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Abstract

This work focuses on improving the Hopfield network
for solving optimization problems. Although much work
has been done in this area, the performance of the Hop-
field network is still not satisfactory in terms of valid
convergence and quality of solutions. We address this
issue in this work by combing a new activation function
(EBA) and a new relazation procedure (CR) in order
to improve the performance of the Hopfield network.
Each of EBA and CR has been individually demon-
strated capable of substantially improving the perfor-
mance. The combined approach has been evaluated thro-
ugh 20,000 simulations based on 200 randomly gen-
erated city distributions of the 10-city traveling sales-
man problem. The result shows that combining the two
methods is able to further improve the performance.
Compared to CR without combining with EBA, the
combined approach increases the percentage of valid tou-
rs by 21.0% and decreases the error rate by 46.4%. As
compared to the original Hopfield method (using nei-
ther EBA nor CR), the combined approach increases
the percentage of valid tours by 245.7% and decreases
the error rate by 64.1%.

Introduction

The work of Hopfield and Tank [1] showed that neu-
ral networks can be applied to solving combinatorial
optimization problems. They suggested that a near-
optimal solution of traveling salesman problem (TSP)
can be obtained by finding a local minimum of an ap-
propriate energy function, which is implemented by a
neural network. For an N-city TSP, the network con-
sists of NV x N neurons and the links that connect these
neurons. The weights are set to encode the information
about the constraints and the cost function of a par-
ticular city distribution of T'SP. Each neuron updates
its input value based on the information received from
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all other neurons. They showed that the neural net-
work can often find a near-optimal solution in a short
time. This network is commonly referred to as the Hop-
field network. The advantages of the Hopfield network
over other heuristic methods for solving combinatorial
optimization problems include massive parallelism and
convenient hardware implementation. Another advan-
tage is that the procedure of the Hopfield network is
more general for applications. There is an ad hoc pro-
cedure for mapping the constraints and cost function
into the weight settings of the network. This general
procedure can be applied to solve many different types
of combinatorial optimization problems.

Since Hopfield and Tank showed that neural computa-
tion can be effective for solving combinatorial optimiza-
tion problems, some work has been done to improve the
performance of the Hopfield network. The research fo-
cuses on analyzing and improving the original model in
order to obtain a higher percentage of valid solutions
and solutions with better quality. The work by Wilson
and Pawley [2] showed that there was some difficulty
getting the Hopfield model to yield valid tours. For ran-
domly generated sets of the 10-city TSP, Wilson and
Pawley reported that only 8% of their trials resulted in
valid tours. After their report, Brandt et al. [3] and
Aiyer et al. [4] showed that better performance can
be achieved by modifying the energy function. Li com-
bined the Hopfield network with the “augmented La-
grange multipliers” algorithm from optimization theory
[5]. Catania et al. applied a fuzzy approach to tune the
parameters in the Hopfield network [6].

Although the performance of the Hopfield network has
been improved over the past decade, this model still
has some basic problems [7, 8]. One of the problems is
that the performance of the Hopfield network is incon-
sistent. The performance is good for some city distribu-
tions of T'SP, but the performance is poor for other city
distributions with the same size. The performance is
usually better for city distributions with simple topolo-
gies but poor for those with complex topologies, where
the solutions are often trapped in poor local minima



or even invalid. Another problem is that the perfor-
mance is sensitive to the choice of the parameters and
initial input values of neurons. Different parameters in
the energy function can lead to significant differences
in the performance. For the same set of parameters,
different settings of random noise in the initial input
values (a small fraction of random noise is necessary to
break the symmetry of the network) can yield solutions
with varying quality or invalid solutions.

In this paper, we study an approach of combining a new
activation function (EBA) and a new relaxation pro-
cedure (C'R) and its effects on the performance of the
Hopfield network. Previous work has shown that EBA
can reduce the effects of noise [9] and C'R can lead to
a smoother relaxation process [10]. Both are capable
of significantly improving the performance in terms of
both valid tours and qualities of tours. This work shows
that the performance can be further improved by com-
bining the two methods. We have conducted a large
number of simulations to evaluate the performance of
the combined approach. Based on the results of 20,000
simulations on 200 randomly generated city distribu-
tions of the 10-city 7'SP, the combined approach can
increase the percentage of valid tours by 21.0% and de-
crease the error rate by 46.4% as compared to C R with-
out combining with EBA. As compared to the original
Hopfield method (without using either CR and EBA),
the combined approach can increase the percentage of
valid tours by 245.7% and decrease the error rate by
64.1%.

Background of Hopfield Network

The Hopfield network [1] includes a set of neurons and
the links that connect the neurons. For an N-city T'SP,
there are N x N fully connected neurons in the net-
work, in which the row index represents the city and
the column index represents the order of the city in the
tour. The weights of the connecting links are deter-
mined by the constraints and the cost function.

The above constraints and the cost can be represented
by an energy function, which is used to determine the
connecting weights between neurons. Hopfield’s origi-
nal energy function for an N-city TSP is given by [1]:
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where X, Y are row indices, and i, j are column indices,
Vx; is the activation for neuron (X,i), and dxy is the
distance between cities X and Y. The first three terms
enforce the constraints for a valid tour, and the last
term represents the cost function for obtaining a short
tour. The value of each parameter (4, B, C, and D)
measures the importance of the corresponding term.

Each neuron (X,%) has an input value Ux; and an ac-
tivation (output) value Vx;. The connecting weight
between neuron (X, ) and (Y, ) is set according to:

WXi,yj = —A(sxy(]. — (51']') — B5ij(1 — 6XY)

—C — Ddxv (0j,i+1 + 0j,i—1) (2)
where d;; is equal to 1 if 7 = j, and equal to 0 otherwise.

Each neuron (X, ) is also connected to an external in-
put current:

Ix; = CN (3)

Before the relaxation of the network, the initial value
of each Ux; is set to be a constant value (determined
by the condition: Egzl Zi\il Vxi = N) and is then
perturbed with a small random noise value to break the
symmetry of the network.

During relaxation, each neuron updates its input and
activation value based on the weighted activations of
other neurons and its own value. Specifically, the value

U(nﬂ) at iteration step (n+1) is given by:

Ugtt = Ug) + AUk, (4)

where U )(("l) is the input value at iteration step (n). The
value of AUx; is given by the following equation:

N N
Ux n)
AUsx: = (— VA .
Uxi= (=254 Y D WxiyiVvs +Ixi) VAL (5)
y=1j=1
where 7(= RC) is the time constant of an RC circuit

and was set to be 1.0 by Hopfield and Tank [1].

The activation V(n+ ) at iteration step (n+1) is then

determined by U(n+1) through an activation (output)
function. In the Hopﬁeld network, the activation func-
tion is the sigmoid function:

(n+1)

n 1 :
Vi = S (1 + tanh( X)) (6)

where ug is the amplification parameter that reflects
the steepness of the activation function.



Hopfield and Tank [1] showed that the network is guar-
anteed to converge to a local minimum in the case of
symmetric (Wx;y; = Wy, x;) connecting weights.

Evidence Based Activation Function

We have analized the effects of the activation function
on the performance of the Hopfield network and found
that the activation function has an important impact
on the performance [9]. The original activation func-
tion, i.e., the sigmoid function given in Eq. (6), is sensi-
tive to random noise in the initial input values of neu-
rons in the network. We proposed a new activation
function — evidence based activation (EBA) function
— which changes its activation significantly only when
substantial positive or negative evidence is summed
into a neuron. EBA has the following form [9]:

Uxi
0.5(1 + tanh(Zxitte))
1+ tanh(%%)

Vxi = (Uxi <0)

Uxi—
tanh(%%) +0.5(1 + tanh(xu—owo))
1+ tanh(%%)

Vx; = (Uxi >0) (7)
Fig. 1 shows the shapes of EBA with different thresh-
old zy compared to the sigmoid function. The steep
part of sigmoid function (curve “A”) is around the re-
gion where Ux; is close to zero, and thus it puts heavy
emphasis on minor noise perturbation instead of the
useful signals related to the constraints and cost en-
coded in the network.
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Figure 1: Comparison of the sigmoid function to the ev-
idence based activation (EBA) with different thresholds

(o).

In contrast, EBA (curve “B” and “C”) has an ad-
justable threshold zy and becomes steep only when the
absolute value of V; is larger than the threshold. Thus
random noise smaller than the threshold will not be

amplified, while useful signals between neurons, which
usually have larger magnitudes than noise, will be am-
plified. This mechanism has the capability of reducing
the effects of noise in the formation of tours.

Simulation on 200 randomly generated city distribu-
tions of the 10-city T'SP has shown that EB A increases
the percentage of valid tours by 38.6% and reduces the
error rate of tour length by 30.6% as compared to the
sigmoid function.

Controlled Relaxation

We have proposed an approach [10] that uses a new
relaxation procedure — controlled relazation (CR) — to
replace the original one. Unlike the original procedure
that first updates the input and then the activation
for each neuron (using Eq. (2) - (6)), CR updates
the activation directly without using the update of the
input as an intermediate step.

For convenience of describing C'R, we can reformulate
Eq. (5) into the form:

Uxi

T

AUx; = (=== + Netx;)™ At (8)

where Net x; is the net input value received by the neu-
ron (X, 7) from other neurons, and can be written as:

N N
Netx; = Z Z WxivyiVyj + Ixi 9)
Y=1;=1

In CR, the activation value V)((ZH) for neuron (X, 1) at
iteration (n + 1) is updated according to:

Ve = v 4 R(Tx - VYY) (10)

where T'x; is the target value for the activation Vx;, and
R(0.0 < R < 1.0) is a relazation rate. Tx; is derived
from Netx; by using the sigmoid function:

Netxiy) (11)

Ug

Tx: = %(1 +tanh(

where uy is the steepness parameter (its role is similar
to that of ug in Eq. (6)).

One major difference between the original and CR is
the following. The original procedure first updates the
input value by Eq. (4), and then updates the activation
value through the sigmoid function given by Eq. (6).
C'R however directly updates the activation value using
Eq. (10) without using the update of the input as an
intermediate step.



Another major difference is that C'R has a relaxation
rate to gain a better control over the relaxation pro-
cess, for which there is no direct analog in the original
procedure.

Simulation on 200 randomly generated city distribu-
tions of the 10-city T'SP has shown that the new relax-
ation procedure increases the percentage of valid tours
by 185.7% and reduces the error rate of tour length by
33.1% as compared to the original procedure.

Combining FBA and CR

In this work, we combine EBA and the CR, and exam-
ine how combining can further improve performance.

The combined approach works as follows. We use ex-
actly the same steps as those in C'R except that we use
EBA, instead of the sigmoid function, as the activa-
tion function. Specifically, the combined approach uses
Eq. (7) as the activation function, rather than Eq. (6).
That is, the combined approach method replaces Eq.
(11) (the sigmoid function) by the following function
(using EBA in Eq. (7)):

0.5(1 + tanh( XX *20y)

Tx; = — (Uxi <0)
1+ tanh(_7)
0
zE) NetXisz)
tanh(=) + 0.5(1 + tanh(——7—L))
Txi = 2 = : (Uxi > 0)
1+ tanh(ﬁ;)
(12)

All the other steps in the combined approach are the
same as those using C'R.

Simulation Results

We have evaluated the performance of combining EBA
and CR through simulations. The evaluation in our
experiment was based on 200 randomly generated 10-
city TSP city distributions, including wide varieties of
topologies.

Many previous studies used only one city distribution
(the one used by Hopfield and Tank in their original
paper [1]) or a small number of city distributions (for
example, 10 city distributions in [2]) in their simula-
tions. This may lead to unreliable conclusions when
comparing two algorithms. The reason is that the per-
formance of an algorithm often depends on the topology
in a city distribution, and different algorithms may fa-
vor different types of topologies. Using a large number
of city distributions can reduce this effect and allow a
better evaluation of the algorithms.

In the simulation, 100 runs are conducted for each of
the 200 city distributions. For each of 100 runs, differ-
ent random noise is added to the initial input values of
the neurons.

For a fixed set of parameters (dt, ug, etc), the quanti-
ties to be evaluated (error rate and percentage of valid
tours) are first averaged over 100 runs for each city dis-
tribution, and then averaged over the entire 200 city
distributions. Thus, 20,000 runs are needed to obtain
each data point that is shown in the figures of the sim-
ulation results.

We experimented with different sets of 20,000 runs for a
fixed set of parameters. The results show that the esti-
mated quantities are fairly stable. Their values vary
within a range of about 1% among different sets of
20,000 runs. This demonstrates that the number of
runs in our simulation is large enough to make a rea-
sonable estimation of the evaluated quantities.

The original energy function of the Hopfield network
is used in the simulation, and the parameters in the
energy function are those used by Hopfield and Tank

[1]:

A=B=D=500, C=200, No=15 (13)
The value of dt in Eq. (5) is set to be 1075, and the
value of ug is fixed at 0.02 for both Eq. (6) and Eq.

(7).

The fraction of random noise in the initial values of neu-
rons is set to be 0.001 in the simulation. We tried sev-
eral different values for the fraction in the range from
0.0001 to 0.01. The performance of the network is only
slightly sensitive to this parameter, and the choice of
0.001 works slightly better than others.

Fig 2 shows the percentage of valid tours obtained by
combining CR and EBA, compared to that using only
CR without EBA, and also compared to that using
neither CR nor EBA. Each data point in the figure
is the weighted average percentage of valid tours over
Ncitypist (= 200) city distributions:

NcityDist .
im1 Valid;

Valid = 2
NCityDist

(14)

where Valid; is the percentage of valid tours for city
distribution i and is defined in the following.

For each city distribution ¢, there are a total of N¢otar,;
(=100) runs with different initial input values. The
maximum number of iterations allowed for each run is
set to be 1000. If a valid tour can not be reached within



1000 iterations, the network will stop and the tour is
counted as invalid.
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Figure 2: The percentage of valid tours obtained by com-
bining the controlled relaxation (CR) and the evidence
based activation (EBA) function (curve “A”), compared
to that using only CR without EBA (curve “B”), and to
that using neither CR nor EBA (curve “C”).

If Nyatid,i is the number of valid tours among the total
of Niotar,; Tuns, then Valid; is defined by:

Norirs
Valid; = ~Xalid:i (15)

The first observation is that the percentage of valid
tours achieved by the combined approach (curve “A”)
is higher than that by only using C'R without combin-
ing EBA (curve “B”) when R < 0.12, and their overall
trends in performance are rather similar. Both are sig-
nificantly better than that of the original network which
uses neither CR nor EBA (curve “C”).

A second observation is that although the combined
approach performs better than the non-combined ap-
proach when R < 0.12, it performs worse when R be-
comes larger. This shows that there is a certain de-
gree of difference in their response to the relaxation
rate R, in addition to a similar overall trend. De-
spite this difference, the combined approach gives sub-
stantial improvement over the non-combined approach
when R < 0.12.

Fig. 3 shows the error rate obtained by combining C'R
and EBA, compared to that using only CR without
EBA, and also compared to that using neither CR nor
EBA. Each data point is averaged over 100 different
runs for each city distribution and then averaged over
the 200 different city distributions as defined in the
following,.

For city distribution i, the error of a valid tour j is
defined by:

dij —dio
ETTZ'J' = ) LOPR Pt (16)

di,opt

where d; ; is the tour length of a valid tour j and d; opt
is the optimal (shortest) tour length of city distribution
1.
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Figure 3: The error rate obtained by combining the con-
trolled relaxation (C'R) and the evidence based activation
(EBA) function (curve “A”), compared to that using only
CR without EBA (curve “B”), and to that using neither
CR nor EBA (curve “C”).

The error for city distribution ¢ is the averaged error
over all valid tours:

Nyatid,i
2jmi Erri
Err; = == @ ].7
’ Nvalid,i ( )

The error shown in Fig. 3 is the average error of valid
tours in all city distributions and is weighted by the
percentage of valid tours for each city distribution:

SoNeiPi (Valid; Err;)
Err = ZNCiinist Valid:
i=1 i

(18)

The results in Fig. 3 shows that all error rates obtained
by the combined approach (curve “A”) are smaller than
those by the non-combined method (curve “B”). Both
have much smaller error rates in overall than those us-
ing neither CR nor EBA (curve “C”).

Thus, the results in Fig. 2 and Fig. 3 demonstrate that
the combined approach performs better than the non-
combined approach in terms of both the percentage of
valid tours and the error rate. We can quantitatively
calculate the improvement at R = 0.06 (approximately
optimal value for both methods) and obtain the follow-
ing result: the combined approach increases the per-
centage of valid tours by 21.0% (77.1% vs 63.7%) and



reduces the error rate by 46.4% (2.17% vs 4.05%) as
compared to the non-combined approach which uses
only C'R without EBA.

Similarly, if it is compared to the original Hopfield
method (without neither CR nor EBA), the combined
approach increases the percentage of valid tours by
245.7% (77.1% vs 22.3%) and reduces the error rate
by 64.1% (2.17% vs 6.05%).

Summary

In this paper, we have studied the effects of combin-
ing EBA and CR on the performance of the Hop-
field network for solving TSP. EBA has the capa-
bility of reducing the effects of noise, and C'R enables a
smoother relaxation process. Both EBA and CR have
been shown previously capable of significantly improv-
ing the performance of the Hopfield network. This work
demonstrates that combining the two methods can fur-
ther improve performance.

The evaluation of the combined approach is based on a
large number of simulations on 200 randomly generated
city distributions of the 10-city TSP. The combined
approach increases the percentage of valid tours by
21.0% and decreases the error rate by 46.4%, compared
to those using only C'R without combining EBA. As
compared to the original Hopfield method (using nei-
ther CR nor EBA), the combined approach increases
the percentage of valid tours by 245.7% and decreases
the error rate by 64.1% (Fig. 1).

In future we plan to extend this research in the follow-
ing directions: (i) evaluate its performance on other
optimization problems in order to better evaluate its
generality; (i) use adaptive relaxation rates to replace
constant relaxation rates in order to achieve a more
optimal relaxation process; (iii) introduce a learning
mechanism to determine the parameters in the net-
work; (iv) experiment with the bipolar version of the
EBA function and evaluate its performance; (v) apply
it into other real-world application domains, in partic-
ular continuous speech recognition.

Acknowledgments

This research is funded in part by a grant from foniz
Corp.

References

[1] Hopfield, J. J. and Tank, D. W.: Neural Computations
of Decisions in Optimization Problems. Biological Cy-
bernetics, vol. 52, pp. 141-152, 1985.

(3]

[4]

[7]

(8]

[9]

[10]

Wilson, G. V. and Pawley, G. S.: On the Stability of
the Traveling Salesman Problem Algorithm of Hopfield
and Tank. Biological Cybernetics, vol. 58, pp. 63-70,
1988.

Brandt, R. D., Wang, Y., Laub, A. J. and Mitra, S. K.:
Alternative Networks for Solving the Traveling Sales-
man Problem and the List-Matching Problem. Pro-
ceedings of IEEE International Conference on Neural
Networks, San Diego, CA. II: 333-340, 1988.

Aiyer, S. V. B., Niranjan, M. and Fallside, F.: A Theo-
retical Investigation into the Performance of the Hop-
field Model. IEEE Transactions on Neural Networks,
vol. 1, no. 2, pp. 204-215, 1990.

Li, S. Z.: Improving Convergence and Solution Qual-
ity of Hopfield-Type Neural Networks with Augmented
Lagrange Multipliers. IEEE Transactions On Neural
Networks, vol. 7, no. 6, pp. 1507-1516, 1996.

Catania, V., Cavalieri, S. and Russo, M.: Tuning Hop-
field Neural Network by a Fuzzy Approach. Proceed-
ings of IEEE International Conference on Neural Net-
works, pp. 1067-1072, 1996.

Cooper, B. S.: Higher Order Neural Networks-Can they
help us Optimise?. Proceedings of the Sixth Australian
Conference on Neural Networks (ACNN’95), pp. 29-32,
1995.

Van den Bout, D. E. and Miller, T. K.: Improving
the Performance of the Hopfield-Tank Neural Network
Through Normalization and Annealing. Biological Cy-
bernetics, vol. 62, pp. 129-139, 1989.

Zeng, X. and Martinez, T. R.: A New Activation Func-
tion in the Hopfield Network for Solving Optimization
Problems. Fourth International Conference on Artifi-
cial Neural Networks and Genetic Algorithms (ICAN-
NGA’99), 1999.

Zeng, X. and Martinez, T. R.: A New Relaxation Pro-
cedure in the Hopfield Network for Solving Optimiza-
tion Problems. To appear in Neural Processing Let-
ters, 1999.



