observed
to repeat certain patterns, restricting the diversity in the
generated dataset. Wang et. al. [25] proposed a method for
generating iris images that exhibit a wide range of intra-
and inter-class variations. Their approach incorporates
contrastive learning techniques to effectively disentangle
identity-related features, such as iris texture and eye orien-
tation, from condition-variant features, such as pupil size
and iris exposure ratio, in the generated images. While their
method seems promising but the experiments presented in
their paper [25] are not sufficient to comment on quality of
iris and uniqueness of the generated images.

Generation via Image Translation: Image translation
refers to the process of translating an image from one do-
main to another by learning the mapping between vari-
ous domains. Therefore, image translation GANs focus on
translating a source image to the target domain with the pur-
pose of either changing some style attribute in the source
image or adding/mixing different styles together. For ex-
ample, StyleGAN [13] learns a mapping to different styles
in face images (such as hair color, gender, expression, etc.)
using a non-linear mapping function that embeds the style
code of the target domain into the generated image. Unlike
StyleGAN, StarGAN [5] and CIT-GAN [28] require paired
training data to translate a source image to an image with
the attributes of the target domain using style code of a ref-
erence image. This forces the generator to learn mappings
across various domains, making it scalable to multiple do-
mains. However, when trained using real iris images, Star-
GAN and CIT-GAN were seen to assume the identity of the
source image (as shown in Figures 6 and 7). So, both meth-
ods fail to generate irides whose identities are not present in
the training dataset.

There are other GAN-based methods in the literature that
aim to edit certain portions of the image using warp fields



Figure 2. The proposed iWarpGAN consists of five parts: (1) Style Encoder, ES , that aims to encode the style of the input image as s,
(2) Identity Encoder, ED , that aims to learn encoding d that generates an identity different from the input image, (3) Generative Network,
G, that uses encoding from both ED and ES to generate an image with a unique identity and the given style attribute, (4) Discriminator,
D, that inputs either a real or synthetic image and predicts whether the image is real or synthetic and also emits an attribute vector y

′
∈

{angle, position, contraction, dilation of pupil}, and (5) Pre-trained Classifier, C, that computes the distance score between the real input
image and the new identity generated by G.

Figure 3. Examples of images generated using iWarpGAN with
unique identities and intra-class variations. A total of 20,000 irides
corresponding to 2,000 identities were generated for each of the
three training datasets. The figure shows the average similarity
score (SScore) for both inter and intra class.

or color transformations. Warp fields have been widely used
for editing images such as modifying eye-gaze [8], semanti-
cally adding objects to an image [31], reconstructing facial
features [29], etc. Dorta et. al [7] argues that warp fields
are more comprehensive than pixel differences that allow
more flexibility in terms of partial edits. Geng et. al. [9]
proposed WG-GAN that aims to fit a dense warp field to an
input source image to translate it according to the target im-
age. This method showed good results at low resolution, but
the quality of synthetic data deteriorates at high resolution.
Also, as mentioned earlier, the source-target relationship in
WG-GAN can restrict the uniqueness of the output image.
Dorta et. al. [7] overcame these issues by proposing Warp-
GAN that allows partial edits without the dependency on
the source-target image pair. The generator takes as input
a source image and a target attribute vector and then learns
the warp field to make the desired edits in the source image.

This method has been proven to make more realistic seman-
tic edits in the input image than StarGAN and CycleGAN
[32]. Further, with the ability of controlled or partial edits,
WarpGAN provides the mechanism to generate images with
intra-class variations. However, using a real image as input
to the generator restricts the number of unique images that
can be generated from this network.

3. Proposed Method
In this section, we will discuss the proposed method,

iWarpGAN, that has the capability to synthesize an iris
dataset in such a way that: (1) it contains iris images with
unique identities that are not seen during training, (2) gen-
erates multiple samples per identity, (3) it is scalable to hun-
dred thousand unique identities, and (4) images are gener-
ated in real-time.

Let xd1
s1 ∈ P be an input image with identity d1 and style

s1, and another input image xd2
s2 ∈ P with identity d2 and

style s2. Here, s1 and s2 denote image with attribute y. The
attribute vector y is a 12-bit binary vector, where the first 5
bits correspond to a one-hot encoding of angle, the next 5
bits correspond to a one-hot encoding of position shift, and
the last 2 bits denote contraction and dilation, respectively.
Here, angle and position define eye orientation and the shift
of iris center in the given image. The possible angles are
0o, 10o, 12o, 15o, 18o and the possible position shifts are
[0,0], [5,5], [10,10], [-10,10], [-10,-10]. For example, an
image with angle 10o, position shift [0,0] and dilation, the
attribute vector y will be [0,1,0,0,0,1,0,0,0,0,0,1]. The an-
gle value defines the image orientation and position defines
the offset of the iris center from the image center. Given xd1

s1

and xd2
s2 , our aim is to synthesize a new iris image xd3

s2 with



identity d3 different from the training data and possessing
the style attribute s2 from xd2

s2 . To achieve this, as shown
in Figure 2, the framework of iWarpGAN has been divided
into five parts: (1) Style Encoder, ES , that encodes style
of the input image, (2) Identity Encoder, ED, that learns
an encoding to generate an identity different from the input
image, (3) Generative Network, G, that uses encoding from
both ED and ES to generate an image with a unique iden-
tity and the given style attribute, (4) Discriminator, D, that
predicts whether the image is real or synthetic and emits an
attribute vector y

′
and (5) Pre-trained Classifier, C, that re-

turns the distance score between a real input image and new
the identity generated by G.

3.1. Disentangling Identity and Style to Generate
New Iris Identities

Generally, the number of samples available in the train-
ing dataset is limited. This restricts the latent space learned
by G thereby limiting the number of unique identities gen-
erated by the trained GAN. Some GANs focus too much
on editing or modifying style attributes in the images while
generating previously seen identities in the training dataset.
This motivated us to divide the problem into two parts: (1)
Learning new identities that are different from those in the
training dataset, and (2) Editing style attributes for ensur-
ing intra-class variation. Inspired by [30], we achieve this
by training the proposed GAN using two pathways - Style
Transformation Pathway and Identity Transformation Path-
way.
Style Transformation Pathway: Similar to StyleGAN,
this pathway entirely focuses on learning the transforma-
tion of the style. Therefore, this sub-path aims to train the
networks ES , D and G, while keeping the networks ED and
C fixed. Input to the generator G is the concatenated latent
vector d and s to generate an iris image with style attribute
y. G tries to challenge G by maximizing,

LG−Sty = E
xdi
si ,x

dj
sj∼Preal

[D(G(ED(xdi
si), ES(x

dj
sj , y)))] (1)

Here, x̄ = (G(ED(xdi
si), ES(x

dj
sj , y))) is the image gen-

erated by G. At the same time, D competes with G by
minimizing,

LD−Sty = E
xdi
si ,x

dj
sj∼Preal

[D(G(ED(xdi
si), ES(x

dj
sj , y)))]

−Ex[D(x)]
(2)

In order to enforce that an iris image is generated with
style attributes y, the following loss function is utilized:

LSty−Recon = ||ES(x̄)− ES(x
dj
sj)||

2
2 (3)

Identity Transformation Pathway: This pathway focuses
on learning identities in latent space that are different from

the training dataset. Therefore, this sub-path aims to train
the networks ED, D and G, while keeping the networks ES

and C fixed. Therefore,

LG−ID = E
xdi
si ,x

dj
sj∼Preal

[D(G(ED(xdi
si), ES(x

dj
sj , y)))] (4)

LD−ID = E
xdi
si ,x

dj
sj∼Preal

[D(G(ED(xdi
si), ES(x

dj
sj , y)))]

−Ex[D(x)]
(5)

Here, the goal is to learn encodings that represent identi-
ties different from those in the training dataset. For this, ED

is divided into two parts (as shown in Figure 2) - Encoder
E that extracts the encoding from given input image and
Warping Network W that aims to learn M warping func-
tions (f1, ....., fM ) to discover M non-linear paths in the
latent space of G. The gradient of these can be utilized to
define the direction at each latent code z [22] such that new
z̄ represents encoding of an identity different from the input
image. In order to achieve this, the encoder ED is broken
down to two parts - an encoder E that extracts the latent
code of the given input image and passes it on to the warp-
ing network W .

For a vector space Rd, the function f : R is defined as,

f(z) =

K∑
k=1

biexp(−ui||z − vi||2) (6)

Here, vi ∈ Rd represents the center, bi ∈ R represents
weight and ui ∈ R represents scale of ith RBF. This func-
tion for warping is differentiable and for a specific value of
z, the direction from ∆f can be used to define a curve in
Rd by shifting z as [22]:

δz = ϵ
∆f(z)

||∆f(z)||
(7)

Here, ϵ is the shift magnitude that determines the shift
from z to z̄ using above equation. The Warping Network,
W , contains two components: warper and reconstructor
R. The warper can be parameterized using the triplet
(V m, Bm, Um) denoting the center, weight and parame-
ters. Here, m = 1, 2, ....M and each triplet help warping
the latent space in Rd. Also, the reconstructor is utilized to
estimate the support set and magnitude shift that led to the
transformation at hand. Therefore, the objective function
for the Warping Network can be defined as,

min
V,B,U,R

Ez,ϵ[LW−Reg(ϵ, ϵ̄)] (8)

Here, LW−Reg refers to regression loss. To further em-
phasize the uniqueness of identity learned by G in latent
space, we maximize,

LIdent−Recon = ||ED(x̄)− E(xdi
si)||22 (9)



(a) CASIA-Iris-Thousand dataset v/s synthetically generated images from different GANs

(b) CASIA-CSIR dataset v/s synthetically generated images from different GANs

(c) IITD-iris dataset v/s synthetically generated images from different GANs
Figure 4. Histograms showing the quality scores of real iris images from three different datasets and the synthetically generated iris images.
The quality scores were are generated using ISO/IEC 29794-6 Standard Quality Metrics[1] in the score range of [0-100]. Higher the score,
better the quality. Iris images that failed to be processed by this method are given the score of 255.

LIdent−Cls = ||Feat(x̄)− Feat(xdi
si)||22 (10)

Here, Feat(x) are the features extracted by the trained
iris classifier (i.e., matcher) C.

By employing distinct pathways for style and identity,
the proposed method enables the manipulation of identity
features to generate synthetic images with distinct identi-
ties that diverge from the training dataset. Additionally, this
methodology allows for the generation of images with var-
ied styles for each identity. This is achieved by keeping the
input image to the identity pathway constant and varying
the input image to the style pathway to enforce that the gen-
erated images have the same identity d but different styles
(i.e., intra-class variation) s1, s2, ...., sn.

4. Datasets
In this work, we utilized three publicly available iris

datasets for conducting experiments and performing our
analysis:
D1: CASIA-Iris-Thousand This dataset [2] released by
the Chinese Academy of Sciences Institute of Automation
has been widely used to study distinctiveness of iris fea-

tures and to develop state-of-the-art iris recognition meth-
ods. It contains 20,000 irides from 1,000 subjects (2,000
unique identities with left and right eye) captured using an
iris scanner with a resolution of 640×480. The dataset is
divided into train and test sets using a 70-30 split based on
unique identities, i.e., 1,400 identities in the training set and
600 in the test set.
D2: CASIA Cross Sensor Iris Dataset (CSIR) For this
work, we had access to only the train set of the CASIA-
CSIR dataset [26] released by the Chinese Academy of
Sciences Institute of Automation. This dataset consists of
7,964 iris images from 100 subjects (200 unique identities
with left and right eye), which is divided into train and test
sets using a 70-30 split on unique identities for training
and testing deep learning based iris recognition methods,
i.e., training set contains 5,411 images and test set contains
2,553 images.
D3: IITD-iris This dataset [3] was released by the Indian
Institute of Technology, Delhi, and was acquired in an
indoor environment. It contains 1,120 iris images from
224 subjects captured using JIRIS, JPC1000 and digital
CMOS cameras with a resolution of 320×240. This dataset
is divided into train and test sets using 70-30 split based



Figure 5. This figure shows the uniqueness of iris images generated
using iWarpGAN when the GANs are trained using CASIA-Iris-
Thousand dataset. The y-axis represents the similarity scores ob-
tained using VeriEye. Here, R=Real, S=Synthetic, Gen=Genuine
and Imp=Impostor.

on unique identities, i.e., images from 314 identities in the
training set and images from 134 identities in the testing set.

Training Data for Proposed Method The proposed
method is trained using cropped iris images of size
256×256, where the style of each image is represented us-
ing the attribute vector y. Current datasets do not con-
tain balanced number of iris images across these attributes.
Therefore, variations such as angle and position is added via
image transformations on randomly selected images from
the dataset. In order to achieve this, first iris coordinates
are first obtained using the VeriEye iris matcher, images are
then translated to different angles and positions with respect
to these centers, and cropped iris image of size 256×256
extracted. This helps create a training dataset with bal-
anced samples across different attributes. Since the pro-
posed method uses an image translation GAN, during im-
age synthesis two images xd1

s1 , xd2
s2 and an attribute vector y

of image xd2
s2 are used as input to synthesize a new iris im-

age xd3
s2 with identity d3 which is different from the training

data and possesses the style attribute s2 of xd2
s2 .

5. Experiments & Results
In this section, we discuss different experiments uti-

lized to study and analyze the performance of the proposed
method. First, three sets of 20,000 number of iris images
corresponding to 2,000 identities are generated. The three
sets correspond to three different training datasets, D1, D2
and D3. For some of the experiments below, a subset of the

Figure 6. This figure shows the uniqueness of iris images gener-
ated using iWarpGAN when the GANs are trained using CASIA-
CS iris dataset. The y-axis represents the similarity scores ob-
tained using VeriEye. Here, R=Real, S=Synthetic, Gen=Genuine
and Imp=Impostor.

Figure 7. This figure shows the uniqueness of iris images gen-
erated using iWarpGAN when the GANs are trained using IITD
iris dataset. The y-axis represents the similarity scores obtained
using VeriEye. Here, R=Real, S=Synthetic, Gen=Genuine and
Imp=Impostor.

generated images were used in order to be commensurate
with the corresponding real dataset.

5.1. Experiment-1: Quality of Generated Images

ISO/IEC 29794-6 Standard Quality Metrics The quality
of generated images is compared with the real images using



Figure 8. This figure shows the performance of Resnet-101 in the cross-dataset evaluation scenario. (a) Trained using train set of CASIA-
CSIR & IIT-Delhi datasets and tested using test set of CASIA-Iris-Thousand. (b) Trained using CASIA-Iris-Thousand & IIT-Delhi datasets
and tested using test set of CASIA-CSIR dataset. (c) Trained using CASIA-Iris-Thousand & CASIA-CSIR datasets and tested using test
set of IIT-Delhi iris dataset.

Figure 9. This figure shows the performance of EfficientNet in the cross-dataset evaluation scenario. (a) Trained using train set of CASIA-
CSIR & IIT-Delhi datasets and tested using test set of CASIA-Iris-Thousand. (b) Trained using CASIA-Iris-Thousand & IIT-Delhi datasets
and tested using test set of CASIA-CSIR dataset. (c) Trained using CASIA-Iris-Thousand & CASIA-CSIR datasets and tested using test
set of IIT-Delhi iris dataset.

ISO/IEC 29794-6 Standard Quality Metrics [1]. We also
evaluated the quality of images generated by other tech-
niques, viz., WGAN [4], RaSGAN [27] and CITGAN [28]
and compared them with the images generated using iWarp-
GAN. The ISO metric evaluates the quality of an iris image
using factors such as usable iris area, iris-sclera contrast,
sharpness, iris-pupil contrast, pupil circularity, etc. to gen-
erate an overall quality score. The quality score ranges from
[0-100] with 0 representing poor quality and 100 represent-
ing the highest quality. The images that cannot be processed
by this method (either due to extremely poor quality or error
during segmentation) are given a score of 255.

As shown in Figure 4, the quality scores of iris images
generated by iWarpGAN and CITGAN are comparable with
real irides. On the other hand, WGAN and RaSGAN have
many images with a score of 255 due to the poor image
quality. Also, when comparing the images in the three
datasets, it can be seen that CASIA-CSIR dataset has more
images with a score of 255 than IITD-iris and CASIA-Iris-
Thousand dataset.

VeriEye Rejection Rate To further emphasize the superi-
ority of the proposed method in generating good quality iris

images, we compare the rate of rejection of the generated
images by a commercial iris matcher known as VeriEye. We
compare the rejection rate for images generated by iWarp-
GAN with the real images as well as those generated by
WGAN, RaSGAN and CITGAN:

(a) IITD-Iris-Dataset: This dataset contains a total of 1,120
iris images out of which 0.18% images are rejected by Ver-
iEye. For comparison, we generated 1,120 iris images each
using iWarpGAN, WGAN, RaSGAN and CITGAN. For the
generated images, the rejection rate is as high as 9.73% and
4.55% for WGAN and RaSGAN, respectively. However,
the rejection rate for CITGAN and iWarpGAN is 2.85% and
0.73%, respectively.

(b) CASIA-CS Iris Dataset: This dataset contains a total of
7,964 iris images out of which 2.81% images are rejected by
VeriEye. For comparison, we generated 7,964 iris images
each using iWarpGAN, WGAN, RaSGAN and CITGAN.
For the generated images, the rejection rate is as high as
4.17% and 2.06% for WGAN and RaSGAN, respectively.
However, the rejection rate for CITGAN and iWarpGAN is
2.71% and 2.74%, respectively.



(c) CASIA-Iris-Thousand Dataset: This dataset contains a
total of 20,000 iris images out of which 0.06% images are
rejected by VeriEye. For comparison, we generated 20,000
iris images each using iWarpGAN, WGAN, RaSGAN and
CITGAN. For the generated images, the rejection rate is
as high as 0.615% and 0.34% for WGAN and RaSGAN,
respectively. However, the rejection rate for CITGAN and
iWarpGAN is 0.24% and 0.18%, respectively.

5.2. Experiment-2: Uniqueness of Generated Im-
ages

This experiment analyzes the uniqueness of the synthet-
ically generated images, i.e., we evaluate whether iWarp-
GAN is capable of generating unique identities with intra-
class variations.

Experiment-2A: Experiment-2A focuses on studying the
uniqueness in the synthetic iris dataset generated using dif-
ferent GAN methods with respect to training samples. For
this, we studied the genuine and impostor distribution of
real iris images used to train GAN methods and compared it
with the distribution of synthetically generated iris images.
We utilized VeriEye matcher in this experiment to evaluate
the similarity score between a pair of iris image. The score
ranges from [0, 1557] where a higher score denotes a better
match.

Experiment-2B: Experiment-2B focuses on studying the
uniqueness and intra-class variations within the generated
iris dataset. For this, we studied the genuine and impos-
tor distributions of the generated iris images and compare
it with the distribution of real iris datasets. As mentioned
earlier, this study is done for various unique generated iden-
tities to study both uniqueness and scalability. We utilized
VeriEye matcher in this experiment to evaluate the similar-
ity score between a pair of iris images.

Analysis
As shown in the Figures 5, 6 and 7, unlike other GAN meth-
ods, the iris images generated by iWarpGAN do not share
high similarity with the real iris images used in training.
This shows that iWarpGAN is capable of generating irides
with identities that are different from the training dataset.
Further, looking at the impostor distribution of synthetically
generated images, which overlaps with the impostor distri-
bution of real iris images, we can conclude that the gener-
ated identities are different from each other. Note that low
similarity scores in WGAN for real v/s synthetic and syn-
thetic v/s synthetic distributions are due to poor quality iris
images generated by WGAN.

5.3. Experiment-3: Utility of Synthetic Images

In this experiment, we analyze the performance of deep
learning algorithms trained and tested for iris recognition

using a triplet training method, and compare it with the per-
formance when these algorithms are trained using real and
synthetically generated iris images.

Experiment-3A: Baseline Analysis
This is a baseline experiment where EfficientNet [12] and
Resnet-101 [17] are trained with the training set of CASIA-
Iris-Thousand, CASIA-CSIR and IITD-iris datasets using
the triplet training method. The trained networks are tested
for iris recognition on the test set of the above mentioned
datasets (as mentioned in Section IV).

Experiment-3B: Cross-Dataset Analysis
In this experiment, we analyze the benefits of synthetically
generated iris datasets in improving the performance of
deep learning based iris recognition methods. EfficientNet
and Resnet-101 are trained using the training set of CASIA-
Iris-Thousand, CASIA-CSIR and IITD-iris datasets, as well
as the synthetically generated iris dataset from the iWarp-
GAN.

Analysis: As shown in Figures 8 and 9, the performance
of the deep learning based iris recognition system improves
when trained with more data, i.e., when combining real and
synthetically generated iris images from iWarpGAN. While
there is a slight improvement in the performance of ResNet-
101, a significant improvement in the performance is seen
for EfficientNet.

6. Summary & Future Work

The results in Section 5 show that unlike current GANs,
the proposed method is capable of generating good quality
iris images with identities that are different from the
training dataset. Also, the generated identities are unique
with respect to each other with some variations. We also
showed the usefulness of the generated dataset in improv-
ing the performance of deep learning-based iris recognition
methods by providing additional synthetic training data
with numerous unique identities. The proposed method
is based on image transformation, i.e., the network needs
an input and reference image to transform the identity and
the style and produce an output image. This can limit the
feature space explored by iWarpGAN. For future work,
we would like to extensively study the capacity of the
proposed method in terms of number of unique identities it
can generate and further explore how to make the proposed
method more generalizable so that the new identities learnt
by iWarpGAN is not limited by the training set.

This research is based upon work supported by by NSF CITeR
funding. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily repre-
senting the official policies, either expressed or implied by NSF
CITeR.
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