Reprinted from

Proceedings of IJCNN Internationa Joint Conference on Neurd Networks,
San Diego (CA-USA) pp 11-623- 11-630 June 1990

Multi-layer Perceptrons with Discrete Weights
M. Marches, G. Orlandi(*), F. Piazza, L. Pollonara, A. Undni,

Dipartimento di Elettronica e Automatica - University of Ancona
Via Brecce Bianche, 60131 Ancona-ltaly.
Fax:+39 (071) 2204464 - email: aurel @eealab.unian.it - Internet: http://nnsp.eealab.unian.it/

(*) Dipartimento INFOCOM - University of Rome “ La Sapienza”
Via Eudossiana 18, 00184 Rome — Italy.




MULTI-LAYER PERCEPTRONS WITH DISCRETE WEIGHTS
M. Marchesi, G. Orlandi*, F. Piazza, L. Pollonara, A. Uncini

Dipartimento di Elettronica e Automatica - Universita di Ancona
via Brecce Bianche - 60131 Ancona, Italy

* Dipartimento INFOCOM - Universita di Roma "La Sapienza"
via Eudossiana, 18 - 00183 Roma, Ital
y

ABSTRACT

Digital VLSI neural networks are currently very promising for implementing high performance
versions of such networks. In such digital circuits the multiply phase of neuron activity is crucial
for yielding high performance. This paper studies the feasibility of restricting the weight values in
multi-layer perceptrons to powers-of-two or sums of powers-of-two. Multipliers could be thus
substituted by shifters and adders on digital hardware, saving both time and chip area, under the
assumption that the neuron activation function is computed through a look-up table (LUT), and that
a LUT may be shared among many neurons.

A learning procedure based on back-propagation to obtain a neural network with such discrete
weights is presented. This learning procedure requires full real arithmetic and therefore must be
performed off-line. It starts from a multi-layer perceptron with continuous weights learned using
back-propagation. Then a weight normalization is made to ensure that the whole shifting dynamics
is used and to maximize the match between continuous and discrete weights of neurons sharing the
same LUT. Finally, a discrete version of BP algorithm, with automatic learning rate control is
applied up to convergence. Some test runs on a simple pattern recognition problem show the
feasibility of the approach.

INTRODUCTION

Neural networks are becoming increasingly used in many areas of signal and image processing,
owing to their intrinsic parallelism their ability to learn by examples and their fault tolerance [1,2].
The main approaches to their hardware implementation are analog, mixed analog-digital and fully
digital VLSI circuits.

Limiting our attention to digital architectures, one can easily realize that one of their bigger imple-
mentation problems, regarding performance and chip area, is related to the multiply phase of the
neuron activity. In almost every neural model, in fact, the elementary processor (neuron) computes
a weighted sum of its inputs and then applies on it a nonlinear activation function. In a digital im-
plementation weights are stored and recalled easily in a local memory and the activation function
can as well be easily computed through look-up tables. Sums are performed quickly and require a
limited amount of hardware. The bottleneck are the multiplications between inputs and weights:
they are slow compared to other operations and multipliers require a lot of chip area, especially if
they operate in parallel.

This work has been supported in part by Consiglio Nazionale delle Ricerche of Italy and in part by Ministero della
Pubblica Istruzione of Italy.

II - 623



A possible solution of this problem was already exploited in digital filter design: it consists on us-
ing weights that are powers-of-two, or sums of powers-of-two terms [3,4]. In this way, it is pos-
sible to substitute multiplications with simple shifts or shift-and-add operations, that are much
quicker and require less hardware.

In this paper we both discuss the feasibility of this approach also for multi-layer neural networks
with binary outputs and present a learning procedure based on back-propagation (BP) [5] to obtain
a neural network with discrete weights. It is worth noting that the learning procedure requires full
real arithmetic and therefore must be performed off-line. Once the weights are computed for a spe-
cific problem, they can be loaded into the multi-layer neural network that will be run in forward
mode, processing the data.

MULTI-LAYER PERCEPTRON

Our work focuses on the so called Multi-Layer Perceptron (MLP), schematically shown in Fig. 1,
a neural network model widely studied and used. In the MLP, the neurons are grouped in sequen-
tially connected layers, each layer being numbered from O to N. The number of neurons belonging
to each layer is N.and neurons belonging to layer s are numbered in sequence, from 1 to Ny. Each

neuron is connected to all the neurons of the two adjacent layers, and to no other neuron. The neu-
rons of layer O (input layer) do not perform computations, but only feed input signals into the
neurons of layer 1. Layer N is the output layer, where the response of the network come from.
Each neuron of MLP is characterized by one output and many inputs, which are the outputs of the

neurons of the preceding layer. Let netk(s) denote the value of k-th neuron of s-th layer. The
weighted sum of the inputs is computed by neurons according to the formula:
N s-1
netk(s) = Z wa(S) Oj(s_l) + 13k(s) (1)
=1

where ij(s) is the weight by which the same neuron multiplies the output, oj(s'l), of the j-th

neuron of the previous layer and 9 (S) is the offset of k-th neuron of s-th layer. The neuron output

is computed by applying a non linear, bounded function f (often the sigmoid function), to the
weighted sum of its inputs:

0¥ = fnet, ®) @

When processing data, N input signals are fed into the network by input neurons and for each

layer the outputs are computed and fed into the neurons of the next layer, up to the last one, ac-
cordingly to equations (1) and (2). The weights are kept constant and their values are precisely
what determines the network behavior and its capability to correctly process the signals.

The Back Propagation, is one of the most widely used algorithms in MLP networks to train the
network, i.e. to compute the values of the weights in order to obtain a required network behavior.
A network behavior consists of a set of input/output pairs, each composed by N, input signals iy

k=1, ..., NO), and Ny corresponding output signals dj (=1,...,Nyp)- These pairs are the desired
behavior of the system.

II - 624



In a fast digital implementation, the activation function f(.) is computed through a look-up table
(LUT) contained in every processing element (PE). Depending on the granularity of the neural
network, i.e. on the number of neurons that are assigned to each PE, and on the way neurons are
assigned to PE's, we may consider different cases:

a) adistinct LUT for every neuron;

b) aLUT common to all neurons of each layer;

¢) a LUT common to all neurons of some vertical "slice" of the MLP;
d) aLUT common to the whole neural network.

Figs. 2a-2d graphically show the four possible assignments of MLP neurons to PE's and thus

possible LUT assignments. Cases "a" and "d" are straightforward, while cases "b" and "c" are de-

rived from architectures implementing MLP found in literature [6,7].

LUT assignment to neurons is important because each LUT allows a distinct rescaling of all the
weights of the neurons using that LUT, and rescaling is a crucial step in the proposed learning al-
gorithm (see step 2 of learning algorithm in the next section). A neural network has more degrees
of freedom with a greater number of LUT's, making faster convergence in learning, as test cases
presented in next sections will show. Of course, different assignments of neurons to PE's can be
found, but the presented learning algorithm can be easily adapted to deal with any possible assign-
ment.

THE LEARNING ALGORITHM

The proposed leamning procedure works for weights that are simple powers-of-two or sums of two
(or more) powers-of-two. Let us denote with Wyq the set of admissible weights values:

M

R, 2Pk, xI<l; Ree {-1,0,1), pe (0,1,..N} } (3)

WM,N={XI x= )
k=1

where M is the number of powers-of-two terms and N is the number of bits that can be shifted.

This definition implies that the weights absolute value must be < 1. The offsets ¥'s are real num-
bers, since they are involved only in sums.

Briefly, the learning procedure consists of the following steps:

1. Make the network learn using the classical BP algorithm, until convergence. Let {ij(s)'

j=1,...Ng_1}, and ﬂk(s) be the weights and offset associated to k-th neuron of layer s after
convergence.

2. Normalize weights: for the neurons referring to h-th LUT, compute the maximum weight (in
absolute value):

Wi, = max { Iwkj(s)l ). 4

II - 625



where k and s are restricted to span only on neurons using h-th LUT to compute f(.). Divide
all these weights and offsets by Wy,. In this way, all new weights w'kj(s) will belong to the
interval [-1, 1].

3. For k and s restricted to span only on neurons using h-th LUT, we define the scalar function
Ep(A):

Ns-l

By(A) =), 21; E(w'kj(s) - Alewy; ) A>)2 (5)
N J=

where the operator <.> denotes rounding to the nearest term belonging to 'WNLN.and Aisa
suitable scaling factor. Note that E;,(A) is a measure of the matching between real weights and
their rounded approximations belonging to W MN" Following the same approach proposed
in [8] for FIR filters design, Ej,(A) is minimized in the interval [0.1, 5] and new weights and
offsets are computed for the value Ay, that minimizes Ey (A):

w"kj(s) =< Ah W'kj(s) > (6a)

9" 8) = AL 9, (S) (6b)

According to this normalization, the domain of the activation function f(.) is properly scaled to
yield values corresponding to the non-normalized case.

4. Check the behavior of the neural network having the new weights and offsets w"kj(s) and

ﬁ"k(s). If the outputs of the network must be binary, as it is usually the case, the network real

outputs are considered to be zero if < 0.4, and to be one if > 0.6. If the new network still
performs the desired mapping between inputs and outputs, the design procedure ends. Oth-
erwise, the following steps are performed.

5. Starting from the network having weights and offsets w"k-(s) and ﬁ"k(s), perform a BP step,
adding the contribution of all input-output pairs belonging to the learning set, and compute for
every neuron the quantities 8k(5) and Ak(s):

5k(S) = zp 5pk(S) (72)
Ak(S) = zp apk(S) opk(S) (7b)

where p refers to p-th input-output pair of the learning set, while Opk(s) is the corresponding

output of k-th neuron of layer s and Sk(s) has been defined in [5] and is associated to.k-th
neuron of layer s.

6. Change the weights and offsets according to the formulae:

II - 626



WO = <wi O + 140> (8a)
ﬁ"k(S)(t+1) =9" (@) + 1 Sk(s) : (8b)

If no term is significantly changed after application of (8), 1} should be increased. After the
computation of the new values, go to step 4.

If convergence cannot be achieved, the network topology should be changed adding layers and/or
neurons to the existing structure and repeating the whole learning procedure.

RESULTS AND CONCLUSIONS

We report preliminary results concerning a simple pattern recognition problem used as test case. It
consists in recognizing ten input patterns representing the ten digits encoded in 8x8 pixel matrices
according to the PC CGA graphic character set. The neural network has 64 inputs, 8 intermediate
neurons and 4 output neurons (required to output a binary representation of every input digit). In
this problem, input and output values are binary. As BP needs a continuous neuron activation
function (in our case the sigmoid function), input and output values of the training set are equal to
0.1 and to 0.9 in correspondance of the binary zero and one, respectively.

The problem deals only with the case M = 1, that is simple powers-of-two weights (this is also the
best situation for hardware implementation). The values of N, however, are varied from 8 to zero
in the tests performed. The N=0 case means that only the values of {-1, 0, +1} are allowed for the
weights, thus eliminating also the shift.

We made test runs for each LUT assignment to neurons, as reported in Fig. 2. In the case of Fig.
2¢ we considered four vertical "slices”, each with one output neuron, 2 intermediate neurons and
16 inputs. The error measure is the maximum difference (in absolute value) between computed and
desired outputs for each pair of the training set. The continuous BP learning of step 1 has been the
same for all test cases: it took about 400 iterations to converge and resulted in an error of 0.094.
The discrete learning was stopped when the error became lower than 0.3. The results of the test
runs for each different LUT assignment are reported in Tables I and II. The proposed algorithm
was able to find a solution in all test cases but those having weights that can only assume values of
{-1, 0, 1}. In some test cases having high values of N the network with discrete weights con-
verges after step 3, without further learning. As the maximum number of bits that can be shifted,
N, decreases, the number of iterations needed to find a solution increases, with few exceptions.
This is due to the fact that for low values of N, the weights are very coarse and the overall problem
is more difficult than for higher values of N.

The number of iterations to reach convergence of another test case is presented in Table III. It re-
gards a MLP of 64-64-4 neurons, trained with the same 10 input patterns of the previous example.
Only the most significant cases, those with N =1 and N = 0, are presented. Two runs are reported

for every value of N, corresponding to different starting values of the learning rate 1. Convergence
is always achieved, at an higher computational cost for N = 0.

Presently, work is carried on considering harder test cases, enhancing the learning rate control
strategy and studying the possibility of having the neuron outputs and not the weights as sums of
powers-of-two. We are also studying modifications to other neural network models to avoid
multiplications both during data processing and learning, thus increasing the speed and the inte-
grability of such models.

M - 627



(1]
(2]
3]
(4]
(5]
(6]

REFERENCES

D.E. Rumelhart and J.L. McClelland, "Parallel Distributed Processing”, Vol. I, The MIT
Press, Cambridge, USA, 1986.

R.P. Lippman, "An Introduction to Computing with Neural ths" IEEE ASSP Magazine,
April 1987, pp. 4-22.

Y.C. Lim, SR. Parker, "FIR Filters Design Over a Discrete Powers-of-two Coefficients
Space”, IEEE Trans. ASSP,, vol. ASSP-31, 1983, pp. 583-591.

Y.C. Lim, B. Liu, "Design of Cascade Form FIR Filters with Discrete Valued Coefficients",
IEEE Trans. ASSP, vol. ASSP-36, 1988, pp.1735-1739.

D.E. Rumelhart, G.E. Hinton and R.J. Williams, "Learning Internal Representations by Error
Propagation”, in [1].

F. Piazza, M. Marchesi, G. Orlandi, A. Uncini, "An Efficient Mapping of Neural Networks
to a Linear Architecture of Coarse-Grained Processors", Proc. IEEE ISCAS '90, New
Orleans, May 1990 (this issue).

[7] S.Y. Kung and J.N. Hwang, "Parallel Architectures for Artificial neural Nets", Proc. IEEE

(8]

Int. Conf. on Neural Networks, San Diego, California, 1988, pp. II-165 - II-172.
Q. Zhao, Y. Tadokoro, "A Simple Design of FIR Filters with Powers-of-two Coefficients",
IEEE Trans. CAS, vol CAS-35, 1988, pp. 566-570.

Table I. The value of the maximum error after normalization

Value of N
LUT assignment 8 4 1 0
Single neuron 0.17 0.16 0.44 0.50
Single layer 0.21 0.18 0.57 0.54
Vertical "slice" 0.32 0.31 0.54 0.67
‘Whole network 0.42 0.20 0.46 0.71

Table I1. Number of iterations to converge to an error <0.3

Value of N
LUT assignment 8 4 1 0
Single neuron 0 0 42 2438
Single layer 0 0 91 NO
Vertical "slice" 5 4 35 NO
Whole network 8 0 38 NO

II - 628



Table I1l. Number of iterations to converge to an error < 0.3

Nstart = 0-1 Nstare = 20
LUT assignment N=1 N=0 N=1 N=0
Single neuron 67 91 16 41
Single layer 62 107 8 51
Vertical "slice" 64 120 10 35
Whole network 65 199 27 66
OUTPUTS
3
2 o
[¢}]
>
«
-
1
0

INPUTS

Fig. 1. The Multi Layer Perceptron.

II - 629



Scope of a

S

(d)

Fig. 2. Possible assignments of MLP neurons to look-up tables.

11 - 630



