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The Intense Puked Neutron Source (IPNS) was the Ii&t high energy spallation neutron source in the
UNted States dedicated to materials research. It has operated for sixteen years, and in that time has had a
very prolific record concerning the development of new target and moderator systems for pulsed spallation
sources. IPNS supports a very productive user program on its thirteen ins~ents, which are oversubscribed
by more than two times, meanwhile having an excellent overall reliability of 95%. Although the proton beam
power is relatively low at 7 kW, the target and moderator systems are very efficient. The typical beam power
which gives au equivalent flux for long-wavelength neutrons is about 60 kW, due to the use of a uranium
target aqd liquid and solid methane moderators, precluded at some sources due to a higher accelerator power.

The development of new target and moderator systems is by no means stagnant at IPNS. We are presently
considering numerous enhancements to the target and moderators that offer prospects for increasing the use-
fi.dneutron production by substantial factors. Many of these enhancements could be combmed, although their
combined benefit has not yet been well established. Meanwhile, 3PNS is embarking on a coherent program
of study concerning these improvements and their possible combination and implementation. Moreover, any
improvements accomplished at IPNS would imme&ately increase the performance of IPNS instruments.

1 Enhancements In Progress

A number of enhancements to IPNS neutron production are already in progress. Des@ ch6ices for
these enhancements have largely been made, and engineering questions are all that remain to be answered,
whether by experiment or Calculation. These enhancements are relatively well-defined, with clearly demon-
strable benefits. They include are-designed booster target, based on experience with the booster target used
from 1988-1991, re-ciesigned solid methane moderators for use with the booster targetj a moderator-reflector
assembly designed for rapid moderator replacemen~ and experimental studies of minor moderator modifica-
tions.

1.1 New Booster Target

IPNS has operated with a depleted uranium target from 1981-1988 and since 1992. For three years,
1988-1991, we operated with a booster target composed of the same alloy of cr-phase uranium enriched to
77% 235U,and of the same physical design as the depleted target. This subcritical target had a multiplication
factor keff of approximately 0.80, and resulted in neutron production of about two and one-half times the
production rate with the depleted uranium target.
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Abstract

We provide a practical and effective method for solving
constrained optimization problems by successively training
a multilayer feedforward neural network in a coupled
neural-network/objective-function representation.
Nonlinear programming problems are easily nuzpped into
this representation which has a simpler and more
transparent method of solution than optimizationpe~ormed
with Hopfield-like networks and poses very mild
requirements on the jimctions appearing in the problem.
Simulation results are illustrated and compared with an off-
the-shelf optimization tool.

Introduction

The Hopfieldnetwork and variations of this type of neural
networks have been frequently considered as candidates for
solving optimization problems, such as combinatorial
optimization [1], linear programming problems [2], and
nonlinear programming problems [3]. This is usually
achieved by designing Hopfield-like networks whose
energy function mimics a cost function which embodies the
optimization problem to be solved. Hence, the solution to
the optimization problem is obtained by attaining the lowest
energy state of the network.

Here, we propose a new method based on the widely used
multilayer feedforward neural networks (FNNs), also
known as the multilayer perception, for solving nonlinear
mathematical programming problems. The method of
solution for the proposed approach is simpler and more
transparent than the existing Hopfield-like approaches and
unlike the method in [3] poses very mild requirements on
the functions appearing in the problem.

Earl E. Feldman
Argonne National Laboratory

Reactor Analysis Division
9700 S. Cass Avenue
feldrnan@ra.anl.gov

The Nonlinear Programming Problem

Consider the general mathematical program (P)l of the form

minimizeflx) (1)

subject to inequality and equality constraints,

gp(a ~ 0, p=l,2,...,P (2)

hJx) = O, q=l,2,...,Q (3)

where the objective function f to be minimized and the
constraints gl,...,gP, and hl,...,hQ, can be linear or nonlinear
functions of tAeN-dimensional vector x.

A vector x is called a feasible solution to (P) iff x satisfies
the P+Q constraints of (p). The collection of suchx is called
the feasible set and x* is the feasible solution ~hich yields
the minimumj i.e., the solution to (P).

The Neural Network Formulation

In the proposed FNN formulation, the solution to (P) is ~
obtained by transforming this constrained optimization
program into a series of unconstrained optimization
programs (P ‘),E@ (4), which are solved for a sequence off~,
(k=l,2,...,K). In Eq. (4), w is the M-dimensional weight
vector of a FNN where x is a function of w,~~is a selected
feasible value ofj and p is a positive number used to vary
the weight of the constraint terms. At each optimization we
seek the vector xl which minimizes FJw) for a given f~

l(P) and other capital letters when enclosed in parentheses
represent mathematical programs.
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Fig. 1. Coupled neural-network/objective-function representation

such that at the end of the sequence of optirnizations x;=
x*. That is, the solution for (P’) at k=K is the solution for
(P). Through this procedure we iterate on~and try to find
its smallest value which has feasible x.

The first term on the right side of Eq. (4) assures tiat x;
yields the desired ~~, the second term accounts for the
equality constraints and the third tenii accounts for the
inequality constraints. Note that ifx satisfies an inequality
constraint of (P), the corresponding element of the thkd
term becomes zero and if x is a feasible solution to (P), then
the second and third terms become zero.

This formulation is somewhat of a combination of the
exterior penal~finction method [4] with the least-squares
method [5]. As in the exterior penalty function method, for
each equality constraint and for each inequality constraint
(except for two-sided bounding inequality constraints of
single variables, which are directly accounted for as
described later) of the program(P), there is a corresponding
term in the objective function F~of program (P ‘). However,
unlike the penalty function method, the fwst term of F~
consists of the square of the difference ~~ - fix)}, as
opposed to justj(x), and the minimum of F~is zero. In this
sense, the form of F~is similar to the objective function of
the least-squares method which minimizes the squares of the
differences between the observed values and theirrespective
predicted values.

Here we cast the minimization of FJw) for eachfi as the
training of the FNN in the coupled neural-networld
objective-function representation illustrated in Fig. 1. In
this representation, the left box consists of a FNN with M

weights wand the right box consists of the objective function
fix) of(P), which perhaps could be represented by a trained
neural network. Training consists of determining the weights
w that for a given input to the FNN the network provides
outputs Xn,(n=l,...,N), which minimize F,(w) in Eq. (4).

In addition to$~,the other inputs to the FNN are the constant
terms APand B~that appear in the constraints gP,(P=l,...,P),
and h~,(q=l,...,Q). For example, for the equality constraint
X3+X-5=0,the number 5 would be used as an input. If a
constraint does not have a constant te~ then zero should be
used as input such that there area total of P+Q+l inputs to
the FNN. In theory, this set of inputs is not necessary
because they already appear in Eq. (4). However, simulation
results indicate that inputing these values instead of dummy
values improves training.

Because each one of the N output nodes of the FNN
corresponds to one independent variable., (n=l ,...,N), two-
sided bounding inequality constrains on each vmiablexmcan
be directly treated through the proper selection of the
mapping function of the output nodes and proper
normalization. For example, if asxnsb, where a and b are
scalars, then the n-th output node could be mapped by a
sigmoid function with the range [a,b] normalized to the range
[0,1] of the sigmoid function. Each two-sided constraint
could, of course, be separated into two one-sided constraints
and treated in the third term in Eq. (4). ‘Ilk would require,
however, the addition of two more elements per two-sided
constraint. The FNN formulation eliminates this need and
when these are the only types of constraints in the problem
the last two terms in Eq. (4) vanish, greatly simplifying the
minimization of FE

In this neural network formulation, the solution to (P) is
obtained as follows. We start by selecting an interval

&sfix*)sXP that includes the solution to (P). In most
engineering problems at least one of the bounds of the
interval is directly obtained from the physical constraints on
the solution. Then, we start to solve the unconstrained
optimization in Eq. (4) for a sequence of ~l,...&,&, such
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that at each optimization step of the sequenceJ~ is selected
to reduce by half the interval ~OW&J according to the
bisection method [6]. The sequence proceeds until the
interval has been reduced to with a prespecified distance
&,withj@*) contained in the interval.

For each optimization step of the sequence we train the
FNN in Fig. 1 with the selected A and the constants AP,
(P=l,...P), and B~,(q=l,...,Q), which are kept fixed for the
entiresequence. If the trainingis successful,i.e., if weights
w can be found that minimizeFJw) for the currentf~,then
~;, providedas theoutputof the FNN, is a feasiblesolution
to (P). If the training is not successful we select another
value forj~ according to the bisection method and continue
the procedure. By repeating this procedure for additional
value of f~ we obtain the smallest f~, f~K, within a
prespecified tolerance, for which the training of the FNN
converges. Corresponding to fK, we obtain x;= x*, the
solution to (P). This can be confirmed by showing that x;
satisfies the Karush-Kuhn-Tucker necessary conditions for
local optimality of nonlinear constrained functions to within
a certain tolerance [7].

Our method differs from most nonlinear programming
approaches because here we solve the inverse problem. That
is, we select a value of fix), f~, and try to obtain the
corresponding feasible x, if it exits. Hence, our iterative
procedure is based on a search for the smallest j(x) with
feasible x, fix*), along the monotonicly decreasing f line, as
opposed to a direct search for X* in the Ndhnensional x-
space. This precludes the search from becoming h-appealat a
local minimum in thex-space. However, the approach is not
completely free of local minima trapping because the training
of the FNN may not converge even when f~fKq’&*).
Therefore, whenever a training session is not successful the
network should be retrained with the same inputs but with a
different selection of the initial weights and a different
number of nodes in the hidden layers to ensure that the
unsuccessful training is not due to local minima in the w-
space.

In that sense, we might be transferring the potential trapping
in the N-dimensional x-space to a potential trapping in the
M-dimensional w-space of the network weights. The search
in the N-dimensional x-space is constrained while the search
in the M-dimensional w-space is not, although, in general,
M>>N.

The use of the FNN in our formulation is also quite different
from its common use. Instead of providing a set of input-
output pairs and having the network learn their underlying
relationships, we provide only inputs and for each training
session the same input is presented repeatedly to the network.
We are not interested in the generalkation capabilities of

FNNs, but rather are using the neural network representation
in Fig. 1 to minimize FF

The proposed approach poses very mild recmirements on the
functions appearing in ‘the problem.
nonlinear programming problem
properties:

1. The functions fix), gP(x),
continuous fwst derivatives.

We-assume that the
has the following

and hJx) all have

2. Xx) is continuousin m intervalof non-zerolength
fix*) @@)<fiPand there must be a corresponding
feasiblex for each valueofflx) in the interval.

3. N > Q +1, as opposed to N > Q for conventional
methods, because an extra degree of freedom is
neededfor thef~ search.

Neural Network Training

The unconstrained minimization of FJw) in Eq. (4) is solved
iteratively based on calculations of the gradient VFJw) using
a conjugate gradient version of the backpropagation
algorithm [8]. The method of conjugate gradient expedites
the training process and dynamically optimizes the learning
parameter and the momentum parameter of the
backpropagation algorithm.

As in other versions of the backpropagation algorithm, the
components of VFJW) are computed recursively by starting
at the nodes in the output layer of the FNN and working
backward to the nodes in the input la~~r. A component of
VFJW) corresponding to the weight wji connecting the i-rh
node in the (1-1)-thlayer to thej-th node in the ?-thlayer is
given by

‘1-1)denotes the activation of the i-th node in the (?-whereyi
1)-th layer and to simplify the notation we suppress the
subscript k in the & and y. If the &h layer is the output
layer L, then

[
a:) = & - f(X~)] Yjc) (1 - yj~)) J’(x~)

J

I

o ; if gP(xk)~ O
*:) = (6)

P g~(xk)YjC)(1 - Yj&)) ; otherwise

/i&) = p hq(xk)yj~) (1 - yj~))d
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where the N elements of x~ are equal to the N elements of

yp andJ(xk) k the partialderivativeofflx) with respect
to thej-th element of x (or thej-rh output node of the FNN,
Y~). If the functionfix) is representedby a multilayer
FNN, then~(x~) is the partialderivativeof this network’s
output with respect to its inputs. For any node in a
subsequentKlddenlayer, i.e., I<KL,

(7)

where Jt+ldenotes the number of nodes in the (/+1)-thlayer.

This algorithm is very similar to the standardversionof the
backpropagationalgorithmused to computeaF/dv~O for
stand-alone FNNs. The major differences are the presence
of three 6s, as opposed to only one, correspondhg to the
three terms in I@ (4), and the extra term ~(x~) in Eq. (6).

A three-layer FNN with a 2-6-4 architecture was used. The
two nodes in the input layer correspond to a selected value
for NOXand 110, respectively, and the four nodes in the
output layer correspond to the gas flow rate of the four
injectors.

Table 1 compares the solutions to this program obtained by
the FNN method and an off-the-shelf optimization tool [10].
The deviation of the optimal NOXwas less than 0.3% and the
maximum deviation of Xnwas less than 2.0%. This is a
rather difficult optimization problem for some methods
because tie optimal solution is on fie boundary of the
feasible region prescribed by Eq. (10). Similar comparisons
were obtained in other simulations where we changed the
sign of the inequality and the value of the constant term in
Eq. (lo).

Table 1. Comparison of the FNN results with an off-the-
shelf optimization tool for a case of inequality constraints

NO= x, x-z -G x~

0.415 35.46 35.41 39.04 71.85

Tool 0.414 35.26 34.90 39.81 72.12

B. Equality and Inequali~ Constraints
Simulations

To demonstrate the performance of the proposed FNN
approach, some examples of an emissions control problem
[9] with different types of constraints are presented. The
problem consists of finding the optimal flow rate of four
natural gas injectors Xn, (n=l,2,3,4), located above the
primary combustion zone of a coal-f~ed power plant such
that the downstream oxides of nitrogen (NOX)emissions are
minimized. A trained multilayer FNN is used to represent
the nonlinear functional relationship fix) between the
injected gas and the NOXemissions.

A. Inequali~ Constraints

Consider the following nonlinem program

subject to

34.90s Xns 72.12, (n=l,2,3,4) (9)

(lo)

Consider next the same program above with the inequality
constraint in Eq. (10) replaced by the equality constraint

N=4

175-~ xn=o. (11)
“=1

Employing the same FNN architecture as in the previous
case and with the constant term in the constraint, 175, used
as an input we obtained the results illustrated in Table 2.
The FNN results compare well with results obtained with an
off-the-shelf optimization tool. Both attained the same
minimum value for NOXand the maximum deviation on X.
was less than 1%. Similar comparisons were obtained in
other simulations where we changed the value of the constant
term in Eq. (11).

Table 2. Comparison of the FNN results with an off-the-
shelf optimization tool for a case of equal@ and inequality
constraints

NO, Xl -% -% X4

0.431 34.95 34.98 35.23 69.89

Tool 0.431 34.90 34.90 34.90 70.30
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Conclusions

We propose a new methodology for solving nonlinear
programming problems. The approach is to transform an
original constrained optimization problem in the N-
dimensional x-space into a sequence of unconstrained
optimization problems in a larger M-dimensional weight-
space of a multilayer feedforward neural network.
Although M>>N, the difficulty in solving an optimization
problem in the larger weight space is more than offset by
the simplicity of solving an unconstrained optimization
problem, as opposed to a constrained one, in the smallerx-
space.

The constraints of the original problem are handled
indirectly through the transformation of the original
functionfix) into a modified function which incorporates
each equality constraint and each inequality constraint into
an additional term of the function. Two-sided bounding
inequality constraints of single variables are dmectlytreated
through proper selection of the mapping function of output
nodes of the neural network and proper normalization.

In contrast to most optimization approaches, the optimal
solution is not obtained through searches in the x-space.
Instead, we directly search for the srnallestj(x) along the
monotonicfix) line and indirectly obtain the corresponding
x (as the output of a feedforward neural network) by
training the network. Hence, the method of solution is not
dependent on the form offlx) onx, and therefore, should be
less sensitive to local rnininq and poses very mild
requirements on the functions appearing in the problem.

The examples provided serve to illustrate that the results of
the proposed method compare well with those of other
optimization techniques. In future research we shall
demonstrate the capability of the proposed method to
converge to the global minimum even when theflx) surface
contains many local minima. In general, the existence of
these local minima are problematic for optimization
methods.

The proposed method should also be quite appealing in
problems involving two-sided bounding inequality
constraints on single variables. Unlike most approaches,
these constraints are dwectly satisfied through the proper
selection of the mapping function of the network output
nodes and proper normalization.

The proposed method is simpler and more transparent than
existing neural network approaches for solving nonlinear
programming problems. However, it requires the solution
of a sequence of optimization. This iterative procedure

will be avoided in future research by modi@ing the fnst term
in Eq. (4), ~~ - fix)], to fix), and directly solving the
unconstrained optimization problem much like the exterior
penalty function method.
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