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Abstract

A self-organizing neural network model for locus-addressable
associative memory, and binary pattern recognition is presented.
The net may be wused for either auto-associative or hetero-
associative tasks. Locus-addressability is suggested as a
possible mechanism for retrieval of memories without any external
cues in the form of partial or corrupted exemplar patterns. The
architecture, which employs competitive dynamics, embodies a
parallel search scheme which updates itself adaptively as the
learning progresses. A thresholding mechanism ensures the
learning of new exemplars. On saturation of the memory capacity,
the net thereafter responds to new patterns by recalling
exemplars in its memory that are nearest to the presented input
in Hamming distance. The stability-plasticity problem is overcome
by ‘'fast learning' and irreversibility of connection-weight
changes. This architecture overcomes the orthogonality and linear
independence constraints that limit other models.

1. Introduction

Models for associative memory [1, 23 by and large,
presuppose the distributed (holographic) and superposed nature of
memories, and recall of memories in these models relies on the
presentation of some unique fraction of the stored pattern. It is
conceivable that in the brain, regeneration of activity patterns
corresponding to different memories is possible by excitation of
specific cells or cell groups. The absence of damage tolerance
has generally been held to be a major objection to
locus-addressable memory. However it is possible to conceive of
locus-addressability while preserving damage tolerance, if
redundancy of information storage IS presumed.

In this paper, a neural network for locus-addressable
associative memory, and pattern recognition is proposed with an
algorithm for learning and storing binary patterns. V& presume
the existence of cells whose responses are pattern-specific and
demonstrate that a self-organizing network containing such
pattern-specific cells can be configured as a content-addresable
memory or as a pattern classifier.

2. Design Principles

For the purpose of defining a net for Jlocus-addressable
memory, the problem of memory is here phrased as the problem of
'memorising' a neuron's receptive field (i.e., neurons from which
it receives inputs) and projection field (neurons to which it
sends its output) at any given time. During the exposure to a
given pattern a neuron fixes or 'memorises’ iIts receptive and
projection fields, and retains this 'memory’ for an extended
period of time. Thereafter, the neuron becomes insensitive to the
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firing of neurons outside its receptive field, and also incapable
of causing the firing of neurons outside 1its projection field.
Such a neuron becomes a pattern-specific locus which on
excitation by even non-specific excitatory stimuli, will
regenerate the pattern of activity corresponding to its memory in
its projection field. This memorising of fields is achieved here
by using specific formulations of synaptic strength alteration
rules. Though these do not pretend to be biologically realistic,
the synaptic changes depend only on local wvariables and are
activity related.

3. Architecture of the net

The net comprises of four layers: i) an input layer of N
units, ii) a thresholding layer of M units, 1ii) a competitive
layer (M units) and iv) an output layer (N units). The behaviour
of the neurons in the four layers 1is controlled by three
‘nuclei’, I, G, and S which receive their input from one or more
layers and feed their output back to one of the layers.

Connections from input layer
(in autoassociative mode )

- -
— OD b }Output layer

Competitive layer with
lateral inhibition

-5
To G ! '] k::@@ }Thresholding layer
LT sS4
_ - -, gain f:ontrol
::1_ ol OA ) nucleous }lnput layer
______________ -

Fig. 1. Net Architecture for 4-bit input patterns & a memory
capacity of two patterns. *—— * denotes excitatory connections
and ®==== nhibitory connections.

The input units are denoted by «, 3, y,...; units in the
thresholding layer 1", 3, k' ,...; units in the competitive layer
i, 3, k, ... and units in the output layer A, B, C wetc. The

initial thresholds of all units are assigned a value, 0. The
weights of all synaptic connections between the competitive and
the output layver are initially assigned a value, 0. The weights
between the input layer and the thresholding layer, are picked
randomly so that O < IR < 1 (see figure. 1). There are forward

connections of constant value +1 from the cells in the
thresholding layer to the corresponding cells in the <competitive
layer.
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If ¢ =108, .%; , %, ,..], abinary vector of N bits s
presented to the input layer at any given time, then the neurons

&, 3, y , ... in this layer assume these values as their outputs
so that V = {‘
The threshold of awunit 3* in the thresholding layer is
denoted as TJ . The net input ¢’3' and the output Vj, are given by
: (zv,)
¢., = Zw., v + oV - 0 Vv (1)
J o=y 9 ¢ k=1 X
k#*j
VJ'I - ¢Ji if ¢jp > TJI
= 0 otherwise (2)
where ¢ = Wi is a fixed quantity for all units j* and & =
We is a constant of the order of N.
37 <k
The one to one connections from the wunits j', in the
thresholding layer to the units § in the competitive layer have
fixed value of +1.The thresholds for all the cells j, in the
competitive layer are zero and j obeys the equation
¢5 = ol - Vp Yy, +Vj-u(k2_IVJ-8VS (3)
. k#J
Vj = ¢J. if ¢. >0
= 0 otherwise (4)

where é(x) = 1 1f x > 0, and @ (x) = O if x £ 0. The strength of
the lateral inhibition between the wunits in the competitive
layer, denoted by #, has a value less than 1/(M-1) (see appendix
A). The constant & corresponds to the strength of the connection

Wj S and is assumed to be greater than N.
In the auto-associative mode, the input layer neurons «, f3,
, .. are presumed to send one to one connections of value +1,
to corresponding neurons A, B, C .. in the output layer. The net
input, and the output of unit A are defined by;
|
¢y = jfl Magg V5t Va & Vy = 8 (o) (5)
Nucleous | ‘gates’ input to the Competitive layer by

pre-synaptic inhibition. This wunit receives 1Input connections

from the units j in the competitive layer. All I e +1. It
obeys the equation;
M
¢ = ]_?-21 1 e VJ. & Vi = ¢ if ¢ >0
= 0 otherwise (6)
The synaptic link from the unit | to the wunit G 1is an

inhibitory one with strength, » : » > N. m is a constant weight

L with a value just greater than 1. The constant weights W a
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have a value of £, 0 < ¢ << 1. The behaviour of G (gain
controlling cell) is governed by;

\)
¢G - & Afl A + n VG - n VI - & VS (7
VG = ¢G i f ¢G >0
= 0 otherwise (8)

In the absence of any activity in the competitive layer on
presentation of an input, (as might happen when saturation of
memory occurs and no response s evoked In the thresholding layer
by an input) there is no inhibition of G due to I. Since m > ,
the output of G progressively rises thereby Ilowering the
effective threshold of cells in the thresholding layer. Thus G
acts as an automatic gain control unit. This ensures that input
patterns always cause recall of exemplars nearest to them in
Hamming distance.

Nucleous S renders all neurons which have positive feedback
inactive, when the input pattern is removed. This unit receives
inputs from all cells in the output layer which are coupled to S
via excitatory synapses, Ha (A and also inhibitory connections,

Wg o 10 S from nodes in the input layer. (The weights of the

inhibitory synapses are presumed to be greater than the weights
of the excitatory synapses, i.e. Mg ep < |ws+o<| for all A's and

«x's), These are constants.

N N

- ¥
57 g Vy t T Ve b Vg
A=1 -

¢s i f cbs >0
0O otherwise (9)

3.1. Learning Rules

A binary pattern to be stored is clamped on to the input
layer till learning is completed. Lateral inhibitory interactions
result in the survival of the unit with maximum initial output in
the competitive layer. The weights are adapted according to the
following rules.
For Receptive field

AWy = O L - Wy ) OWsL ) -if &(vy,) = land V. =1
= - 1"'"’3"«0()9(1'"3“«-«)”( G(Vj,)l:llandv, = 0
= 0 if e(v.,) =0 (10)

(Recall that (x> = 1if x > 0, and & (x) @ 0 If x = 0).
For Projection field :

A“A«-j = (1 wAej ) s(wAﬂ. + M) if e(Vj) = 1 and VA =1
= - ( 1+WA<~J' )B(I—WAQ.) if G(Vj)zland VA=0
=0 if 6(Vj) =0 (11)

Here , # is a small positive quantity : g << 1.
Learning of thresholds :
We define, Z = (y ¢j' - Té,) where ¥ IS a positive constant, < 1.

Then ATJ.. =z 8(2).
Since the value of 4’3" at the first presentation of an input

I - 902



pattern is bound to be less than what it would be on a later
presentation (due to adaptive weight changes), one would expect
the threshold value to stabilize only on a second presentation of
the pattern. This can be avoided if updating thresholds 1is done
an iteration after updating the receptive field weights.

4.Self-organization and Pattern Learning

The learning rules presented above ensure ‘'fast learning'
(learn with a single presentation) and the irreversibility of
weight changes ensures stability of learnt patterns. The
thresholding mechanism of the pattern-specific cells forces the
learning of new patterns by uncommitted nodes owing to the fact
that the activation of any of the previously commited nodes is
prevented unless the presented pattern is close enough to the
corresponding exemplar. The refinement in the discrimination of
the learning of patterns 1is determined by the value of the
constant y

In the 'fast learning' mode discussed above, it is presumed
that the first pattern learnt by each node is taken to be Iits
exemplar. An alternate learning strategy would be to use the same
learning rules with a multiplicative factor I/n (where n is some
large number) introduced into the learning rules. The wuse of
these fractional weight changes would prevent the weights from
reaching irreversible values on a single exposure to a pattern.
Thus the net when presented with a series of noisy or corrupted
versions of the same pattern, may be expected to form a
permanent, stable memory of the features they share.

5 Simulation results

In simulations of this net using 20-bit input patterns along
with an equal number of pattern-specific cells, the net was able
to learn all twenty presented patterns in a single training
cycle. The value of ¥ was assumed to be 0.8. The average number
of iterations required for convergence during learning was 19. In
recall of stored memories the net was found to tolerate upto 40%
random noise and the convergence was much faster. The ability of
the net to learn and store closely correlated patterns as
differnt entities was verified in a simulation in which each of
15 pattern-specific cells learnt its exemplar when the net was
presented with 10-bit input patterns. In this case ¥ was taken to
be 0.9. Random noise of upto 20% was tolerated. In all
simulations, during recall, the gain control mechanism was
observed to effectively increase the noise tolerance of the net
once saturation of memory capacity occurred.

6. Discussion and Conclusion

Unlike perceptrons, and models based on Backpropagation C31
exemplars are learnt by this net in a single training cycle. The
net is capable of continuous learning till saturation of its
memory capacity occurs. In its ability to self-organize, and in
the competitive nature of learning it is comparable to the
adaptive-resonance models of Carpenter and Grossberg [4]. Damage
tolerance of memories can be incorporated if we presume the
lateral inhibitory interactions to be short-ranged. This would
cause more than a single neuron present outside mutual inhibitory
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range to survive lateral inhibition thereby memorising the same
pattern. Though wasteful of neural hardware, this kind of
redundancy is biologically conceivable. Another feature of the
net is that it may be wused for hetero-associative tasks by
clamping desired outputs at the output layer while the connection
weights are being adapted. In this mode it would be possible for
the net to be ‘'taught' categories, i.es., sets of dissimilar
patterns which are to be considered elements of some larger
category. The gain control mechanism which becomes effective once
saturation of the memory capacity occurs, ensures that the net
always responds to a given input irrespective of whether it meets
the threshold criteria or not, by recalling the exemplar nearest
to the initialization [e.f. 5]. This net has a capacity which
scales up satisfactorily with increase in the number of cells in
the competitive layer. The network presents a possible way of
simultaneously incorporating both self-organization and stability
of memories.

The locus-addressability of memories suggests interesting
potential applications of the net in cognitive modelling. One of
these, of current interest to us is the recognition of temporal
sequences of inputs and incorporation of context-dependency in
the recall of memories, by using a secondary 'association' net.

Appendix A

The requirement for = to be less than 1/(M-1) can be seen
from the following; For a unit j with the maximum initial output,
the value of ¢>J. is obtained from (3). Since V.= 0, (3) reduces to

S
M
. = V. - x IV , when | becomes active
b 3 _. Kk
k=1
kj M
If ¢, is to remain positive then V, > 2% V (12)
] ] k=1 K
k#j

Replacing R.H.S by = (M-1) kahere Vk is mean response of unit k
we see that = < (VJ. / Vk Yy ¥ (1 / (M-1)). Since V‘j > Vk , » <
1/ (M-1) satisfies the equation (12).
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