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Abstract 
The performance of cross validation (CV) based MLP 
architecture selection is examined using 14 real world 
problem domains.  When testing many different network 
architectures the results show that CV is only slightly 
more likey than random to select the optimal network 
architecture, and that the strategy of using the simplest 
available network architecture performs better than CV in 
this case.  Experimental evidence suggests several reasons 
for the poor performance of CV. In addition, three general 
strategies which lead to significant increase in the 
performance of CV are proposed.  While this paper 
focuses on using CV to select the optimal MLP 
architecture, the strategies are also applicable when CV is 
used to select between several different learning models, 
whether the models are neural networks, decision trees, or 
other types of learning algorithms.  When using these 
strategies the average generalization performance of the 
network architecture which CV selects is significantly 
better than the performance of several other well known 
machine learning algorithms on the data sets tested. 
 
 

1. Introduction 
 

This paper examines the performance of cross validation 
(CV) as an MLP (multi-layer perceptron) architecture 
selection strategy.  A primary advantage of CV is that only 
the data is used to determine which architecture is 
appropriate, without the requirement for user intervention 
or the setting of any adjustable parameters.  Unfortunately, 
for a variety of reasons CV does not always perform as 
well as desired.  The purpose of this paper is to determine 
empirically whether or not the expectation that CV based 
architecture selection will generally perform well on real 
world problems is justified.  We also explore empirically 
and discuss general strategies for increasing the likelihood 
that CV will select a good architecture.   
 
One of the major difficulties with MLPs lies in the 
selection of the optimal network architecture for a given 
problem.  MLP architecture selection is concerned with the 
number of layers in the network, the number of nodes in 
each layer, the interconnections between the nodes, and so 
forth.  For any given learning problem there is an 
essentially infinite number of possible MLP network 

architectures, but only a small subset of these exhibit good 
performance in general.  A great deal of effort has been 
devoted towards MLP architecture selection, and several 
different methods which seek to automate (more or less) 
MLP architecture selection are now available.  These 
methods include network construction, network pruning, 
information based criteria such as MDL and MML, and 
cross validation.  In addition to architecture selection 
strategies, there are regularization methods such as weight 
decay, stopped training techniques, and bayesian 
techniques which all seek to obviate the need to select an 
optimal network architecture, instead using the most 
complex architecture which can be practically 
implemented and then using some other strategy to avoid 
overfitting.  However, no one of these methods has yet 
proven to perform well on a large variety of problem 
domains. 
 
We define the "optimum" network architecture to be the 
simplest network architecture which is capable of 
representing the underlying function which generated the 
training data.  However, architecture selection strategies 
are rarely if ever concerned with identifying the 
"optimum" network architecture.  A more pressing concern 
is the probability that a given MLP architecture will 
perform well after training.  We define the network 
architecture which is the most likely to perform well after 
training on the available training data as the "optimal" 
network architecture.  The determination of the optimal 
network architecture is thus highly dependent upon the 
available training data and the idiosyncracies of the 
training algorithm.  Finding the optimal network 
architecture is the goal of most (if not all) architecture 
selection strategies. 
 
This paper provides insight into the empirical performance 
of CV on a variety of real world problem domains.  To 
date, there have been few studies which have focused on 
the empirical performance of CV based MLP architecture 
selection on a large number of real world problems.  One 
reason for this may be the enormous amount of 
computation required for such a study.  This study, which 
applies CV to 14 different real world problems, utilized 74 
unix workstations running continuously over a period of 
approximately two and a half months.  The studies in the 
literature which specifically examine the performance of 



CV and compare it with that of other methods [8][10][3] 
analyze performance using only a few (1 or 2) data sets, 
and so cannot be considered conclusive.  A realistic 
evaluation of the performance of CV based MLP 
architecture selection on real world problems, including 
strength and weaknesses, needs to be established.  This 
paper also examines the conditions which can affect the 
performance of CV, such as the number of architectures 
tested, the similarities between the architectures, the 
degree of difference in CV holdout scores, the amount of 
available training data, etc.  It is important to be aware of 
these items and how they can affect the performance of 
CV in order to design a system which has a high 
probability of finding an optimal architecture. 
 
The results in this paper, which are presented in detail in 
section 4, show that, at least on the real world data sets 
tested in this paper, CV is on average only slightly better 
than random architecture selection when choosing from 
among a large number of potential architectures.  The 
main benefit of CV in this case is to decrease the 
likelihood of choosing an extremely sub-optimal 
architecture.  Any potential increase in generalization 
accuracy obtainable through CV based architecture 
selection drops off rapidly as the number of tested 
architectures increases.  This is particularly true when the 
architectures being compared are similar in their structure.  
This means that using CV to compare several similar 
network architectures, is not only wasteful of 
computational resources but can also degrade the 
performance of CV.  However, if a reasonable difference 
between network architectures is maintained, then more 
architectures can be compared before the performance of 
CV begins to degrade.  Also, the probability that CV will 
choose the optimal architecture is lower when the 
difference between CV scores is small, and significant 
improvement to generalization accuracy can be made by 
only accepting a particular network architecture if all other 
simpler architectures have significantly worse CV scores.   
 
Section 2 discusses the problem of model selection, CV, 
and real world problems.  Section 3 gives the data sets and 
methods used in this paper, and section 4 details the 
results.  The conclusion is given in section 5. 
 

2. Model Selection and Real World Problems 
 
One of the primary goals of machine learning is to produce 
a general, automated learning algorithm which performs 
well for all types of learning problems.  This has been 
proven to be an unattainable goal [7][9].  However, it is 
possible to develop a learning algorithm that will perform 
provably well for a particular problem or type of problems.  
For the most part we are not interested in all types of 
learning problems but are primarily interested in the "real 
world" learning problems.  To the extent that all real world 
learning problems are similar, it should be possible to 

develop a general learning algorithm which performs well 
on them. 
 
CV is an oft used method for comparing two or more 
learning models to estimate which model will perform the 
best on the problem at hand.  With n-fold CV, the 
available training data is partitioned into n disjoint subsets, 
the union of which is equal to the original training set.  
Each learning model is trained on n-1 of the available 
subsets, and then tested on the one subset which was not 
used during training.  This process is repeated n times, 
each time using a different test set chosen from the n 
available partitions of the training data, until all possible 
choices for the test set have been exhausted.  The n test set 
scores for each learning model are then averaged (or 
summed), and the model with the highest average test set 
score is chosen as the most likely to perform well on 
unseen data.  The standard practice for MLP model 
selection is to use 10-fold CV, and this is the type of CV 
which is tested in this paper. 
 
The advantage of CV over other model selection strategies 
is that in its basic form it is entirely data driven.  But in 
practice CV suffers from two major drawbacks.  The first 
drawback is that when it is used to select between two or 
more models the estimate on model accuracy which CV 
provides tends to be higher than the true model accuracy, 
and this tendency becomes more pronounced as the 
number of models tested increases.  The second and 
related problem is that, in general, the more models that 
are tested the higher the probability that CV will fail to 
select the best available model.     
 
Research that has been done on CV based MLP 
architecture selection includes a recent paper by Schenker 
and Agarwal [10] where CV was found to be the better 
than a few other architecture selection strategies at 
choosing the optimal network architecture.  However, the 
comparison was based on only a single type of artificial 
data and did not look at any real world problem domains, 
and so these can not be considered conclusive.  Another 
paper by Kearns et. al. found that CV performs 
significantly better than Minimum Description Length 
(MDL) and Guaranteed Risk Minimization (GRM) [11] on 
the intervals model selection problem [3].  Unfortunately, 
the empirical results in this paper were also limited to a 
single type of artificial data, and did not explore any real 
world problem domains.  Schaffer has also studied CV in 
[7] and [8]. 
 
CV is also employed in stopped training, weight decay, 
network construction algorithms, and network pruning 
methods. 
 

3.  Data and Methods 
 
The main intent of this paper is to examine the 
performance of CV based MLP architecture selection on 



real world problems, and so 14 real world problems were 
selected from the UCI machine learning database 
repository as a basis for the experiments.  The choice of 
which data sets to use was restricted to the binary 
classification (two output) problems for the sake of 
simplicity.  The names and a short description of the 14 
data sets are given in table 1.   
 
The first column gives the name (or tag) used to identify 
the data set throughout the rest of this paper.  The total 
number of attributes is listed in the third column, and the 
fourth column gives the total number of examples 
contained in the data set.   
 

tag full name attributes instances
bc breast cancer 9 286
bcw breast cancer wisconsin 10 699
bupa bupa liver disorders 7 345
credit credit approval 15 690
echo echocardiogram 13 132
sickeu sick-euthyroid 26 3163
hypoth hypothyroid 26 3123
ion ionosphere 35 351
promot promoter gene sequence 57 106
sick sick 30 3772
sonar sonar 61 208
stger german credit numeric 24 1000
sthear statlog heart 13 270
voting house votes 1984 16 435  

Table 1.  Data sets. 
 

3.1 Experiments 
 
The MBP neural network simulator [1], which implements 
a fast conjugate gradient descent training algorithm, was 
used to train the various network architectures due to its 
speed of training and relative ease of use.  Since there is a 
limited amount of available data for the real world data 
sets, the accuracy of the model which CV chooses must be 
estimated using CV.  This implies that within each CV 
split used to estimate the accuracy of the chosen model, a 
secondary CV split must be performed in order to facilitate 
the choice of the MLP architecture.  A formal explanation 
of this process follows. 
 
Each real world data set is first divided into 10 disjoint test 
(validation) sets of equal size (or as equal in size as 
possible).  Let D be the entire set of available labeled data.  
We define Vi (the ith test set) to be the ith subset of D such 
that the following hold:   
 
(∀i)(1≤ i ≤ 10 → Vi ⊂ D)    (1) 

  
D = Vi

i =1

10

U      (2) 

(∀i, k)(1 ≤ i, k ≤ 10 ∧ i ≠ k →

       Vi ∩ Vk = ∅ ∧ Vi − Vk ≤ 1)
   (3) 

 

Simply stated, equations 1 through 3 partition D into 10 
non-overlapping subsets any two of which differ in size by 
at most one element, and the union of which equals D.  For 
each test set Vi we define an associated training set Ti as 
follows: 
 
let Ti = D − Vi      (4) 
 
Each Ti is further subdivided into 10 disjoint holdout sets 
Hij in precisely the same way as was done with the data set 
D.   
 
(∀i, j )(1≤ i, j ≤ 10 → Hij ⊂ Ti )    (5) 

 
Ti = Hij

j =1

10

U      (6) 

(∀i, j, k)(1≤ i, j, k ≤ 10 ∧ j ≠ k →

       Hij ∩ Hik = ∅ ∧ Hij − Hik ≤ 1)
  (7) 

 
For each holdout set Hij we define an associated sub 
training set Tij as follows: 
 
let Tij = Ti − Hij     (8) 
 
Let λ be a function which takes as inputs a network 
architecture ϕ and a set of labeled training examples T and 
returns a fully trained network.  The general format for 
this function is then 
 
λ(ϕ, T)      (9) 
 
Where λ is the training algorithm, ϕ is the network 
architecture, and T is the training set.  For the network 
architectures tested in this paper it is sufficient to 
differentiate between them by expressing ϕ as an integer 
which is equal to the number of hidden nodes in the 
network, since the network architecture is restricted to be 
fully connected with a single hidden layer.  Let ρ be a 
function which takes as arguments a fully trained network 
and a labeled data set and returns the performance of the 
network on that data set.  There are several different error 
functions which can be used to measure the performance 
of a network.  For this paper we use the percentage of 
correct predictions.  The CV based procedure for choosing 
a network architecture is then for each Ti choose ϕ which 

maximizes ρ m ϕ , Tij( ), Hij( )
j =1

10

∑    (10) 

 
For a given Ti we define the network architecture chosen 
by CV to be ϕi.  The actual performance of ϕi is then 
estimated using the test set Vi.  There are several ways 
which this can be done.  One way is to retrain ϕi using the 
entire training set Ti, in other words use ρ(m((ϕι,Τιϕ),Vij) 
as the estimate for the actual performance of ϕi.  Another 
way is to combine the 10 separate networks obtained from 
training ϕi on the 10 different sub training sets Tij with 
some type of voting scheme.  The method which was used 
to estimate the performance of a particular architecture 



ϕ is to average the test set performance of the 10 networks 
trained on the 10 sub training sets, as shown in equation 
11. 
 

ρ m ϕ i , Tij( ), Vij( )
j =1

10

∑     (11) 

 
4.  Results 

 
4.1 Cross Validation and Real World Problems 

 
Table 2 reports the average generalization accuracy of CV 
based architecture selection on the 14 real world data sets 
introduced in section 4.1.  Each data set was tested on 
network architectures with a single hidden layer 
containing from 2 to 20 hidden nodes.  Equation 10 was 
used to select the winning network architecture.  The first 
column of table 2 lists the names for the data sets tested, 
and the third column (labeled CV) gives the average 
accuracy of the CV selected architecture on the test set for 
each of the data sets.  The table also reports the best and 
worst possible scores, where the 'best' column is the 
average test set accuracy obtained by choosing φ which 
maximizes 11, and the 'worst' column reports the average 
test set accuracy obtained by choosing φ which minimizes 
11.  The best column is an upper bound on the 
performance which can be achieved with the architectures 
and training techniques used in this paper, and the worst 
column gives a lower bound.  The 'avg' column reports the 
average score of all architectures tested for each data set, 
which is essentially the score that would be expected if an 
architecture was chosen at random for each training set.  
The last row of the table reports the average of each 
column. 
 

data set n=2 CV best worst avg
bc 69.14 66.30 70.90 59.54 64.65
bcw 95.38 94.92 96.05 93.41 94.61
bupa 71.37 72.64 74.34 70.15 72.12
credit 84.45 84.13 85.06 80.17 82.13
echo 86.60 86.51 89.42 84.14 86.71
hypoth 98.19 98.17 98.46 97.90 98.21
ion 87.36 88.76 89.87 86.40 88.25
promot 90.60 90.32 93.08 87.39 90.56
sick 97.49 97.53 97.66 97.26 97.49
sickeu 96.64 96.80 96.93 96.46 96.75
sonar 78.57 79.18 80.49 76.79 78.52
stger 74.06 72.88 74.51 68.45 70.82
sthear 78.93 77.07 80.52 73.93 76.85
voting 94.24 94.74 95.22 93.84 94.58
AVG 85.93 85.71 87.32 83.27 85.16  

Table 2.  Test results for CV. 
 
The average of all architectures across all data sets is 
85.16%, which is only slightly lower than the average 
score of the CV chosen architectures.  This means that CV 
is on average only slightly better than random at choosing 
between the available network architectures, and is 1.61 

percentage points below the upper bound on performance.  
However, CV does appear to provide some insurance 
against the possibility of particularly poor performance by 
almost always scoring at or slightly above the average 
architecture score for each data set.  When CV did score 
below the average architecture score, as it did with echo, 
hypoth and promot, it was at most 2 tenths of a percentage 
point lower than the average, but when it scored above the 
average it was as much as 2 percentage points higher.  
Interestingly, CV does not on average perform any better 
than the simplest (2 hidden nodes) network architecture 
tested.  The second column of table 2 reports the average 
test set results of the 2 hidden node network on each of the 
data sets.  The 2 hidden node network outperforms CV by 
0.22 percentage points on average at the 0.9 confidence 
level.   
 

4.2 Improving CV 
 
This poor showing by CV is surprising, but there are areas 
where improvement can be made.  The standard approach 
of choosing the architecture which maximizes the CV 
score may be overly optimistic in its trust of the scores 
which CV produces.  A very slight difference in holdout 
scores is probably not much better than zero difference in 
determining the best architecture.  Rather than selecting 
the network which maximizes the holdout set score as with 
equation 10, it may be better to accept a network of size n 
only if it significantly outperforms all other smaller 
networks.  We consider a score to be significantly better if, 
using the Student T-test, it can be said to be better at the 
0.9 confidence level.  This approach does offer significant 
improvement over standard CV, with an average 
generalization accuracy of 86.03% (versus 85.71% for 
CV) on the data sets tested. 
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Figure 1.  Average accuracy by architecture. 
 
Figure 1 gives the average generalization (test set) 
accuracy over all of the data sets tested for each network 
architecture.  As the complexity of the architectures 
increases the average generalization accuracy decreases 
rapidly until it levels off at the 7 hidden node architecture.  
It is interesting to look at the performance of CV (given in 
table 8) when it is limited to choosing between only those 
architectures which have either 2 or 20 hidden nodes (the 
maximum difference possible for the architectures tested), 
hereafter referred to as CV(2,20).  Intuitively, the results 
given in figure 1 would seem to imply that the poor 
average generalization performance of the 20 hidden node 
network will cause CV(2,20) to perform worse than the 
simple 2 hidden node network.  However, there is a higher 



probability that CV will choose the best architecture for 
CV(2,20) than for any other possible comparison due to 
the fact that CV is better at distinguishing between highly 
disimilar architectures than it is at distinguishing between 
similar architectures.  In fact, CV(2,20) does have a higher 
average generalization accuracy than the 2 hidden node 
network as shown in table 3.  The improvement is 
significant at the .95 confidence level.   
 

CV(2,20) 86.07
CV(2,3,4,5) 85.81

CV(2,3,4,5,20) 85.80
CV(2,3) 85.97

CV(2,6,10,15,20) 86.01  
Table 3.  Average accuracy 

 
The performance of CV quickly drops off when more than 
2 or 3 similar networks are tested.  But when testing 
networks that differ somewhat in their structure, more 
networks can be tested before it degrades the performance.  
For example, it would appear that restricting CV to the 
simplest 4 network architectures should produce good 
results, since the vast majority of significantly high test set 
scores occur with the 4 simplest architectures.  The second 
row of table 2 (CV(2,3,4,5)) gives the results for 
restricting CV to the 4 simplest architectures tested.  The 
confidence that this result is worse than CV(2,20) is .975.  
Adding the 20 hidden node network to the mix, 
CV(2,3,4,5,20), does not improve the average score of 
CV(2,3,4,5).  Once too many similar networks have been 
included in the CV comparison the addition of more 
network architectures does not generally improve 
performance.  Dropping the 4 and 5 hidden node networks 
(row 4 of table 3) leads to significant improvement.  
CV(2,20) still has a higher generalization accuracy on 
these data sets than CV(2,3), but the confidence that 
CV(2,20) is better than CV(2,3) is only 0.8.  The results 
for CV(2,6,10,16,20) show that if a reasonable difference 
between network architectures is maintained, more 
architectures can be tested before performance degrades. 

 
4.3 CV vs Other Learning Algorithms 

 
Table 4 compares the average generalization accuracy of 
CV(2,20) on the 14 data sets tested in this paper against 
several other well-known learning algorithms.  The 
comparison shows that CV and MLPs are capable of 
performing better than many of the learning algorithms 
which are frequently employed in the fields of machine 
learning and neural networks.  The other learning methods 
compared against are c4 [4][12], c4.5 [2], ib1[3][6], mml 
[4][12], and cn2 [5][10].  The results for these algorithms 
are taken from [13].  The average generalization accuracy 
for CV is better than any of the other learning algorithms 
compared against (> .95 confidence level). 
 

c4 c45 ib1 mml cn2 CV(2,20)
84.57 84.68 84.00 85.85 80.74 86.07  

Table 4.  CV vs other learning algorithms 
 

5. Discussion and Conclusion 
 

There are three general strategies that can be applied to 
CV based architecture selection to significantly improve 
its performance.  Through applying these strategies, CV 
based MLP architecture selection outperforms several 
other learning algorithms which are commonly used in the 
machine learning and neural network communities.  These 
strategies are: 
 
� Only choose a more complex network architecture if 

all simpler network architectures perform significantly 
worse.   

�  Restrict the set of networks which CV is choosing 
from to only the 2 or 3 simplest possible networks.   

� Restrict the set of networks so that none of the 
networks in the set are too similar in their structure.   

 
Each of these strategies individually produces significant 
improvement in the generalization accuracy of the network 
architectures which CV selects.  Various combinations of 
these strategies were tested, but for the data sets and 
architectures tested in this paper none of the combinations 
improved the performance over individual application of 
the strategies.   
 
Surprisingly, there is another strategy that performs almost 
as well on the real world data sets as the three listed above, 
which is to just use the simplest architecture.  The simplest 
network tested had a single hidden layer containing 2 
hidden nodes.  This architecture had an average 
generalization accuracy of 85.93%.  Of the various 
combinations tested, the best result obtained with CV was 
86.12%  for CV(2,6,10,15).  The confidence that 
CV(2,5,10,15) is better than the simplest network is 
relatively high at 0.975, but with an improvement of only 
0.19% the large amount of extra computation required by 
CV might not be worth it for many problems. 
 
The low correlation of the CV and test set scores, and the 
low probability that CV will choose the best architecture 
are causes for concern. Experiments on artificial data 
support the notion that one reason for this poor 
performance may be that there is simply not enough 
available data to reliably train and/or determine the 
optimal network architecture for the data sets tested in this 
paper.  In such a case, the simplest network architectures 
tend to perform as well or better than the more complex 
network architectures.   
 
There are several promising areas for future work.  One of 
these is the choice of which network architectures to 
include in the CV comparison.  For this study, the network 
architectures that were tested,  which were fully connected 
with a single layer of 2 to 20 hidden nodes, are relatively 
similar in structure.  It should be advantageous to use CV 
to test network architectures which exhibit even greater 
diversity between them, such as architectures with many 
more hidden nodes, or multiple hidden layers.  It would 
also be informative to extend the study to much larger data 
sets.  Another area which we plan to explore is the 
question of what to do once an architecture has been 
selected.  It is common practice to retrain the architecture 
with the entire available data set, but this approach runs 
the risk of generating a weight setting with poor 
generalization performance.  A better approach might be to 



use all of the 10 trained copies of the network architecture 
that CV produces in some sort of voting scheme such as 
Bagging.   
 
In conclusion, using the strategies proposed in this paper, 
CV based MLP architecture selection performed 
significantly better on average than several other learning 
algorithms.  From the analysis of the results on both the 
real world and the artificial data sets it appears that many 
of the real world data sets tested have insufficient numbers 
of training data, which undermines the reliability of the 
CV holdout set scores.  On larger data sets with adequate 
numbers of training instances it is likely that the 
correlation of the CV holdout set score with the true 
generalization performance will be even greater, and that 
CV will exhibit an even greater performance improvement 
over other learning models. 
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