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Abstract

In this paper, we investigated the use of gene co-expression network analyses to identify potential
biomarkers for breast carcinoma prognosis. The network mining algorithm CODENSE is used to
identify highly connected genome-wide gene co-expression networks among a variety of cancer
types, and the resulted gene clusters are applied to a series of breast cancer microarray sets to
categorize the patients into different groups. As a result, we have identified a set of genes that are
potential biomarkers for breast cancer prognosis which can categorize the patients into two groups
with distinct prognosis. We also compared the gene clusters we discovered with gene subsets
identified from similar studies using other clustering algorithms.
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l. INTRODUCTION

Breast carcinoma is known for its remarkable diversity in terms of the pathology, histology,
and prognosis [1]. Since the beginning of breast cancer research, many attempts have been
made to categorize this disease and understand the molecular basis for the significant
phenotype difference among subgroups. But before the emergence of “molecule profiling”
based on the genechip technology, only crude biomarkers have been identified using
methods such as immunohistochemical staining, histology, pathological phenotyping, and
individual protein characterization. Breast carcinoma was first categorized into ER+ and ER
— subgroups, based on the histochemical staining of oestrogen receptor (ER) on the surface
of mammary epithelial tumor cells, which was later called basal and luminal breast
carcinomas respectively. In fact, it is the first biomarker to be used to characterize tumor
cells, and has been a useful biomarker for prognosis for three decades. ER+ and ER- type of
breast cancers exhibit fundamental difference in almost every stage of the disease
progression, and there have been studies suggesting distinct disease entities and cell lineage
among subtypes of breast carcinomas [1-4]. Roughly two-third of the breast carcinomas are
ER+, which means a lower rate of cell proliferation, tumor differentiation, recurrence and a
longer survival time. ER+ patients are also likely to benefit from tamoxifen and herceptin
treatment, as well as hormone therapy [5]. Despite such knowledge, this classification
method is still crude, and heterogeneity exists within each subgroup [2, 6, 7]. Clinicians lack
a reliable biomarker to predict the prognosis of the patients and their response to
chemotherapy [8].
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With the rapid development of genome-wide gene expression profiling study, molecule
profiling has become a powerful tool to characterize primary tumor subtypes even
metastasis, and several studies have discovered subsets of signature genes using molecule
profiling, which link to breast carcinoma features such as histological and pathological
features, developing stages, and ER status subtypes [2, 3, 6, 9-19]. Among them, the most
reliable signature gene subsets are for prediction of ER+ and ER- subtypes[6], while gene
patterns related to other features are still imperfect and not stable to became new stand-alone
prognosis method for cancer sub-classification[1, 7]. To identify signature gene subsets that
can be used to predict breast carcinoma subtypes or its metastasis/survival, a variety of
clustering and feature selection algorithms, including PAM, ANN, SAM, CGlI, PCA, and
hierarchical clustering, has been applied to gene expression profiles, generating signature
gene lists from hundreds to thousands [2, 6, 9-19]. However, most of the above algorithms
are data-driven and do not directly incorporate the functional relationships among genes in
the gene selection process.

Recently, another class of methods focuses on clustering genes with similar expression
patterns in multiple samples and identifying the so-called co-expression networks. These co-
expression networks can then be used as functional modules in the investigation of disease
mechanisms [20-22]. In this paper, we explore the use of the co-expression networks in
discovering biomarkers for breast cancer prognosis. Instead of using the co-expression
network for each individual study as in [21, 22], we first establish frequent co-expression
networks from multiple sets of cancer gene expression data. This approach provides us with
a list of “background” co-expression networks that are common in different disease states
and reflect the essential functional units in the gene network. In order to achieve this goal,
we resort to an established network mining algorithm CODENSE, which efficiently
identifies frequent gene co-expression networks [23].

Specifically, we applied the CODENSE algorithm on gene expression profiles from
different types of carcinoma cell cDNA microarray studies, identified 44 clusters of genes
which are highly connected in the co-expression network, then applied these clusters to a
breast cancer microarray study, which consists of 286 breast cancer samples, from 209 ER+
and 77 ER- patients [24]. We isolated differentially co-expression genes clusters
correspondent to different ER status co-expression pattern, and identified a group of
signature genes that can be indicative of a conceptual network for breast tumor cell. Then
we applied one of our gene clusters containing 41 genes to another breast carcinoma
microarray studies including 159 tumor samples, and predicted the ER status as well as the
disease outcome in term of relapse. We also compared our finding with signature gene lists
discovered from other breast carcinoma research using different clustering algorithms, and
attempt to understand it in terms of pathway and ontology analysis.

Our work suggests a new approach to select biomarkers for disease. Instead of selecting
individual genes by comparing patients with different disease states or subtypes, we treat the
gene clusters as a functional units and their responses in different disease states not only
help to choose biomarkers but also directly contribute to the gaining of new insights on the
molecular mechanisms such as key pathways or gene functions of disease prognosis and
subtyping.

II. METHODS
A. Data Selection and PCC Computation

GEO was queried using terms "metastatic cancer”. We further select the datasets (GDS data
only) containing both normal and tumor tissues obtained from primary tissue biopsy (cell
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lines and secondary cultures were excluded). 23 datasets were selected based on this
criterion, 19 were from human, 3 from mouse and 1 from rat tissue (GDS389, GDS505,
GDS619, GDS1070, GDS1110, GDS1209, GDS1210, GDS1220, GDS1222, GDS1272,
GDS1250, GDS1321, GDS1479, GDS1363, GDS1375, GDS1649, GDS1650, GDS1665,
GDS1732, GDS2250, GDS2609, GDS2617, GDS2635). Pearson correlation coefficient
(PCC) was calculated for every pair of genes in the expression profile for each of the 23
datasets, using a MATLAB script. In order to identify only the highly connected gene
clusters, we retained the pair of highly correlated genes with the absolute values of PCC (|
PCC]) of 0.75 or higher. All resulted gene pairs constructed the initial network for
CODENSE to identify potential gene clusters.

B. Frequent co-expression network (gene cluster) discovery using CODENSE

The CODENSE algorithm was first developed for discovery networks of genes in multiple
microarray datasets and is therefore extremely suitable for our study [23]. We applied the
CODENSE algorithm to the gene pairs of 23 datasets of selected cancer microarray studies
(see Supplement table for dataset list and reference), and set the parameters so that networks
were constructed where each edge linking a pair of genes appeared in at least 4 datasets. The
network motifs that had a connectivity ratio r> 0.4 (i.e., given a co-expression network with
Knodes and L edges, r= L/(m(n—1)/2)) were selected for further analyses. The r-value of 0.4
is also the default cutoff value for CODENSE algorithm, which defines a highly connected
network motif.

C. Estrogen receptor (ER) status-linked gene cluster identification

The gene clusters found in the above step were applied to a lymph-node negative breast
cancer microarray study (GEO dataset GSE2034, using Affymetrix GeneChip Human
Genome U133 Array Set HG-U133A), which consists of 286 samples from 209 ER+
patients and 77 ER— patients from age 18-54 [24]. Student’s t-tests comparing the two
groups of patients were performed and genes with p-values < 0.05 and mean-fold change >
1.5 were selected. For each gene cluster, the percentage of the selected genes in each cluster
was computed and Fisher’s exact test was carried out to determine the significance of the
enrichment of the selected genes in the cluster Bonferroni test is used to compensate for the
multiple Fisher’s exact tests.

D. Gene ontology (GO) and pathway Analysis

Preliminary GO term enrichment analysis was carried out using the DAVID Bioinformatics
Resources (http://david.abcc.ncifcrf.gov/). Further pathway analysis was done using
Ingenuity Pathway Analysis (IPA, http://www.ingenuity.com) [25]. Each gene list was
annotated using IPA’s annotate function and placed in a new pathway and connected under
standard settings using the “Build” and “Connect” functions. The threshold for function list
and canonical pathway list is determined by IPA using p-value of 0.05, which is shown as
the straight orange lines on Fig. 2.

E. Test selected gene cluster on breast cancer datasets (GSE2990 and NKI)

For the genes in the selected cluster, we test them against other public breast carcinoma
datasets for their predictive capacity for ER status and survival. Specifically, supervised
learning algorithm K-nearest neighbor (KNN) with 20% holdout cross validation (repeat 500
times) was used to test the predictive capacity on the ER status. To test the potential of the
selected gene list as prognostic gene markers, we use the select gene list as features and
carry out unsupervised clustering on the selected dataset. Then we carry out survival
analysis to compare the different groups generated by the clustering. Specifically, we use K-
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mean algorithm (K=2, 100 random initialization) for clustering. The survival analysis
includes Kaplan-Meijer analysis and log-rank test.

Two sets of large scale study on breast cancer have been chosen to test the gene cluster
selected. One is GEO dataset GSE2990 [15] and the other is the Netherlands Kanker
Instituut (NKI) NKI-295 dataset with 295 patients (226 ER+ and 69 ER-) [26]. To be
consistent with GSE2034 which contains only lymph node negative patients, we selected
only the lymph-node negative patients (34 ER- and 113 ER+) patients in GSE2990.

F. Comparison with other gene signature subsets

Eight gene signature subsets from genome-wide gene expression profiling studies on breast
carcinoma were compared with genes in cluster 2. Official gene symbols from HUGO were
used to query the eight gene lists to find shared genes.

lll. RESULTS

A. ldentification of frequent co-expression gene clusters

Using the CODENSE algorithm, we identified 44 gene clusters composed of frequently co-
expressed genes from the 23 datasets. The sizes of the clusters range from 21 to 74 with an
average of 44. The connectivity ratio rranges from 0.41 to 0.78.

B. Selecting ER status-linked gene cluster

Using Bonferroni test, we set the threshold on the p-value of the Fisher’s exact test to be
0.05/44 = 0.00111. As shown in Table 1, eleven genes clusters satisfy this criterion and
contain significant numbers of genes that are differentially expressed between patient groups
with different ER-status in GSE2034.

Among the eleven clusters, cluster 2 contains the highest ratio (56%) of selected genes and
the most significant p-value for the Fisher’s exact test. In addition, GO term enrichment
analysis shows that it is the only cluster that is not primarily enriched with immune response
related genes (Table-1). Therefore, we focus on the cluster 2 in this paper (shown in Fig. 1
Left).

C. Functional and pathway analysis of the signature gene cluster using IPA and literature

search

We further conducted IPA analysis on the 41 genes in cluster 2. As shown in Fig. 1 (Right),
a highly connected network is formed by a subset of the 41 genes. In addition, the canonical
pathways identified from gene lists in cluster 2 and the enriched functional groups/diseases
are shown in Fig. 2.

Clearly, the cell cycle related genes form the most enriched functional group. Specifically,
many of the genes are related to spindle control and centrosome formation. Among them,
HMMR has recently been shown to co-express with the well-known breast cancer related
gene BRCAL1[27]. In addition, knockout of HMMR or BRCAL1 in breast cancer cell lines
results in supernumeracy of centrosomes in the cells, which is an abnormality found in
breast cancer.

D. Prediction of ER status in other datasets

In order to confirm that our findings are not just by chance, we test the correlation between
the expression levels of genes in cluster 2 and the ER status using other datasets.
Specifically, we test the predictive capacity of the cluster 2 genes in predicting the ER status
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using supervised learning method K-nearest neighbor. For cross validation, we use 20%
holdout with 500 repeats. The average accuracy is computed for each gene. In the NKI
datasets, 27 genes are present with 30 probesets. The predication accuracies for these 30 the
60 probesets that are present, 47 probesets show prediction accuracies more than 65%. In
total, 22 genes show prediction accuracy more than 65% in both datasets. Table-2 shows ten
of such genes sorted by their prediction accuracy in the NKI dataset.

of gene signatures for survival prediction

We further test if the genes in cluster 2 have predictive capacity for survival. Since the
original GSE2034 dataset contains only lymph node negative patients, we test the genes
using the lymph node negative patient data in the NKI dataset. Since the NKI dataset only
contains 30 probesets for 27 genes out of the 41 genes, we use the 30 probesets as features to
cluster the 150 lymph node negative patients into two groups using the K-mean algorithm
(cityblock distance metric and 100 times random repeat). This process segments the patients
into a good prognosis group (67 patients) and a poor prognosis group (83 patients) (log rank
test p value = 2.32x107). The Kaplan-Meijer curves of the two groups are shown in Fig. 3.

F. Comparing with other known breast cancer signhatures

There are many studies on selecting gene signatures for breast cancer prognosis. By
searching the literatures, we found many genes in cluster 2 has been previously included in
the various such gene signatures. Some of them were listed in Table-3.

IV. DISCUSSION

Cancer subclassification using gene co-expression profiling has been a rapid growing field
in cancer research since the turn of this century. Based on the strategy used, these studies
can be divided into three categories, i.e. supervised top-down approach, unsupervised
bottom-up approach, and hypothesis-driven approach [1]. The top-down approach uses gene
expression data from cohorts of patients with known pathological subtypes or clinical
outcomes to identify gene lists associated with those subtypes for prognosis, therefore it is a
supervised clustering method. The bottom-up approach is an unsupervised clustering
method, using available microarray datasets to search for gene co-expression patterns that
can be linked to specific subtypes or clinical outcomes. The hypothesis-driven approach
isolates candidate genes from already known biological processes or pathways involved in
cancer, then tests them in different cohorts of patients to see their prediction capacity. The
hierarchical clustering methods with either top-down or bottom-up approach has been
proved not stable, adding more samples may dramatically changes the dendogram [7], while
hypothesis-driven gene candidates can be limited by the hypothesis itself and our lack of
knowledge of tumor cell physiology and development. Our network-based approach differs
from the three above in that we fill the gap among different approaches, and by isolating and
applying highly connected gene co-expression network as a functional unit, we achieve a
better understanding of tumor cell physiology as well as obtaining signature gene classifiers
to predict disease outcome and do subtyping. We pre-identify 44 highly connected gene
network clusters from a variety of tumor sample microarray data with a unsupervised
network mining algorithm CODENSE, then apply the clusters to cancer studies with known
outcome to narrow down to 11 clusters, which are tightly associated with certain cancer
subtypes. We further test the predicting power of our candidate cluster (cluster 2) as an
intact functional network group as well as each individual gene in ER status subtyping using
two different breast carcinoma studies, and test its predicting accuracy on the survival data
of different cohorts of patients. The wide range of cancer types of data ensures our gene
cluster selection to represent the common traits in the gene co-expression profile among
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different types of carcinomas, and this is the major difference between our and other breast
carcinoma signature selection methods, with the latter focused entirely on breast carcinoma
cases. The resulted clusters clearly group genes into cell proliferation and immune response
categories. Not surprisingly, the genes from the best candidate cluster are mostly involved in
the cell proliferation, including cell cycle, cellular assembly and organization, DNA
replication etc. (Fig. 2), which confirms previous founding that genes from proliferation
group forms the universal signature gene subset in the molecule profiling study of breast
carcinoma samples [7, 28]. The significant overlapping of cluster 2 genes with signature
gene lists from other studies also shows its importance in cancer prognosis (Table-3).
Studies have also shown proliferation related genes drives metastasis and relapse in ER+
tumors [7].

BRCA-1 is an important biomarker in breast cancer research. Mutant BRCA-1 carriers
usually have high risk of breast cancer and have the worst disease outcome. BRCA-1 protein
is a tumor suppressor preventing uncontrollable cell proliferation, and is directly involved in
DNA repair [29]. Although it is not found in our gene cluster, several members of cluster 2,
including HMMR, AURKA, CENPE, CENPF, UBE2C and UBEZ2S, are either highly
related to BRCAL1 or involved in the functions of BRCAL as a ubiquitin ligase and regulator
of centrosome development [27] [29] [30]. Therefore, the discovery of our proliferation
cluster also helps in understanding the critical role of BRCA1 as one of the key genetic
factors in breast cancer. In addition, our finding is also consistent with one study, which
associated cell proliferation signature genes with extremely poor outcome patients in breast
cancer [19]. The proliferation cluster is also a good classifier for survival analysis, which
clearly distinguishes the good vs. the poor outcome patients. Each gene in this functional
network clusters is also proved to have strong prediction power even by itself. When tested
to classify ER status, each single gene can predict with the accuracy in a range of 65% to
83.9%. Because the NKI dataset is mixed with lymph-node negative and positive patients, it
may influence the prediction accuracy slightly, as studies have shown that lymph-node
negative datasets generally can be classified more accurately with gene signatures [1].

Compared with signature genes that can predict ER status very well, genes subsets which
can classify chemotherapy sensitivity, metastasis and recurrence are not very reliable. We
plan to use the clusters identified in this study to these fields, further testing their prognostic
performance.

Studies have demonstrated that simple proliferation-base small gene subsets performs as
good as complex large-number gene list [31], and CODENSE cluster mining algorithm
provides an excellent way to identify such small gene subsets, each in a functional unit, with
a reliable prognostic performance. The genes isolated as a functional network also help us
understand the physiology and development of tumor cells. Our successfully identified gene
cluster in breast cancer prognosis suggests that the co-expression networks identified in this
method can serve as a set of generic building blocks for biomarker selection and gene
interaction studies in other cancer or disease scenarios.
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Figure 1.
Left. Cluster 2 with 41 genes showing connections between each other. Right. A network

identified by IPA from the 41 genes.
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Figure 2. Functional and canonical pathway analyses of genesin cluster 2 using Ingenuity
Pathway Analysis

Left: Function list of the top 11 functions carried out by genes in cluster 2, ranked by p-
value. Right: Canonical pathways with cluster 2 genes involved, ranked by p-value. The
straight orange line represents a p-value of 0.05.
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Figure 3. TheKaplan-Meijer curvesof the good prognosis group (blue) and the bad prognosis
group (red) of lymph-node negative patients on NK| dataset
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Table-1

Clusters related to ER status identified from breast cancer microarray study GSE2034

Cluster ID  Total genenumber  No. of Genesinvolved  P-value  Top GO biological process

2 41 23 2.16E-12 M phase of mitotic cell cycle
11 64 19 3.67E-05 Immune response
12 30 9 3.85E-03 Immune response
30 65 25 7.31E-09 Immune response
32 23 8 2.26E-03 Immune response
34 27 14 1.79E-07 Immune response
35 72 23 1.41E-06 Immune response
38 67 23 3.32E-07 Immune response
41 37 13 9.19E-05 Immune response
42 50 15 2.09E-04 Immune response
44 52 22 7.21E-09 Immune response
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Individual gene prediction accuracy in ER status of different microarray datasets

Table-2

Gene Mean accuracy in NK| dataset Mean accuracy in GSE2990
AURKA 83.9% 69.1%
TTK 77.5% 74.7%
CENPE 76.9% 69.0%
CCNB2 75.0% 73.4%
CCNA2 73.4% 75.1%
BIRC5 72.9% 68.6%
TACC3 72.8% 70.5%
CENPF 72.7% 72.9%
KIF4A 72.5% 70.4%
HMMR 72.0% 67.0%
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Table-3

Common genes between cluster 2 and other breast carcinoma gene signature sets:

Reference

Genesalso found in cluster 2

Martin, et al. [14]
Sotiriou, et al. [15]

Dai, et al. [19]
lvshina, et al. [16]
Van ‘t veer, et al. [10]

AURKA, ASPM, CEP55, TRIP13, CKS2, RRM2

CDC2, CDC20, CCNB2, CCNA2, BUB1, MELK, BIRC5, ASPM, CDC45L, CDCAS8, CENPE, CENPF, CHEK1,
AURKA, SCKS2, DKFZp762E1312,DLG7, KIF14, KIF20A, TPX2, HMMR, LMNB1, MAD2L1, RRM2, TACC3,
SPAGS, TRIP13, TTK, UBE2C

BIRC5, DKFZp762E1312, CCNB2, CDC45L, BUB1, MAD2L1, AURKA
MELK, TPX2, TTK, CDCAS8, CENPE, AURKA
MELK
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