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Abstract

It is demonstrated that Fault tolerance, generalization and
the Vapnik–Chervonenkis (VC) dimension (which is in turn
related to the intrinsic capacity/complexity of the ANN) are
inter-related attributes. It is well known that the general-
ization error if plotted as a function of the VC dimension h,
exhibits a well defined minimum corresponding to an opti-
mal value of h, sayhopt.

We show that if the VC dimensionh of an ANN satisfies
h � hopt (i.e., there is no excess capacity or redundancy),
then Fault Tolerance and Generalization are mutually con-
flicting attributes. On the other hand, ifh > hopt (i.e., there
is excess capacity or redundancy, then fault tolerance and
generalization are mutually synergistic attributes.

In other words, training methods geared toward improving
the fault tolerance can also lead to better generalization
and vice versa, only when there is excess capacity or re-
dundancy. This is consistent with our previous results in-
dicating that complete fault tolerance in ANNs requires a
significant amount of redundancy.

I. Introduction

Despite their gross similarity with biological systems,
ANNs are not necessarily fault tolerant, as indicated by re-
sults in the literature [1, 2]. Contrary to the expectation,
fault tolerance in ANNs comes at the cost of a significant
amount of redundancy [2]. Furthermore, merely provid-
ing redundancy is not enough; the learning algorithms also
must be modified to utilize the available redundancy in or-
der to achieve fault tolerance [2]. Several researchers have
experimented with modified training algorithms that en-
hance fault tolerance of feedforward networks (for exam-
ple [3, 4], etc).

Relation between fault tolerance and generalization has
also been looked at [5, 6]. Most results reported in the lit-
erature indicate that incorporating fault tolerance enhance-
ment during training also leads to better generalization and
vice versa. This needs to be interpreted carefully because
redundancy might be detrimental to generalization perfor-
mance. It is known that the “simplest hypothesis/model is
the least likely to overfit”. For example, the net that uses
the least number of independent parameters (which include
the weights and biases) to achieve a given mapping is least
likely to overfit the data and is therefore likely to have good
generalization performance. If one adds redundancy (in the
form of extra units or additional independent parameters)
in order to achieve fault tolerance, it is likely to hurt gen-
eralization performance because more than the necessary
number of parameters is being utilized to achieve the same
mapping. In this sense, addition of redundancy to achieve
fault tolerance would appear to trade off generalization per-
formance.

If, however, the number of parameters is fixed and one im-
poses additional constraints to encourage fault tolerance,
the resulting net might generalize better than a net gener-
ated without the fault tolerance constraints. For instance,
if the fault tolerance is enhanced by adding extra terms to
the objective function, in some sense, it adds a “spread”
to the mapping being learned: the error between the extra
terms and the outputs is also being minimized along with
the original mapping. Thus, the parameters available can
be thought to be “stretched” as far as possible to fit the
original mapping as well as the extra terms. Such a spread
could conceivably enhance the generalization performance
because the net could handle some unseen input if its effect
is equivalent to a fault that the net has learned to tolerate.
Injecting faults during training achieves a similar effect.

In this paper we explore the inter-relationships be-
tween fault tolerance, generalization and intrinsic capac-
ity/redundancy. The next section presents qualitative semi-
rigorous arguments based on learning theory to demon-
strate that when there is excess capacity, fault tolerance and
generalization are mutually synergistic. On the other hand,



if there is no excess capacity or redundancy then fault tol-
erance and generalization are mutually conflicting require-
ments. Section III shows simulation data which corrobo-
rates the analytical findings.

II Fault tolerance, generalization and
the Vapnik–Chervonenkis (VC) dimension

Let the target function to be learned by the ANN be
f(�x) ((vectors are denoted by an overbar such as�x). For the
sake of simplicity a single-output considered without loss
of generality (i.e., the same analysis applies to multi-output
mappings as well). Note thatf(�x) includes I/O mappings
for both approximation as well as classification tasks. As-
sume that the network realizes an approximationF (�x; �w)
instead of the target functionf(�x). In the domain of learn-
ing theory, the expected value of discrepancy or loss is de-
fined by therisk functional[7]

R( �w) =

Z
D(f(�x); F (�x; �w)) dP (x; f(�x)) (1)

wheredP (x; f(�x)) is the joint probability distribution of
input vector�x and the desired responsef(�x); D is a dis-
tance (such as absolute value orL2 norm. in general, it can
be a functional mapping a function into a real number); and
the integral is taken in theRiemann–Stieltjes sense[8]. The
goal of the learning process is to minimize the risk func-
tionalR( �w) over the class of functionsF (�x; �w). However,
the joint probability distributionP (x; f(�x)) is unknown
and henceR( �w) cannot be evaluated directly. To overcome
this difficulty, the method of risk minimization constructs
theempirical risk functional

Remp( �w) =
1

N

NX
i=1

D (f(�xi); F (�xi; �w)) (2)

where�xi are iid training samples. The principle of empiri-
cal risk minimization [9, 7] states that the weight vector�w�

which minimizes the empirical riskRemp( �w) guarantees
thatR( �w�) converges in probability to the minimum pos-
sible value of actual riskR( �w) asN ! 1, provided the
functionalRemp( �w) converges uniformly to the actual risk
functionalR( �w) [8].

The risk functionalR( �w) can be thought to approximate
the average generalization error, denoted byEG( �w) (the
approximation becomes exact for classification tasks for
which the outputs can be deemed to be binary [8]), while
the empirical risk functionalRemp( �w) represents theaver-
age training error, denoted by�train( �w) . For a set of clas-
sification functions with VC dimensionh, the following in-
equality holds [9, 7]:

Probfsup
�w
jEG( �w)� �( �w)j > �g < � =

(
2eN

h
)hexp(��2N) (3)

where e is the base of the natural logarithm. From

the above equation, it is possible to derive the general
bound [8]

EG( �w) < �max( �w) = �train( �w) + �(N; h; �; �) (4)

where� is a confidence interval Thus the average gener-
alization error is guaranteed to be less than the sum of
two competing terms in the right hand side of equation (4)
above [7]. For a fixed number of samplesN , the first term
�train( �w) decreases monotonically as the capacity or the VC
dimensionh is increased, while the confidence interval
�(N; h; �; �) increases monotonically withh. Hence, their
sum�max( �w) is a concave function ofh and goes through
a minimum corresponding to an optimum valuehopt of the
VC dimensionh as illustrated in Figure 1.

hopt

�(N; h; �; �)

ho VC dimensionh

�train( �w)

�max( �w)

hf heff

Figure 1 : Illustration of the dependence of�train( �w) ,
�(N; h; �; �) and �max( �w) on the VC dimensionh.

To understand the relation with fault tolerance, assume that
the original non-faulty network has a VC dimensionho as
shown in Figure 1. Since most faults can be modeled as
stuck-at faults [2] affecting the parameters of the network
(weights, biases or unit outputs), a “faulty” network can
be thought to have fewer independently adjustable param-
eters available (since the faults cause some parameters get
“stuck-at” fixed values, making them unavailable for adap-
tation). Hence, the capacity orVC dimension hf of the
“faulty

net” satisfies the inequality: hf � ho (5)

as illustrated in Figure 1.

The effect of including extra terms in the objective function
to enhance the fault tolerance or regularize complexity, is
in some sense, also equivalent to training a net with a VC
dimensionheff that satisfies

heff � ho (6)



as shown in Figure 1. The reason is the following: when
the extra terms are included in the objective function, the
available parameters are utilized to minimize both the the
original error terms and the extra terms. Consequently, the
values the parameters can assume are more restricted. In
fact the main purpose behind the extra terms is to “guide
the search” to specific solutions which in turn implies that
these terms “restrict” the values the independent parame-
ters can assume or equivalently, reduce the degrees of free-
dom. Such a reduction in the degrees of freedom is in turn
equivalent to a reduction in the capacity or the VC dimen-
sion.

However, the reduction in the VC dimension as a result
of adding constraints (via direct constrained optimization
or modifying the objective function by adding extra terms)
is unlikely to be as big as the reduction in capacity due
to stuck-at faults which simply make some parameters un-
available. Henceheff must be in-betweenhf and ho as
shown in Figure 1.

hf � heff � ho (7)

Having established relation (7) above, we can infer the fol-
lowing from Figure 1:

(a) If ho � hopt, i.e., the number of parameters is less
than that required for best generalization performance, then
incorporating constraints to enhance fault tolerance or reg-
ularize complexity (by direct constrained optimization or
by adding the extra terms to the objective function or by
any other method) leads to an effective VC dimensionheff

which is still smaller. Hence, the generalization error in-
creases.

(b) On the other hand, ifho > hopt, then constraining pa-
rameters to enhance fault tolerance or regularize complex-
ity will lead to anheff that is closer to the optimal valuehopt,
which will lead to adecreasein the generalization error. In
summary

If (ho � hopt) then /� no overcapacity/redundancy�/
fault tolerance and generalization are mutually
conflicting attributes.

else for(ho > hopt) /� overcapacity exists�/
fault tolerance, complexity regularization and
generalization are synergistic.

endif

The above results conform to intuition: if the number of
parameters available is small, then all of them should be
dedicated to learning the training set. Adding fault toler-
ance criteria in this situation will only worsen generaliza-
tion performance. On the other hand, if there are excess pa-
rameters, then adding fault tolerance criteria “constrains”
their use, thereby improving generalization.

Injecting faults during training is also equivalent to reduc-
ing the effective VC dimension, because the stuck-at faults
make some parameters unavailable, thereby reducing the
degrees of freedom. Ifho > hopt then injecting faults dur-
ing training can enhance both fault tolerance and general-
ization, which would explain the results reported by many
researchers. These findings corroborate our previous re-
sults indicating that complete fault tolerance in ANNs nec-
essarily implies redundancy.

III Simulation Results and Discussion
The above result can be verified experimentally (through
simulations). For the purpose of illustration we report re-
sults for a 2 class distinction problem because it is easy to
visualize the task to be learned and the minimum capac-
ity/size (number of nodes, connections, etc.) required to
successfully learn the task is also known. The task simply
consists of distinguishing between inputs belonging to two
different classes as shown in Figure 2 on the next page. As
seen in figure 2, the data consists of points that are uni-
formly distributed within the unit square which is divided
into two classes by two lines L1 and L2. The “area” of
the unit square is split equally between the two classes.
Training data set consists of 50 points, out of which 12
points (including the 8 points illustrated by solid circles and
squares) were hand-picked to “delineate” the position of
decision boundaries. Remaining points in the training data
set were randomly generated to be uniformly distributed
within the unit square. Test data set consisted of 500 addi-
tional uniformly distributed points within the unit square.
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Figure 2: Two class distinction task which is used to experi-
mentally illustrate the inter relationships between fault toler-
ance, capacity/redundancy and generalization.
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Figure 3: Network architectures for
the 2 class distinction task
(2 inputs and 1 output).

Network architectures for this task are illustrated in Fig-
ure 3. If direct input/output connections are allowed as in
Figure 3-(a), then just one hidden unit suffices to learn this
task. If such direct I/O connections are not allowed making
the network strictly layered, then at least two hidden units
are required to learn this task. These are the “minimum”
sized network(s) required to learn this task. Knowing these
minimum required sizes (i.e., minimum required capacity)
makes it is possible to select networks with less than the
necessary size, networks with the required minimum size
and networks having lager than minimum sizes; in order to
corroborate the above analysis.

For simulations, five network architectures with different
sizes covering the entire range (under, par and over the re-
quired size/capacity) were selected. Each architecture was
trained by two algorithms

(i) one included extra terms in the objective function being
minimized in order to enhance the fault tolerance. These
terms capture the effect of injecting faults during training.
(Outputs of hidden units are set stuck-at�Max. The result-
ing error represents deviation from nominal outputs due to
faults. This error is also included in the objective function
along with the normal training error in order to enhance
fault tolerance.)
(ii) normal error minimization training without fault toler-
ance enhancement terms in the objective function.

For each architecture and each training method, 100 trials
were run (with random initial weights for each trial) and
the average generalization error (for the test data set) over
the 100 runs was calculated. The results are summarized in
Table 1 (on the next page).

For some architectures, in some of the runs, the net could
not learn the training data set successfully. In such cases,
average generalization error is also calculated over the suc-
cessful runs only. The table shows that when there is ex-

cess capacity to begin with (cases with 10 and 4 hidden
units), incorporating fault tolerance criteria during training
improves generalization as well. When the capacity is the
minimum required, however, adding fault tolerance terms
to the objective function causes the algorithm to get stuck
at local minima, leading to unsuccessful runs. This leads to
a substantially higher generalization error. Note that even
when the generalization error over only successful runs is
compared, the improvement (in generalization error as re-
sult of the fault tolerance constraints) is much smaller. In
fact the improvement in these cases is (arguably) insignif-
icant. Finally when there is only one hidden unit without
the direct I/O connections, the net cannot learn the task at
hand. The table indicates that adding fault tolerance con-
straints during training in this case clearly worsens the gen-
eralization error.

Finally, note that the results presented are conservative or
“worst case” in some sense. This is because 12 points in the
training data set are “hand crafted” to clearly delineate the
class boundaries. Hence, if a network can learn this data
set at all, it is highly likely to show good generalization as
well. In reality, available training data sets are not likely to
demarcate the class boundaries so precisely. Furthermore,
the class boundaries themselves are likely to have a much
more complex shape. In such cases, “learning” the train-
ing data set will not necessarily lead to a good generaliza-
tion performance since the data set itself is not so precise
and the decision boundaries are complex. Simulations with
such data sets will therefore support our analytical findings
even more clearly and strongly.



Training Type
Normal Training Fault Tolerance Enhancement

Network Incorporated in Training
Architecture Average Gen. Number of Average Gen.Average Gen. Number of Average Gen.

Error on successful Error over Error on successful Error over
test data runs successful test data runs successful

runs runs
10 hidden units
strictly layered 13.8935 100 13.8935 9.6411 100 9.6411

(over–capacity)
4 hidden units
strictly layered 13.4023 100 13.4023 12.7029 100 12.7029

(over–capacity)
2 hidden units
strictly layered 13.1422 100 13.1422 19.8318 85 11.9808
(min. required

capacity)
1 hidden unit,

direct I/O
connections 50.5555 16 13.7757 90.9339 14 13.7604

(min. required
capacity)

1 hidden unit
strictly layered
(not enough to 79.2477 0 79.2477 84.7549 0 84.7549
learn the task:

(under–capacity)
Table 1 : The effect of incorporating fault tolerance enhancement criteria/constraints during training; on the gen-
eralization error for network architectures with different capacities. A “successful run” is one where the net correctly
learned to classify each point in the training data set to within the specified tolerance.
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