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Abstract

A feed-forward multilayer neural net is trained to learn
the correspondence between seismic data and well logs.
Theintroduction of avirtual input layer, connected to the
nominal input layer through a specia nonlinear transfer
function, enables ultrafast (single iteration), near-optimal
training of the net using numerica agebraic techniques.
A unique computer code, named DeepNet, has been
developed, that has achieved, in actua field
demonstrations, results unattainable to date with industry
standard tools.

1. Background and purpose

The ability to accurately predict the location of remaining
oil in the neighborhood of existing production wells is of
vital economic importance to the petroleum industry. For
practica purposes, one typicaly targets volumes of fluid
10 meters thick and 200 meters in lateral extent at a
distance of 200 meters from each well, requiring a
resolution accuracy of 5% in terms of the distance from
the observation well.  Available oilfield information
incorporates many datasets with different scales,
uncertainties, sample volumes, and relevance. Well logs
(e.g., porosity, gamma ray response, and resistivity)
provide the most accurate possible sensor-based
characterization of the geologica formations encountered
along the path of a well [1]. On the other hand, low-
resolution seismic dam are generally used to conduct
large-scale field assessments [2]. The specific focus of the
research we report in this paper was to develop a
methodology that would enable fast and accurate
prediction of well pseudo logs from seismic data across
anentireail field.

2. Network Architecture

We consider a generalized multilayer feed-forward neural
network. In general, the nodes (neurons) are organized in
layers, namely: (i) input, (ii) (one or severa) hidden, and
(iii) output. Each layer I contains N; nodes. In addition to
these traditiona layers, we introduce a virtual input layer
between the input layer and the (first) hidden layer. The

virtual input layer allows for a specific type of
preprocessing of the input vectors. The associated
computations between the actual and virtud input layers
differ from the usua inter-layer neura network
computations.
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Figure 1: Neural net with virtual input layer

To simplify the description, and without loss of
generdity, we discuss a network architecture having Ny =
| input nodes, Ny =V virtual input nodes, one hidden layer
with N> = H nodes, and N5 = 0 output nodes. The goal in
the learning process is to determine the synaptic
interconnection matrices (Wvy , Wyo}. This will be
achieved by minimizing (some norm of) the difference
between the output values calculated by the net and the
target outputs. In our approach, we decouple the
nonlinearities of the transfer functions at each layer from
the linear interlayer pattern propagation. This paradigm
follows the seminal observations of Biegler-Koénig and
Barman {3], and Tam and Chow [4]. The essence of their
approach was to minimize, solving a sequence of least
squares problems, the learning error on each layer
separately, rather than globally for the entire network.
Since for most practical applications the number of
training examples exceeds the dimensionality of the
training patterns, approximate results are typicaly




obtained. Our proposed algorithm, on the other hand,
implements a sequence of alternating direction singular
vaue decompositions (SVD), on a network architecture
having a monotonically decreasing number of nodesin
successive layers. We modify the traditional neura
network architecture by introducing a virtual input layer
connected to the input nodes through a nonlinear transfer
function. The virtual layer acts as a preprocessor of the
input vectors, and replaces a highly over-determined
linear system with a uniquely solvable one.

3. Network Training

The learning algorithm begins at the output layer. A full
iteration consists of a backward pattern propagation to the
virtual layer, followed by a forward sweep back to the
output layer. Our notation is as follows. A bar indicates a
quantity calculated by the network (as opposed to a
“target” or initialized quantity); a superscript f denotes a
forward calculation. Each node implements a nonlinear
transfer function ¢ : R—(0,1), typicaly a sigmoid. Since
@ is bijective, the inverse ¢ " is well defined. The K
seismic signatures used for training are stored as rows of
matrices; the number of columns of each matrix equals
the number of nodes of the corresponding processing
layer. For convenience, the matrix dimensions are
explicitly indicated as subscripts. The following two
equations relate the presynaptic inputs T to the
postsynaptic outputs S at the output layer.

Tko = ¢ (Sko ) )]

Txo= S xa WHO + bg vo. @

In Eq. (2) by isa column vector of constant biases, and vo
isarow vector of bias weights.

The first phase of the learning algorithm minimizes
[Ty — Tyo || b sOlVing the system

(Txo-bx ¥o)= S x Wio 3)

for Sxy. Here, Txo is known, and Wye and v, are
assumed randomly initialized. We compute Sgy using an
SVD of Wye from the right. When Wy, is a nonsingular
sguare matrix, this step reduces to inverting Weo.

Typicaly we need to modify the caculated solution S g,
sincein the forward cal culations the corresponding entries
are output values of the sigmoid function ¢, with range
(0,1). Some of the calculated values of Sz may be
outside the range of ¢@. Thus, we need to find an
invertible renormalization matrix I" with the property that

[Siulbgl =[Sklbg] T. @)

S xu has values in the range of ¢, while preserving the
final column bg.

We use S xu O determine T KH ép (S g ). If more
than one hidden layer is used, one minimizes

— ~T,, || @ above for each hidden layer ¢ backwards,
until the flrst hidden layer (counting from the input side)
is reached.

When the presynaptic input matrix T g for the (first)
hidden layer has been calculated, we ater the process and
begin a forward sweep, in which the weights are updated.

We observe that T xr and the postsynaptic output S
of the virtual input layer are related by

TKH=—S_KVWVH &)

where T g is known from the backward sweep and S v
is calculated from Sg. Thus, we do not need to compute
§ xv. Rather, we carry out an SVD of §KV from the left
to determine the interconnection weight matrix W, .
Using Eg. (5), we derive a forward estimate of Ty

T =S Wi, (6)

The forward estimate of Sxy IS

Sty =o(TY, )

The augmented weight matrix (obtained by adding a row
vector v to W) between the hidden layer and the output
layer is updated using the inverse of the renormalization
matrix:

W/, =T Wi 8)
Finaly, aforward estimate of Tk is obtained:

TKfo = §£H W}ﬁo’ ®
whichyields

Sio= o(Ti ). (10)

The error is measured as some norm (e.g. L. ) of the
difference between the provided target output pattern
matrix and the corresponding forward estimate:

E= $Ko “§1f<o|| 3Y)

If additional hidden layers are used, each hidden layer
matrix Sy, is renormalized by postmultiplying it by an
appropriate matrix I', asin Eq. (4) during the backward




sweep, and the augmented weight matrix %Mﬂis
updated by premultiplying it by ', ", asin Eq. (8).

4. Renormalization Matrix

The matrix I" scales the backward computation at each

hidden layer (eg., §m) so that its elements are in the
range of ¢ A simple method for scaling is the
transformation s, — a . s; + B, given appropriate

constants a; . The augmented matrix

éKH=[§KHle]

includes a fmal column bk , the e ements of which are

multiplied by the bias weights in W . The scaled
matrix

[SkrIbk] =[Skibg] T

should preserve the last column. For 1 € i < K, the
transformations

(sij—>a-sij+ﬂ,lstH;b,-—>b,-) (12)
can be implemented, for positive values of &, as anonsin-
gular and easily invertible matrix T" [S]. Note that

a. The range (0,1) of ¢ corresponds to domain values
(-e0, o= ). We chose to restrict to the subrange [0.1,
0.91, which corresponds to the finite subdomain
[-In(9),In(9) 1.

b. We use a< 1 to contract the values { s } to fit in an
interval of length < 0.8. If the range of { s; } is less
than 0.8, it is not necessary to expand the range, and
weleta=1.

c. The parameter S represents a shift of the values to tit
within[ 0.1, 0.9 ]. We have selected a and § so that
the average value u for the set { s;} is mapped to 0.5,
the center of the interval [ 0.1, 0.9 ], and the value s;
farthest from u is mapped to either 0.1 or 0.9.

5. Predicted error of learning results

The learning algorithm introduces minimum norm
approximations for two (or more) linear systems, since we
use SVD computations. It iswell known that piecewise
optimization does not in general produce globally optimal
results. However, we can predict near-optimal results for
the learning algorithm if the following three conditions
are met:

(1) The training set does not contain duplicate input
vectors.

(2) The number H of hidden-layer nodes is greater than
the number 0 of output nodes. (If more than one

hidden layer is used, the number of hidden-layer
nodes decreases in successive hidden layers.)

(3) The mapping from the input matrix Sk, to the virtual-
layer matrix S gy produces a nonsingular square
matrix (with V= K).

If condition (1) is not met, then the training set contains
either duplicate copies of the same (input-output) pair, or
contradictory patterns in which the same input is matched
with more than one output pattern. Preprocessing of the
training patterns can be introduced to handle such
situations.

Condition (2) impliesthat me linear system
(Txo-bx Vo) = SKHwHO

is underdetermined (provided that the rows of Wy, are
linearly independent, as is usually the case) and hence the

minimum norm solution for § x should be exact (one of
infinitely - many).

Condition (3) implies that S kv is invertible, and the
singular value decomposition gives the inverse. Thus the
minimum norm solution for W vy should also be exact.

Since the inverse of the transfer function ¢ is known
explicitly, the preceding analysis predicts that, in theory,
the learning agorithm should result in error E = 0 (or as
close to zero as can be expected from repeated finite-
precision ca culations with matrices).

6. Virtual Input Layer

The processing between the input and virtual layersis
specified in a specia way. For a given set of training
vectors, we assume that there exists a particular nonlinear
transfer function y that maps row vectors from the input
pattern matrix Sg to row vectors of the postsynaptic
matrix Sgy output by the virtual layer. The mapping is
direct, and does not involve the separate calculation of the
row vectors of T. The function y is not altered during the
learning process. We have

Skv= WSk ). 13)

Condition (2) above illustrates the critical role of the
virtual input layer. It is common for the number K of
training examples to exceed the number of input nodes 1.
If we attempt to use the training process without the
virtual layer, the linear system Tgy = Sxgr Wyy iS
overdetermined for Wy, and the resulting “best-fit”
solution may be a poor agpproximation.

For example, for the standard XOR function with I = 2
binary inputs and K = 4 training examples, the training
algorithm applied without the virtua input layer would




glveS to =10505 05 05 asan approximation of
the target output vector Sko=[ 0 1 1 0 J"!

In the following, we present a mapping ¥ which always
produces a nonsingular matrix § xy. We first consider the
specia case of input vectors of dimension 1. Let D denote
an upper bound for the maximum distance between two
distinct training input values. For any input v, let y(v) be
the K-dimensional vector whose jth component is

v - s(i)
D

where s(j) is the jth training input vaue, j=1,2,...K. Note
that the jth component of y(s()) is 1.

yv) =1- (14)

Let S kv denote the virtual-layer matrix whose jth row is
w(s(j)). We may assume without loss of generdlity that
the training input values are ordered from smallest to
largest. If not, we can interchange rows of the matrix, two
at atime, and interchange the corresponding two columns.
The net effect on the determinant is multiplication by
(-1)* = 1. Let d(i) denote the distance between s(i) and
s(i+1). We have proven [3] the following theorem:

AP d(’)\ 0. (15)

i=l l—l

de(S xv) = 2""2(

The proof does not require that D be an upper bound for
the maximum distance between distinct training input
vaues.  Such a value simply guarantees that the
determinant is positive; in practice, we only need the
matrix to be nonsingular, and a different value D may be
used, as Iong as

If the input vectors have dimension I > 1, the one-
dimensional procedure above is applied one component at
atime. For each componentm =1, 2, . . . I, construct a

KxK matrix Sg inwhich
Is(z) ~5(j),|
D,
with i, j=1,.. K and m= 1, ... I Here s(i),, denotes the

mth component of the itb training vector s(i) and Dy is
the maximum of 1s(i),,, —s(a loverdli,j=1,....K.

S& 3, j) = 16)

Lets xv be the block diagonal matrix whose m-th block
is given by Eq. (16). The determinant of the full matrix is

det(S i) = l"I [l o %] >0 an
j=t

m=1 m

The block implementation of S gy for I > 1 above
guarantees that the matrix is nonsingular, but increases
the size of me matrix. As an aternative, the mapping
used in the one-dimensional case can be generalized to
higher dimensions by defining the (i,j)th component to be

[S &l = l—w“ Lj=1,.. K, (18)

where D is the maximum distance between input vectors
in the training set. For some training sets, the matrix
S kv obtained by using the transformation (18) may be
singular. However, the SVD method does not require an
invertible matrix. If the linear system is overdetermined,
the SVD will generate a minimum norm approximation.

Currently, we are considering a number of different
virtual-layer transformations for use with this general
approach to neura network training. A different choice
of virtual layer transformation may provide better
representation of the data, yielding better learning results
and/or better ability of the trained neural network to
generalize.

7. Results

To test the proposed methodology, the Pompano field,
located in the Gulf of Mexico, was selected. Pompano is
in deep water and has a significant potential for
compartmentaized oil. The line scale heterogeneity
caused by the channel depositional environment is well
below the resolution of 3D seismic data. The information
available to us included 3D seismic data, well logs, core
samples, ail location and production profiles.

Five seismic variables were provided: the reflected
seismic signal, acoustic impedance (Al), and three
components of the Hilbert transform of the reflected
seismic signal (amplitude, frequency, and phase). Each of
the five datasets had 80 megabytes of data with a spatial
resolution of 4 kmin x and 7 kminy. An x-t plot of the
reflected seismic signa is displayed in Fig. 2. For the
case of normal incidence, the amplitude of the reflected
signal depends on the change in acoustic impedance at the
interface between two materials, where Al is the product
of density and the speed of sound in the material.

The log data is sampled at regular intervals along the
well. In Pompano, most wells are not vertical (of the 17
wells studied here, only three are vertical). The DeepLook
consortium of petroleum companies provided us with the
rate of deviation for each well. We calculated the (x,y,z)
coordinates for each data sample in the log data. The
seismic data has coordinates of (x,y,t), wheret is the two
way travel time. To convert from t to z, we used the
DeepLook smooth estimates of the average velocity [v =
(2 2)/t]. Such estimates are less detailed than the seismic
data.




Figure 2: An x-t cross section of a reflected seismic
signal. Lighter colorsindicate positive data.

The x-y grid spacing is 26.67 m and the vertical spacing is
4 msin two-way travel time. Using the velocity values for
the seismic data, the vertical resolution ranges from
3.66m to 4.09 m. The spacing of the data values for the
well logs s either 0.61 m or 0.76 m for most wells. Thus,
the vertical resolution for the well logs is about a factor of
five greater than the resolution for the seismic data

We have produced integrated datasets for each of the 17
wells in a common format. The integrated datasets
contain 17 variables: the coordinates and two way travel
times, gamma ray, resistivity, the time for sound to travel
a fixed distance, density, porosity, calculated acoustic
impedance, acoustic impedance, reflected seismic signal,
and the three components of the Hilbert transform
(frequency, phase, amplitude).

Whenever we lacked measured values for a log variable,
we substituted average values from the other wells. For
most wells, we had values of True Vertica Depth Sub
Sea (TVDSS), which is the depth below sea level. If the
log file for awell did not have the TVDSS, we calculated
it using the measured distance down the well and the rate
of deviation. The deviation of the wells and the associated
approximation in the time to depth conversion may
contribute to a lower correlation factor between the
estimated and real log measurements. The same is true
when substituting average log valuesin lieu of red log
data.

The learning methodology described in this paper was
programmed into a new computer code named DeepNet.
The code is written in FORTRAN-90 and is implemented
in Microsoft FORTRAN PowerStation 4.0 running under
Windows NT 4.0. Results to date are very encouraging,
both in terms of me exceptiona speed of the learning
process, and the quality of prediction obtained with test
data. For instance, the typical training time using a dataset
of several hundred seismic signatures is of the order of
seconds on a Dell Workstation 610 configured with 2
Pentium |1 Xeon processors operating a 400 MHz. The

training and prediction are illustrated in Figs. 3 and 4. A
Separate net was trained for each log response.
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Figure 3: Almost perfect DeepNet prediction of porosity
log using training set data.
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Figure 4: Almost perfect DeepNet prediction of gamma
ray log using training set data.

It was important to assess the quality of predictions that
can be obtained with DeepNet. The network is initialy
trained using a small subset of the available data:
typicaly, we have used the seismic-to-log correspondence
for one, two, or three wells. DeepNetr was then used to
generate pseudo logs at other wells in the Pompano tield.
For comparison purposes the same pseudo logs were
generated using two state-of-the-art neural network
algorithms (i.e., the nearest neighbor and Nadaraya-
Watson paradigm [6]). The DeepNet results areillustrated
in Figures 5 and 6. The latter results are given in Figures
7 and 8. Pompano well B-10 was used for the prediction
test.
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Figure 5: DeepNet prediction of gamma ray logs for test
dataset.

DespNet Prediction of Well Loge
Pompand Test Set. WelLB10

|
L"'.“: n

g ._JHJW.‘-_ h

|
i :—\_Jl‘i{%‘}. M

1 Hi 101 W 21 3 3T 401 451 SO S5 st &1 701
Sequertel 3 Sompes

N_pradtded 0g Al wel

Figure 6: DeepNer prediction of porosity for test dataset.

8. Conclusions

As evidenced by the tests, our method exhibits an
excellent prediction performance. The DeepNet
methodology will enable the oil exploration and
production industry to gain an unprecedented insight into
fluid types and distributions in reservoirs of interest.
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Figure 7: Prediction of gamma ray log using nearest
neighbor net for test well B-10.
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Figure 8: Prediction of gamma ray log using Nadaraya-
Watson algorithm for test well B-10.
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