

Cross Validation and MLP Architecture Selection

Tim Andersen and Tony Martinez
tim@axon.cs.byu.edu, martinez@cs.byu.edu

Computer Science Department, Brigham Young University

Abstract
The performance of cross validation (CV) based MLP
architecture selection is examined using 14 real world
problem domains. When testing many different network
architectures the results show that CV is only slightly
more likey than random to select the optimal network
architecture, and that the strategy of using the simplest
available network architecture performs better than CV in
this case. Experimental evidence suggests several reasons
for the poor performance of CV. In addition, three general
strategies which lead to significant increase in the
performance of CV are proposed. While this paper
focuses on using CV to select the optimal MLP
architecture, the strategies are also applicable when CV is
used to select between several different learning models,
whether the models are neural networks, decision trees, or
other types of learning algorithms. When using these
strategies the average generalization performance of the
network architecture which CV selects is significantly
better than the performance of several other well known
machine learning algorithms on the data sets tested.

1. Introduction

This paper examines the performance of cross validation
(CV) as an MLP (multi-layer perceptron) architecture
selection strategy. A primary advantage of CV is that only
the data is used to determine which architecture is
appropriate, without the requirement for user intervention
or the setting of any adjustable parameters. Unfortunately,
for a variety of reasons CV does not always perform as
well as desired. The purpose of this paper is to determine
empirically whether or not the expectation that CV based
architecture selection will generally perform well on real
world problems is justified. We also explore empirically
and discuss general strategies for increasing the likelihood
that CV will select a good architecture.

One of the major difficulties with MLPs lies in the
selection of the optimal network architecture for a given
problem. MLP architecture selection is concerned with the
number of layers in the network, the number of nodes in
each layer, the interconnections between the nodes, and so
forth. For any given learning problem there is an
essentially infinite number of possible MLP network

architectures, but only a small subset of these exhibit good
performance in general. A great deal of effort has been
devoted towards MLP architecture selection, and several
different methods which seek to automate (more or less)
MLP architecture selection are now available. These
methods include network construction, network pruning,
information based criteria such as MDL and MML, and
cross validation. In addition to architecture selection
strategies, there are regularization methods such as weight
decay, stopped training techniques, and bayesian
techniques which all seek to obviate the need to select an
optimal network architecture, instead using the most
complex architecture which can be practically
implemented and then using some other strategy to avoid
overfitting. However, no one of these methods has yet
proven to perform well on a large variety of problem
domains.

We define the "optimum" network architecture to be the
simplest network architecture which is capable of
representing the underlying function which generated the
training data. However, architecture selection strategies
are rarely if ever concerned with identifying the
"optimum" network architecture. A more pressing concern
is the probability that a given MLP architecture will
perform well after training. We define the network
architecture which is the most likely to perform well after
training on the available training data as the "optimal"
network architecture. The determination of the optimal
network architecture is thus highly dependent upon the
available training data and the idiosyncracies of the
training algorithm. Finding the optimal network
architecture is the goal of most (if not all) architecture
selection strategies.

This paper provides insight into the empirical performance
of CV on a variety of real world problem domains. To
date, there have been few studies which have focused on
the empirical performance of CV based MLP architecture
selection on a large number of real world problems. One
reason for this may be the enormous amount of
computation required for such a study. This study, which
applies CV to 14 different real world problems, utilized 74
unix workstations running continuously over a period of
approximately two and a half months. The studies in the
literature which specifically examine the performance of

CV and compare it with that of other methods [8][10][3]
analyze performance using only a few (1 or 2) data sets,
and so cannot be considered conclusive. A realistic
evaluation of the performance of CV based MLP
architecture selection on real world problems, including
strength and weaknesses, needs to be established. This
paper also examines the conditions which can affect the
performance of CV, such as the number of architectures
tested, the similarities between the architectures, the
degree of difference in CV holdout scores, the amount of
available training data, etc. It is important to be aware of
these items and how they can affect the performance of
CV in order to design a system which has a high
probability of finding an optimal architecture.

The results in this paper, which are presented in detail in
section 4, show that, at least on the real world data sets
tested in this paper, CV is on average only slightly better
than random architecture selection when choosing from
among a large number of potential architectures. The
main benefit of CV in this case is to decrease the
likelihood of choosing an extremely sub-optimal
architecture. Any potential increase in generalization
accuracy obtainable through CV based architecture
selection drops off rapidly as the number of tested
architectures increases. This is particularly true when the
architectures being compared are similar in their structure.
This means that using CV to compare several similar
network architectures, is not only wasteful of
computational resources but can also degrade the
performance of CV. However, if a reasonable difference
between network architectures is maintained, then more
architectures can be compared before the performance of
CV begins to degrade. Also, the probability that CV will
choose the optimal architecture is lower when the
difference between CV scores is small, and significant
improvement to generalization accuracy can be made by
only accepting a particular network architecture if all other
simpler architectures have significantly worse CV scores.

Section 2 discusses the problem of model selection, CV,
and real world problems. Section 3 gives the data sets and
methods used in this paper, and section 4 details the
results. The conclusion is given in section 5.

2. Model Selection and Real World Problems

One of the primary goals of machine learning is to produce
a general, automated learning algorithm which performs
well for all types of learning problems. This has been
proven to be an unattainable goal [7][9]. However, it is
possible to develop a learning algorithm that will perform
provably well for a particular problem or type of problems.
For the most part we are not interested in all types of
learning problems but are primarily interested in the "real
world" learning problems. To the extent that all real world
learning problems are similar, it should be possible to

develop a general learning algorithm which performs well
on them.

CV is an oft used method for comparing two or more
learning models to estimate which model will perform the
best on the problem at hand. With n-fold CV, the
available training data is partitioned into n disjoint subsets,
the union of which is equal to the original training set.
Each learning model is trained on n-1 of the available
subsets, and then tested on the one subset which was not
used during training. This process is repeated n times,
each time using a different test set chosen from the n
available partitions of the training data, until all possible
choices for the test set have been exhausted. The n test set
scores for each learning model are then averaged (or
summed), and the model with the highest average test set
score is chosen as the most likely to perform well on
unseen data. The standard practice for MLP model
selection is to use 10-fold CV, and this is the type of CV
which is tested in this paper.

The advantage of CV over other model selection strategies
is that in its basic form it is entirely data driven. But in
practice CV suffers from two major drawbacks. The first
drawback is that when it is used to select between two or
more models the estimate on model accuracy which CV
provides tends to be higher than the true model accuracy,
and this tendency becomes more pronounced as the
number of models tested increases. The second and
related problem is that, in general, the more models that
are tested the higher the probability that CV will fail to
select the best available model.

Research that has been done on CV based MLP
architecture selection includes a recent paper by Schenker
and Agarwal [10] where CV was found to be the better
than a few other architecture selection strategies at
choosing the optimal network architecture. However, the
comparison was based on only a single type of artificial
data and did not look at any real world problem domains,
and so these can not be considered conclusive. Another
paper by Kearns et. al. found that CV performs
significantly better than Minimum Description Length
(MDL) and Guaranteed Risk Minimization (GRM) [11] on
the intervals model selection problem [3]. Unfortunately,
the empirical results in this paper were also limited to a
single type of artificial data, and did not explore any real
world problem domains. Schaffer has also studied CV in
[7] and [8].

CV is also employed in stopped training, weight decay,
network construction algorithms, and network pruning
methods.

3. Data and Methods

The main intent of this paper is to examine the
performance of CV based MLP architecture selection on

real world problems, and so 14 real world problems were
selected from the UCI machine learning database
repository as a basis for the experiments. The choice of
which data sets to use was restricted to the binary
classification (two output) problems for the sake of
simplicity. The names and a short description of the 14
data sets are given in table 1.

The first column gives the name (or tag) used to identify
the data set throughout the rest of this paper. The total
number of attributes is listed in the third column, and the
fourth column gives the total number of examples
contained in the data set.

tag full name attributes instances
bc breast cancer 9 286
bcw breast cancer wisconsin 10 699
bupa bupa liver disorders 7 345
credit credit approval 15 690
echo echocardiogram 13 132
sickeu sick-euthyroid 26 3163
hypoth hypothyroid 26 3123
ion ionosphere 35 351
promot promoter gene sequence 57 106
sick sick 30 3772
sonar sonar 61 208
stger german credit numeric 24 1000
sthear statlog heart 13 270
voting house votes 1984 16 435

Table 1. Data sets.

3.1 Experiments

The MBP neural network simulator [1], which implements
a fast conjugate gradient descent training algorithm, was
used to train the various network architectures due to its
speed of training and relative ease of use. Since there is a
limited amount of available data for the real world data
sets, the accuracy of the model which CV chooses must be
estimated using CV. This implies that within each CV
split used to estimate the accuracy of the chosen model, a
secondary CV split must be performed in order to facilitate
the choice of the MLP architecture. A formal explanation
of this process follows.

Each real world data set is first divided into 10 disjoint test
(validation) sets of equal size (or as equal in size as
possible). Let D be the entire set of available labeled data.
We define Vi (the ith test set) to be the ith subset of D such
that the following hold:

(∀i)(1≤ i ≤ 10 → Vi ⊂ D) (1)

D = Vi

i =1

10

U (2)

(∀i, k)(1 ≤ i, k ≤ 10 ∧ i ≠ k →

 Vi ∩ Vk = ∅ ∧ Vi − Vk ≤ 1)
 (3)

Simply stated, equations 1 through 3 partition D into 10
non-overlapping subsets any two of which differ in size by
at most one element, and the union of which equals D. For
each test set Vi we define an associated training set Ti as
follows:

let Ti = D − Vi (4)

Each Ti is further subdivided into 10 disjoint holdout sets
Hij in precisely the same way as was done with the data set
D.

(∀i, j)(1≤ i, j ≤ 10 → Hij ⊂ Ti) (5)

Ti = Hij

j =1

10

U (6)

(∀i, j, k)(1≤ i, j, k ≤ 10 ∧ j ≠ k →

 Hij ∩ Hik = ∅ ∧ Hij − Hik ≤ 1)
 (7)

For each holdout set Hij we define an associated sub
training set Tij as follows:

let Tij = Ti − Hij (8)

Let λ be a function which takes as inputs a network
architecture ϕ and a set of labeled training examples T and
returns a fully trained network. The general format for
this function is then

λ(ϕ, T) (9)

Where λ is the training algorithm, ϕ is the network
architecture, and T is the training set. For the network
architectures tested in this paper it is sufficient to
differentiate between them by expressing ϕ as an integer
which is equal to the number of hidden nodes in the
network, since the network architecture is restricted to be
fully connected with a single hidden layer. Let ρ be a
function which takes as arguments a fully trained network
and a labeled data set and returns the performance of the
network on that data set. There are several different error
functions which can be used to measure the performance
of a network. For this paper we use the percentage of
correct predictions. The CV based procedure for choosing
a network architecture is then for each Ti choose ϕ which

maximizes ρ m ϕ , Tij(), Hij()
j =1

10

∑ (10)

For a given Ti we define the network architecture chosen
by CV to be ϕi. The actual performance of ϕi is then
estimated using the test set Vi. There are several ways
which this can be done. One way is to retrain ϕi using the
entire training set Ti, in other words use ρ(m((ϕι,Τιϕ),Vij)
as the estimate for the actual performance of ϕi. Another
way is to combine the 10 separate networks obtained from
training ϕi on the 10 different sub training sets Tij with
some type of voting scheme. The method which was used
to estimate the performance of a particular architecture

ϕ is to average the test set performance of the 10 networks
trained on the 10 sub training sets, as shown in equation
11.

ρ m ϕ i , Tij(), Vij()
j =1

10

∑ (11)

4. Results

4.1 Cross Validation and Real World Problems

Table 2 reports the average generalization accuracy of CV
based architecture selection on the 14 real world data sets
introduced in section 4.1. Each data set was tested on
network architectures with a single hidden layer
containing from 2 to 20 hidden nodes. Equation 10 was
used to select the winning network architecture. The first
column of table 2 lists the names for the data sets tested,
and the third column (labeled CV) gives the average
accuracy of the CV selected architecture on the test set for
each of the data sets. The table also reports the best and
worst possible scores, where the 'best' column is the
average test set accuracy obtained by choosing φ which
maximizes 11, and the 'worst' column reports the average
test set accuracy obtained by choosing φ which minimizes
11. The best column is an upper bound on the
performance which can be achieved with the architectures
and training techniques used in this paper, and the worst
column gives a lower bound. The 'avg' column reports the
average score of all architectures tested for each data set,
which is essentially the score that would be expected if an
architecture was chosen at random for each training set.
The last row of the table reports the average of each
column.

data set n=2 CV best worst avg
bc 69.14 66.30 70.90 59.54 64.65
bcw 95.38 94.92 96.05 93.41 94.61
bupa 71.37 72.64 74.34 70.15 72.12
credit 84.45 84.13 85.06 80.17 82.13
echo 86.60 86.51 89.42 84.14 86.71
hypoth 98.19 98.17 98.46 97.90 98.21
ion 87.36 88.76 89.87 86.40 88.25
promot 90.60 90.32 93.08 87.39 90.56
sick 97.49 97.53 97.66 97.26 97.49
sickeu 96.64 96.80 96.93 96.46 96.75
sonar 78.57 79.18 80.49 76.79 78.52
stger 74.06 72.88 74.51 68.45 70.82
sthear 78.93 77.07 80.52 73.93 76.85
voting 94.24 94.74 95.22 93.84 94.58
AVG 85.93 85.71 87.32 83.27 85.16

Table 2. Test results for CV.

The average of all architectures across all data sets is
85.16%, which is only slightly lower than the average
score of the CV chosen architectures. This means that CV
is on average only slightly better than random at choosing
between the available network architectures, and is 1.61

percentage points below the upper bound on performance.
However, CV does appear to provide some insurance
against the possibility of particularly poor performance by
almost always scoring at or slightly above the average
architecture score for each data set. When CV did score
below the average architecture score, as it did with echo,
hypoth and promot, it was at most 2 tenths of a percentage
point lower than the average, but when it scored above the
average it was as much as 2 percentage points higher.
Interestingly, CV does not on average perform any better
than the simplest (2 hidden nodes) network architecture
tested. The second column of table 2 reports the average
test set results of the 2 hidden node network on each of the
data sets. The 2 hidden node network outperforms CV by
0.22 percentage points on average at the 0.9 confidence
level.

4.2 Improving CV

This poor showing by CV is surprising, but there are areas
where improvement can be made. The standard approach
of choosing the architecture which maximizes the CV
score may be overly optimistic in its trust of the scores
which CV produces. A very slight difference in holdout
scores is probably not much better than zero difference in
determining the best architecture. Rather than selecting
the network which maximizes the holdout set score as with
equation 10, it may be better to accept a network of size n
only if it significantly outperforms all other smaller
networks. We consider a score to be significantly better if,
using the Student T-test, it can be said to be better at the
0.9 confidence level. This approach does offer significant
improvement over standard CV, with an average
generalization accuracy of 86.03% (versus 85.71% for
CV) on the data sets tested.

85.6

86.1

86.6

87.1

2 3 4 5 6 7 8 9 1011 12 1314 1516 17 1819 20

Figure 1. Average accuracy by architecture.

Figure 1 gives the average generalization (test set)
accuracy over all of the data sets tested for each network
architecture. As the complexity of the architectures
increases the average generalization accuracy decreases
rapidly until it levels off at the 7 hidden node architecture.
It is interesting to look at the performance of CV (given in
table 8) when it is limited to choosing between only those
architectures which have either 2 or 20 hidden nodes (the
maximum difference possible for the architectures tested),
hereafter referred to as CV(2,20). Intuitively, the results
given in figure 1 would seem to imply that the poor
average generalization performance of the 20 hidden node
network will cause CV(2,20) to perform worse than the
simple 2 hidden node network. However, there is a higher

probability that CV will choose the best architecture for
CV(2,20) than for any other possible comparison due to
the fact that CV is better at distinguishing between highly
disimilar architectures than it is at distinguishing between
similar architectures. In fact, CV(2,20) does have a higher
average generalization accuracy than the 2 hidden node
network as shown in table 3. The improvement is
significant at the .95 confidence level.

CV(2,20) 86.07
CV(2,3,4,5) 85.81

CV(2,3,4,5,20) 85.80
CV(2,3) 85.97

CV(2,6,10,15,20) 86.01
Table 3. Average accuracy

The performance of CV quickly drops off when more than
2 or 3 similar networks are tested. But when testing
networks that differ somewhat in their structure, more
networks can be tested before it degrades the performance.
For example, it would appear that restricting CV to the
simplest 4 network architectures should produce good
results, since the vast majority of significantly high test set
scores occur with the 4 simplest architectures. The second
row of table 2 (CV(2,3,4,5)) gives the results for
restricting CV to the 4 simplest architectures tested. The
confidence that this result is worse than CV(2,20) is .975.
Adding the 20 hidden node network to the mix,
CV(2,3,4,5,20), does not improve the average score of
CV(2,3,4,5). Once too many similar networks have been
included in the CV comparison the addition of more
network architectures does not generally improve
performance. Dropping the 4 and 5 hidden node networks
(row 4 of table 3) leads to significant improvement.
CV(2,20) still has a higher generalization accuracy on
these data sets than CV(2,3), but the confidence that
CV(2,20) is better than CV(2,3) is only 0.8. The results
for CV(2,6,10,16,20) show that if a reasonable difference
between network architectures is maintained, more
architectures can be tested before performance degrades.

4.3 CV vs Other Learning Algorithms

Table 4 compares the average generalization accuracy of
CV(2,20) on the 14 data sets tested in this paper against
several other well-known learning algorithms. The
comparison shows that CV and MLPs are capable of
performing better than many of the learning algorithms
which are frequently employed in the fields of machine
learning and neural networks. The other learning methods
compared against are c4 [4][12], c4.5 [2], ib1[3][6], mml
[4][12], and cn2 [5][10]. The results for these algorithms
are taken from [13]. The average generalization accuracy
for CV is better than any of the other learning algorithms
compared against (> .95 confidence level).

c4 c45 ib1 mml cn2 CV(2,20)
84.57 84.68 84.00 85.85 80.74 86.07

Table 4. CV vs other learning algorithms

5. Discussion and Conclusion

There are three general strategies that can be applied to
CV based architecture selection to significantly improve
its performance. Through applying these strategies, CV
based MLP architecture selection outperforms several
other learning algorithms which are commonly used in the
machine learning and neural network communities. These
strategies are:

� Only choose a more complex network architecture if

all simpler network architectures perform significantly
worse.

� Restrict the set of networks which CV is choosing
from to only the 2 or 3 simplest possible networks.

� Restrict the set of networks so that none of the
networks in the set are too similar in their structure.

Each of these strategies individually produces significant
improvement in the generalization accuracy of the network
architectures which CV selects. Various combinations of
these strategies were tested, but for the data sets and
architectures tested in this paper none of the combinations
improved the performance over individual application of
the strategies.

Surprisingly, there is another strategy that performs almost
as well on the real world data sets as the three listed above,
which is to just use the simplest architecture. The simplest
network tested had a single hidden layer containing 2
hidden nodes. This architecture had an average
generalization accuracy of 85.93%. Of the various
combinations tested, the best result obtained with CV was
86.12% for CV(2,6,10,15). The confidence that
CV(2,5,10,15) is better than the simplest network is
relatively high at 0.975, but with an improvement of only
0.19% the large amount of extra computation required by
CV might not be worth it for many problems.

The low correlation of the CV and test set scores, and the
low probability that CV will choose the best architecture
are causes for concern. Experiments on artificial data
support the notion that one reason for this poor
performance may be that there is simply not enough
available data to reliably train and/or determine the
optimal network architecture for the data sets tested in this
paper. In such a case, the simplest network architectures
tend to perform as well or better than the more complex
network architectures.

There are several promising areas for future work. One of
these is the choice of which network architectures to
include in the CV comparison. For this study, the network
architectures that were tested, which were fully connected
with a single layer of 2 to 20 hidden nodes, are relatively
similar in structure. It should be advantageous to use CV
to test network architectures which exhibit even greater
diversity between them, such as architectures with many
more hidden nodes, or multiple hidden layers. It would
also be informative to extend the study to much larger data
sets. Another area which we plan to explore is the
question of what to do once an architecture has been
selected. It is common practice to retrain the architecture
with the entire available data set, but this approach runs
the risk of generating a weight setting with poor
generalization performance. A better approach might be to

use all of the 10 trained copies of the network architecture
that CV produces in some sort of voting scheme such as
Bagging.

In conclusion, using the strategies proposed in this paper,
CV based MLP architecture selection performed
significantly better on average than several other learning
algorithms. From the analysis of the results on both the
real world and the artificial data sets it appears that many
of the real world data sets tested have insufficient numbers
of training data, which undermines the reliability of the
CV holdout set scores. On larger data sets with adequate
numbers of training instances it is likely that the
correlation of the CV holdout set score with the true
generalization performance will be even greater, and that
CV will exhibit an even greater performance improvement
over other learning models.

6. Bibliography

[1] Anguita, D., G.Parodi, R.Zunino - An efficient
implementation of BP on RISC-based workstations.
Neurocomputing, in press.

[2] Bartlett, P.L. (1997), For valid generalization, the size of the
weights is more important than the size of the network.
Advances in Neural Information Processing Systems 9, pp. 134-
140 Cambrideg, MA: The MIT Press.

[3] Kearns, Michael, Yishay Mansour, Åndrew Ng, and Dana
Ron (1997), "An Experimental and Theoretical Comparison of
Model Selection Methods," Machine Learning, vol 27, pp 7-50.

[4] Krogh, Anders, and John Hertz. "A Simple Weight Decay
Can Improve Generalization," In Moody, J.; Hanson, S.; and
Lippmann, R., eds., Advances in Neural Information
Processing Systems, volume 4, 950-957. San Mateo, CA:
Morgan Kauffmann Publishers.

[5] Prechelt, Lutz (1998), Automatic early stopping using cross
validation: quantifying the criteria. Neural Networks, 11, 761-
767.

[6] Rissanen, Jorma (1986), Stochastic Complexity and
Modeling. The Annals of Statistics, vol 14, no 3, pp 1080-1100.

[7] Schaffer, C. (1993), Overfitting avoidance as bias. Machine
Learning, 10, 153-178.

[8] Schaffer, Cullen. (1993), Selecting a classification method
by cross-validation. Machine Learning, 13, 135-143.

[9] Schaffer, C. (1994), "A conservation law for generalization
performance," Proceedings of the Eleventh International
Conference on Machine Learning. 259-265, Morgan Kaufman,
1994.

[10] Schenker, B, and M Agarwal. (1996), Cross-validated
structure selection for neural networks. Computers chem. Engng,
vol 20, no 2, 175-186.

[11] Vapnik, V. (1982), Estimation of Dependencies Based on
Empirical Data. Springer-Verlag.

[12] Weigend, D. H., D. E. Rumelhart, and B. A. Huberman
(1989), Generalization by weight-elmination with application to
forecasting. Advances in Neural Information Processing
Systems, pp 875-882, Morgan Kaufman, San Mateo, 1991.

[13] Zarndt, F (1995), A Comprehensive Case Study: An
Examination of Machine Learning and Connectionist Algorithms.
Masters Thesis Brigham Young University.

