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Abstract

We study associative memory of an oscillator neural network with distributed

native frequencies. The model is based on the use of the Hebb learning rule

with random patterns (ξµi = ±1), and the distribution function of native fre-

quencies is assumed to be symmetric with respect to its average. Although

the system with an extensive number of stored patterns is not allowed to

get entirely synchronized, long time behaviors of the macroscopic order pa-

rameters describing partial synchronization phenomena can be obtained by

discarding the contribution from the desynchronized part of the system. The

oscillator network is shown to work as associative memory accompanied by

synchronized oscillations. A phase diagram representing properties of memory

retrieval is presented in terms of the parameters characterizing the native fre-

quency distribution. Our analytical calculations based on the self-consistent

signal-to-noise analysis are shown to be in excellent agreement with numerical

simulations, confirming the validity of our theoretical treatment.

I. INTRODUCTION

Most of the theoretical models for associative memory of neural networks as typified
by the Hopfield model [1] have been based on the idea of rate coding, which assumes that
information is coded in the firing rate of a neuron at a particular time. On the other hand,
some experimental results on the visual cortex have been suggesting the possibility of another
scheme of information coding, that is, the concept of temporal coding which assumes that
information is coded in the relative timing of the firing pulses [2].

Stimulated by these experimental findings, studies of the temporal coding are becoming
an active area of theoretical brain researches. Recently, there have been an increasing number
of papers reporting neurophysiological experimental findings of synchronization phenomena
of neurons in animal’s brain [3]. Synchronized firings of neurons can be considered to play
a key role in certain types of information processing such as the binding problem [4].

In order to get insights into basic properties of the scheme of the temporal coding it will
be necessary to study neural network models based on neurons that can be expressed by
such nonlinear oscillators as limit-cycle type and integrate-and-fire type oscillators. Indeed,
a network of integrate-and-fire neurons, where one can be directly concerned with the spike
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timing of neurons, is one of such models and was previously studied [5] to confirm its
functioning as associative memory accompanied by synchronized firings.

The simplest theoretical model of synchronization of coupled oscillators will be the case
of a system of phase oscillators of Kuramoto et al. [6–8], which is derived under the as-
sumption of weak coupling limit for general types of limit-cycle oscillators. In an associative
memory model based on such a system with the Hebb type learning rule, the distribution of
native frequencies will become crucial for the behavior of synchronization or desynchroniza-
tion of the system [6,9–11]. If all of the oscillators have an identical native frequency and the
couplings are symmetric, the network can be reduced, by an appropriate coordinate trans-
formation, to a system that has a Lyapunov function ensuring stability of its equilibrium
state(s), which implies that the network eventually settles into a synchronized state. On
the other hand, in the case when native frequencies are distributed, Lyapunov functions in
general no longer exist except for a particular case [12] and the network becomes essentially
of dynamic nature; one may expect partial synchronization or more complex oscillatory
behavior.

In the present paper, we report results of our detailed analysis of associative memory of
an oscillator neural network model with distributed native frequencies. Whereas oscillator
networks with a Lyapunov function were studied previously by several authors [13,14], sat-
isfactory analysis of the case without a Lyapunov function has been far less conducted [15].

II. ANALYSIS OF THE MODEL

The oscillator network model we consider is described by the following phase evolution
equations [6]:

dφi

dt
= ωi −

∑

j

Jij sin(φi − φj), (i = 1, · · · , N) (1)

where N denotes the total number of neurons, and φi and ωi respectively denote the phase
and the native frequency of i-th neuron. We assume the strength of interactions to be given
according to the Hebb learning rule,

Jij =
1

N

∑

µ

ξµi ξ
µ
j , (2)

where {ξµi } (µ = 1 · · ·p) represents the µ-th stored patterns. We consider the case when the
number of patterns is extensive, p = αN . In order to elucidate the effect of the distribution
of native frequencies on the behavior of synchronization we want to make the model as
simple as possible, and then we assume ξµi to take values ±1 rather than continuous values
with ξµi = exp(iθµi ), (θ

µ
i = [0 : 2π]), which would be more appropriate for the study of

temporal coding itself.
Furthermore, we deal with a simple case where the native frequency distribution p(ω) is

discrete and symmetric with respect to the central frequency ω0: p(ω) =
∑L

k=−LCkδ(ω−ωk),
ωk + ω−k = 2ω0, Ck = C−k ≥ 0,

∑L
k=−LCk = 1. It is noted that without loss of generality

one can set ω0 = 0 as a result of rotational symmetry of the phase evolution equation (1). If
the native frequencies are the same, i.e., ωi ≡ Ω independent of i, all of the oscillators can
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get synchronized with φi(t) = φ0

i + Ωt. In the case of distributed native frequencies, there
remain, in general, a group of desynchronized oscillators. Then the total system cannot
settle into entirely equilibrium states.

Assuming that influences exerted by a group of desynchronized neurons on the macro-
scopic behavior of the total system can be neglected, we use the self-consistent signal-to-noise
analysis (SCSNA) [16] to analytically obtain the macroscopic order parameter equations for
the time-stationary states of synchronized oscillations of the network accompanying memory
retrieval.

Introducing the complex variable xk ≡ exp(iφk) to express the state of k-th neuron, we
formally obtain the fixed point equations by putting ẋi = 0;

xi =
iωi +

√

|hi|2 − ω2

i

h̃i

, |hi| > ωi, (3)

where hi ≡
∑

j Jijxj is the local field and h̃i denotes its complex conjugate. Defining the
overlap

mµ =
1

N

∑

i

ξµi xi, (4)

one can rewrite the local field as hi =
∑

µ ξ
µ
i m

µ.
Within the frame work of the SCSNA, considering the retrieval solutions of Eq. (3) for

whichm1 = m ∼ O(1) andmµ ∼ O(1/
√
N)(µ 6= 1), we assume the local field to be described

as [16]

hi = ξ1im+ zi + Γ1xi + Γ2x̃i. (5)

Here the first term involving m is the signal part, while the remaining terms represent noise
part involving complex Gaussian noise zi = ui + ivi (ui, vi, real) together with the effective
self-coupling terms proportional to xi and its complex conjugate x̃i. We note that Eq. (3)
yield no solutions if |hi| < ωi, which does not ensure |xi| = 1. This means that neurons with
|hi| < ωi cannot take part in synchronized motions exhibited by neurons with |hi| > ωi.
Although the desynchronized neurons, each of which is expected to oscillate with a certain
modified frequency, will make the local fields time dependent quantities, their effect can be
expected to cancel out to good approximation provided taking the time average is considered.
In further analysis, we discard the contribution from the desynchronized neurons by setting
xi = 0 for |hi| < ωi.

Following the standard procedure of the SCSNA, we obtain the self-consistent equations
for macroscopic variables in the limit N → ∞. Making use of the rotational symmetry of
the phase evolution equation Eq. (1) to choose a gauge such that overlap m becomes real
i.e. [

∫

DuDv ξ1 sin φ]{ω, ξ1} = 0, we have

m =
1

N

∑

i

ξ1i xi(ξ
1

i , ωi, zi, z̃i) =
[
∫

DuDv ξ1 cosφ
]

{ω, ξ1}
, (6a)

q =
1

N

∑

i

(Re[xi])
2 =

[
∫

DuDv(cosφ)2
]

{ω,ξ1}
, (6b)
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U1 =
1

N

∑

i

∂xi

∂zi
=

[

∫

DuDv

2 {(ξ1m+ u) cosφ+ v sinφ}+ 4Γ2 cos 2φ

]

{ω, ξ1}

, (6c)

U2 =
1

N

∑

i

∂xi

∂z̃i
=

[

∫ − cos 2φDuDv

2 {(ξ1m+ u) cosφ+ v sinφ}+ 4Γ2 cos 2φ

]

{ω, ξ1}

, (6d)

Γ1 =
α(1− U1)

(1− U1)2 − U2
2

, (6e)

Γ2 =
αU2

(1− U1)2 − U2
2

, (6f)

Q1 =
αq

(1− U1 − U2)2
, (6g)

Q2 =
α(1− q)

(1− U1 + U2)2
, (6h)

DuDv =
dudv

2π
√
Q1Q2

exp

[

−1

2

(

u2

Q1

+
v2

Q2

)]

, (6i)

with φ(ξ1, ω, u, v) being implicitly determined by

f(φ) ≡ −ω + (ξ1m+ u) sinφ− v cosφ+ Γ2 sin 2φ = 0. (7)

In the above equations, [ ]{ω, ξ1} means taking the average over the distribution p(ω) and
the pattern {ξ1}, and the gaussian integration DuDv is to be performed over the noise u, v
satisfying the condition |hi| > ωi. It is noted that in performing the gaussian integration in
Eqs. (6a)-(6i), one has to take into account the Maxwell rule to pick up the relevant solution
φi, when Eq. (7) admits multi-solutions owing to the presence of the self-coupling term (Γ2

term). Unlike Γ2 term, Γ1 term has no contribution to the equilibrium fixed-point equation
(7).

In what follows, for the sake of simplicity we deal mainly with the case

p(ω) = C0δ(ω) +
1− C0

2
δ(ω − ω1) +

1− C0

2
δ(ω + ω1), (L = 1, ω0 = 0). (8)

A characteristic feature of the distribution is that the presence of oscillators with central
frequency ω0 is allowed with a finite fraction C0 and the effect of desynchronized part can
be described in terms of ω1 and C0 alone.

Setting ω1 = 0 recovers the case that allows an energy function that is bounded from
below, E[{φi}] ≡ −1

2

∑

ij Jij cos(φi − φj).
Then all of the oscillators get synchronized for large times with the equilibrium configura-

tion {φi} determined by Eq. (3) or Eq. (7) together with the Maxwell rule, which is explained
in Fig. 1. Analysis based on the SCSNA of such networks as having Lyapunov functions is
on the same level of approximations as the replica symmetric calculations [16–18]. Figure 2
represents the dependence of m on the loading rate α computed from the SCSNA equations
(6) and (7). We see that the storage capacity is given by αc = 0.0395 with mc = 0.68. The
present value of the storage capacity slightly differs from the result reported previously [14],
which was obtained by an inappropriate treatment of the Maxwell rule [19]. We note that
the Maxwell rule becomes necessary only for α in the neighborhood of αc. Under the as-
sumption of random patterns with ξµi = ±1, the magnitude of Γ2 plays a crucial role in
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determining the αc, as can be seen in Fig. 2. This should be compared with the case of
ξµi = exp(iθµi ) (θ

µ
i = [0 : 2π]), where the order parameter equations involve no Γ2 term as in

the case of Cook’s model [13] (see also recent work in Ref. [15]). We note here that when
discrete patterns with Q-state variables θµi = 2πnµ

i /Q, (nµ
i = 0, · · · , Q−1) are considered,

the Γ2 term does not appear in the order parameter equations, if Q ≥ 3.
The effect of distribution of native frequencies on the behavior of memory retrieval is

summarized in Fig. 3, where overlap m from the SCSNA equations is plotted as a function
of α and ω1 for C0 = 0.7. There appear two distinct retrieval regimes separated by a
valley or gap located around a region with an intermediate value of ω1 in the m-α-ω1 space.
In the regime with small ω1, most of the oscillators undergo synchronized motions. The
storage capacities αc corresponding to the edge of the m surface are observed to decrease,
as ω1 is increased, to attain a certain minimum value, where a crossover to the other regime
occurs. In the regime with large ω1, oscillators with ω1 oscillate with their own frequencies
that are modified from the original ω1 as a result of entrainment phenomenon. Such a
behavior can easily be understood by considering the system in the limit ω1 → ∞. In the
large ω1 limit, while most of the oscillators with ωi = ω0 get synchronized, the oscillators
with ωi = ±ω1 cannot get synchronized and they oscillate with their own frequency ±ω1

independently of the synchronized neurons with ωi = ω0. It is clearly seen in this case that
the desynchronized neurons does not contribute to the time-averaged local fields acting on
the synchronized neurons. Then the system can be viewed as a diluted system with only
a fraction C0 of neurons participating in memory retrieval. It is interesting to note that
the storage capacity αc in the large ω1 region increases as ω1 is increased. The crossover
between the two regimes or the gap in the m(ω1) curve with fixed α can be more clearly seen
in Fig. 4, which display the ω1 dependence of overlap m obtained from the SCSNA together
with the result of numerical simulations (N = 2000) for a fixed value of α.

As the fraction C0 of the oscillators with the central frequency ω0 is varied, there occur
three types of behavior of the m(ω1) curve showing the cross over between the two regimes.
In Fig. 5, we show the ω1 dependence of the overlapm obtained for C0 = 0.5, 0.7 and 0.9 with
α = 0.02. While for C0 large one sees a continuous crossover between the small ω1 regime
and the large ω1 regime, for C0 small the large ω1 regime disappears. For only intermediate
values of C0, one observes the gap in the m(ω1) curve to appear.

The occurrence of such two retrieval regimes is not restricted to the simplest case of
L = 1, but is also observed for more general case with L ≥ 2. When a sufficiently large
number of oscillators have native frequencies near the central one ω0, the system can behave
the same way as that of L = 1 with C0 6= 0, as is shown Fig. 6, where the ω2 dependence
of the overlap m obtained by numerical simulations is displayed for the native frequency
distribution with L = 2 and C0 = 0:

p(ω) = C1δ(ω − ω1) + C1δ(ω + ω1) +
1− 2C1

2
δ(ω − ω2) +

1− 2C1

2
δ(ω + ω2). (9)

Indeed we see a gap separating the small ω2 regime from the large ω2 one. Although there
are no oscillators with ω0 = 0 because of C0 = 0, most of the oscillators get synchronized
for the small ω2 regime.

5



III. SUMMARY AND DISCUSSIONS

We have studied the behavior of the oscillator neural network system with distributed
native frequencies. To date analysis of associative memory models has been mostly confined
to the case of networks with an energy or Lyapunov function that allows use of replica
symmetric calculations of statistical mechanics. In the present work, making use of the
method of the SCSNA that is free from the energy concept [6,20], we have succeeded in
analyzing properties of the associative memory accompanied by synchronized oscillations

in the prototype oscillator network that has no Lyapunov functions except for the case
when p(ω) = δ(ω − ω0). We have shown that the oscillator network can work as associative

memory based on temporal coding of simple type even in the presence of distribution of native

frequencies. Our approach has taken advantage of the fact that such temporal attractors
as limit-cycles of certain types of dynamical systems can be reduced to a fixed-point type
attractors as a result of the system’s symmetry property.

The distribution of native frequencies does not allow the present coupled oscillator system
to settle into an entirely synchronized state but into a partially synchronized one. The
contributions from desynchronized neurons to the macroscopic behavior of the system have,
however, been found to be almost negligible. Thereby, the partially synchronized state
of the system has turned out to be almost determined by the long time behavior of the
group of synchronized neurons, which can be described by fixed-point type attractors giving
rise to retrieval states. In other words, memory retrieval is achieved by synchronization of

oscillatory motions of neurons.

Under the assumed type of native frequency distribution we have found that the partial

synchronization is classified into a high degree of synchronization that occurs for small ω1

with overlap m large and a low degree of synchronization that occurs for large ω1 with m
small.

Finally we note that oscillator neural networks are considered to have advantage over
fixed-point type neural networks in several respects. First, oscillator neural networks exhibit
the ability to easily and efficiently discriminate a successful retrieval from unsuccessful one,
because the settling into a retrieval state of oscillator neural networks implies the appearance
of oscillations with an appreciable amplitude and the central frequency ω0 in the overlap,
and hence, the local fields of neurons.

Second, by utilizing phase as well as amplitude as dynamical variables representing out-
put of a neuron [21] it becomes possible for neural information to be processed in terms of
spatio-temporal patterns of neuronal firings. In particular, information on time domain is
available by employing the scheme of temporal coding [11,13,15,22], where assuming uni-
formly distributed random numbers θµi on [0, 2π) for components of the memory patterns,
the phase difference φi − φj between the two oscillators i and j eventually settles into the
difference θµi − θµj of the memory pattern µ. Our present model setting based on the use
of binary patterns with θµi = 0, π [14] presents a special as well as simple case of the
above temporal coding, where the pattern of synchronization is either of in phase or out of
phase. Such a case may be related to the problem of segmentation of an object from its
background [23–25].

More generally, pattern segmentation [26] seems to be one of the unique features of
oscillator neural networks as has been studied by Wang et al. [27], who pointed out that use
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of limit cycles as attractor states of associative memory facilitates switching between one
pattern and another on the time domain.

While studying the important issue of the functionality of pattern segmentation provided
by oscillator neural networks will require taking into account some specific ingredients such
as the sparseness of the memory patterns and appropriate inhibitory couplings, our simple
model will have wide applicability in exploring the computational ability or relevance exhib-
ited by oscillator neural networks from the viewpoint of analytical studies. Extending the
assumed symmetric native frequency distribution to more general cases of asymmetric one
as well as continuous ones is straightforward. Results of such issues together with details of
the present work will be reported elsewhere.
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FIGURE CAPTIONS

FIG.1: Maxwell rule used in the SCSNA for picking up the relevant solution for output xi as a
function of u and v among multi-solutions to Eq. (7). In a graphical representation of
solving Eq. (7) for which three solutions (given by the intersections of the two curves)
appear as u or v is varied, the relevant solution is chosen as the external intersection
that delimits the larger area enclosed between the two curves. Such solution is marked
by the filled circle. The Maxwell rule ensures the condition of the free energy min-
imum [17] in a system with a Lyapunov function as in the case of the liquid-vapor
phase transition.

FIG.2: α dependence of the overlap m obtained from the SCSNA (solid line) together with
that from numerical simulations with N = 4000 in the case p(ω) = δ(ω − ω0). To
observe the result that the contribution of the Γ2 term in Eq. (5) or (7) to the value of
m is significant, we plot values of m obtained by deliberately setting Γ2 = 0 (broken
line).

FIG.3: Phase diagram showing m-surface plotted as a function of α and ω1 for the network
with distributed native frequencies with p(ω) = 0.7δ(ω)+0.15δ(ω−ω1)+0.15δ(ω+ω1).
We observe a valley or gap separating the small ω1 regime from the large ω1 one. The
dependence of the storage capacities αc on ω1 is represented by the projected curve on
the α-ω1 plane.

FIG.4: Dependence of m on ω1 for the network with α = 0.02 and C0 = 0.7 obtained from the
SCSNA (line) and numerical simulations with N = 2000 (dots). The gap separating
the two regimes with different types of synchronization are clearly depicted and is in
excellent agreement with the results of numerical simulations.

FIG.5: Dependence of m on ω1 for α = 0.02 and C0 = 0.5, 0.7, 0.9 obtained from the SCSNA.

FIG.6: The numerical simulation result (N = 4000) for L = 2 showing the ω2 dependence of
m in the case with ω0 = 0, C0 = 0, ω1 = 0.1, C1 = 0.35 and α = 0.02 (see eq. (9)).
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