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ABSTRACT

Prediction is a typical example of a
generalization problem. The goal of prediction is to
accurately forecast the short-term evolution of the system
based on past information. Neural network and fuzzy logic
techniques are used because they both have good
generalization capabilities. The embedding dimension
(number of inputs) and the time lag selection problem is
treated in this paper. It is proposed, that the selection of
the appropriate embedding dimension and time lag for the
input/output space construction plays an important role in
the performance of the above networks. It is shown that the
“traditionally accepted” choices for the embedding
dimension and time lag are not optimal. The proposed
method offers an improvement over the traditionally
accepted parameter choices. Different analytical
techniques for the determination of these parameters are
used, and the results are evaluated.

L INTRODUCTION

Time series analysis includes three important specific
problems: prediction, modeling, and characterizations.
Only the prediction problem is treated in this paper. A time
series is a sequence of observable quantities x;, X;, X3, . . . »
X, taken from a system at regular intervals of time. There
are different types of time series: linear/nonlinear,
stationary/nonstationary or chaotic time series. We are
more concermned with nonlinear, chaotic time series
because they are more difficult to predict them and are
often the case in most real life problems. The goal of
prediction is to accurately forecast the short-term evolution
of the system based on past information. Prediction is a
typical example of a generalization problem if a neural
network is used. The network is first trained on a set of
input-output pairs. The trained network is tested afterwards
with inputs, which are distinct from the inputs used for
training it (generalization test). The network is expected to
correctly predict the future outputs from the model it has
learned during the training session. Neural network and
fuzzy logic techniques are used, because they are both
capable of mapping an input space to an output space and
they have good generalization/interpolation capabilities
[1,2]. For the purpose of this paper the Elman recurrent
neural network [3] and the Adaptive Network-Based Fuzzy
Inference System (ANFIS) [4,5] are used.

II. THE PROPOSED METHOD

A. The input/output construction problem
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The first thing one has to deal with when modeling with
neural networks and fuzzy logic is the construction of the
input/output space. How many inputs are appropriate for
the network and what output is the network supposed to
give for specific inputs? In addition, how should these
input/output data pairs be constructed in order to get the
best possible results?

A common method in the literature suggests that, given a
time series, a time delay reconstruction of the input/output
space should be constructed, in order to view the dynamics
[1,6,7]. Thus, if the time series x(n) consists of n-
observations, time-lagged vectors of the following form
are defined:

[x(n), x(@+T), x(@+2T),. ..., x(@+ (m-1)T)]
where T is the time delay or time-lag and m is the
embedding dimension. The problem here is evident:
“Given a time series, what is the appropriate embedding
dimension and time lag for the input/output space
construction?”

In the next section, two different analytical methods are
discussed. These methods can give good indications
regarding the selection of the time lag T and the
embedding dimension m, in order to construct a desirable
input/output space.

B. Analytical Methods

Correlation analysis can be used to determine the
minimurn embedding dimension m for a time series [6].
Correlation analysis calculates the correlation dimension
as a function of the embedding dimension by using the
correlation integral [8,9]. The correlation integral is the
probability that a pair of points in the attractor are within a
distance R of one another. The number of points is counted
in the following manner. Whenever the correlation
dimension saturates, the attractor is unfolded for the
specific embedding dimension (m). The implication is that,
if one were to develop a model to simulate the behavior of
a time series and to predict its behavior, a maximum of m-
independent variables would suffice [6].

Hurst analysis can be used for studying the cyclical
behavior of time series [10,11]. Two important items of
information can be determined from Hurst analysis: the
Hurst coefficient and the average cycle length of the time
series. These cycles are good indication for determining
the time horizon one has to consider in order to predict the
next points in time. If, for example, a time series has an
average cycle length of 10-days it won’t be reasonable to
predict the 11-th day based on the 10-day history because
there is a trend change at day 10. Rather, it will be more
reasonable to predict on the 10-th day from the last 9-day



history because within the 10-day cycle the trend is still
persistent. Thus the selection of the embedding dimension
(m) and time lag (T) in the input/output construction
should exploit the average cycle length. In other words, the
empirical formula: m*T = average cycle length can be
considered for the determination of the above parameters.

C. Simulation results

For simulation studies of the techniques described above,
two different popular time series are used, the Mackey-
Glass time series [12] and the monthly sun spot data [13].
To allow comparison with earlier work, the simulation
settings are as close as possible to those reported in [4, 14].
One step prediction as well as multiple step prediction with
both the Elman recurrent neural network and the ANFIS
network is performed. Different values for the embedding
dimension and time lag are used, and the non dimensional
error index [14] is recorded in order to check if the
previous analytical methods can give good indications for
choosing the appropriate input/output space. For example,
when predicting the Mackey-Glass time series with the
ANFIS network (one step prediction) the results are shown
on Tatie 1. The first 500 input/output data pairs are used
as the training data set, and the remaining 500 pairs are
used for prediction purposes (one step prediction).

ANFIS (One step prediction)
Time lag | Non dimensional | Non dimensional

@) error index error index
m =5 m=6
1 0.0025 0.0021
2 0.0144 0.0086
3 0.0244 0.0070
4 0.0171 0.0013
5 0.0039 0.0013
6 0.0070 0.0025
7 0.0104 0.0022
8 0.0119 0.0016
9 0.0143 0.0018
10 0.0068 0.0027
11 0.0146 0.0047
12 0.0183 0.0042
13 0.0158 0.0029
14 0.0154 0.0040
15 0.0141 0.0043
16 0.0173 0.0049
17 0.0165 0.0053

Table 1 Predicting the Mackey-Glass with the ANFIS
using different parameters.
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In order to show that better prediction results can be
achieved with different values of embedding dimension
and time lag, numerous simulations were carried out.
ANFIS was trained for 500 epochs each time and the non-
dimensional error index was recorded for an embedding
dimension of five and six, with different time lags in the
range 1....17. Because the number of linear and nonlinear
parameters grows exponentially with the number of inputs,
ANFIS cannot be tested with an embedding dimension of
10. In fact, for an embedding dimension greater than six,
ANFIS becomes very inefficient. Therefore ANFIS was
tested with m =5 and 6.

The following useful conclusions can be derived from the
above results:

1. The traditional selection of m =5 and T = 6 is not the
best choice for the embedding dimension and the time
lag respectively (non-dimensional error index =
0.0070).

2. In order to exploit the 50-step average cycle, m = 5
and T =10 length (5*10 = 50) were chosen. The NDEI
is 0.0068, which is better than the traditional selection,
though there is not a great improvement (3%).

3. Very good predictions can be achieved when T = 1.
That is because one step prediction is being applied,
and it appears that time lag 1 training vectors work
well in one step prediction. In other words, since the
network is fed with the last updated points at each
time, when only the next value is to be predicted, time
lag 1 seems to work well for the training,.

4. Similar conclusions can be derived for m = 6. When T
= 8 (m*T = 48), the NDEI = 0.0016 which gives a
77% improvement over the traditional error.

5. Surprisingly, when m, T are chosen to exploit half the
average cycle length the smallest errors can be
achieved. Form = 5, T = 5 (m*T = 25), the NDEI =
0.0039. For m = 6 and T = 4 (m*T = 24), the best
prediction with NDEI = 0.0013 (81% improvement
over the traditional error) is achieved. The network
seems to work better if the input/output training set is
constructed with a time horizon equal to half the
average cycle length. This is because there is a major
change around the middle of the 50-step average
cycle. The network prefers to be trained based on this
25-step trend change rather than the 50-cycle length.

Multiple step prediction is usually required in real life
prediction problems. In this kind of prediction, one step
ahead is initially predicted, and afterwards the first
prediction is fed back in order to predict the value two
steps ahead. By feeding back the last prediction, multiple



step prediction can be achieved. Most forecasting
techniques do not perform very well in multiple step
prediction [4, 14-16]. Thus, in order to check if the
selection of initial parameters is important, multiple step
prediction simulations are applied.

Correlation analysis can give a strong indication of the
chaotic nature of the Mackey-Glass time series. This
indication for chaotic behavior implies that the time series
-is predictable strictly in the short term. A 13-step

prediction was attempted, and simulation tests were
conducted to investigate ANFIS behavior. The training
data set x(101)-x(600) was used again, and the next 13
values were predicted. The network was trained for 100
epochs and for embedding dimensions m € [3,6] and time
lags T e [1,15]. The non-dimensional error index (NDEI)
was used as a performance measure. The results are shown
in Table 2. The following conclusion can be derived from
these results:

1. When m and T are close to half the average cycle
length (25) very good predictions can be achieved. For
example, when m = 4, T = 6 (m*T = 24), the NDEI =
0.1259. For m = 5, T = 5 (m*T = 25), the NDEI =
0.0148. The reasons are the same as those stated

earlier.
ANFIS (Multiple Step Prediction)

Time NDEI NDEI NDEI NDEI
Lag m=3) |m=4) |m™=5) |m=6)
1 2.0264 | 0.4928 | 0.3802 | 0.6513

2 22706 | 1.2661 | 2.1860 | 1.7981
3 3.7459 | 4.0591 | 0.3377 | 0.0663
4 5.6565 | 2.4305 | 0.0916 | 0.0030
5 6.0270 | 0.4479 | 0.0148 | 0.0030
6 1.4305 | 0.1259 | 0.0176 | 0.0093
7 0.8650 | 0.1396 | 0.0392 [ 0.0054
8 0.6552 | 0.3990 | 0.0920 | 0.0022
9 0.4450 | 0.5098 | 0.0179 | 0.0018
10 0.2474 | 0.3895 | 0.0325 | 0.0187
11 0.2701 | 0.4750 | 0.0115 | 0.0256
12 0.4485 | 0.2553 | 0.0683 | 0.0067
13 0.7143 | 0.0607 | 0.0637 | 0.0041
14 1.0229 0.0939 0.1399 0.0050
15 1.4517 | 0.2823 | 0.0278 | 0.0061

Table 2 Error index for 13-step prediction,
with different parameters

2. Better results can be achieved when the time horizon
is chosen around 50 (average cycle length). For
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example, form =5 and T = 11 (m*T = 55), NDEI =
0.0115. The 25-step trend change appears to be not as
important in multiple step prediction.

The choice of T = 1 does not work well here as in the
case of one step prediction. Predicting several steps
ahead is not the same as predicting one step at the
time. The reason is that the prediction one step ahead
is more correlated than the prediction two steps ahead,
and so on. When predicting 13 steps ahead,
knowledge of initial conditions is lost. Constructing
the appropriate input/output space seems to be helpful,
since better predictions can be achieved for a longer
future time horizon. Thus, choosing the appropriate
initial parameters is more crucial in multiple step
prediction, than in one step prediction.

The best predictions can be achieved when m = 6 and
T = 9 (NDEI = 0.0018). It can be seen that m*T = 54
is very close to the traditional 50-step average cycle
length.

Similar results were achieved when predicting with the
Elman neural network (one step and multiple step
prediction), and in the case of the sun spot data [17].

HI. CONCLUSIONS

The selection of the appropriate embedding dimension and
time lag for the input/output space construction plays an
important role in the performance of the networks that
have been used for time series prediction. The proposed
method offers an improvement over the “traditionally
accepted” choices. The analytical methods described in
Section A are helpful for determining the appropriate
embedding dimension and time lag for a given time series.

When performing one step prediction, choosing a time lag
of one is generally the best choice for the input/output
vector construction. However, in multiple step prediction,
the suitable embedding dimension m and time lag T are
very important factors. The empirical formula:

m * T = average cycle length

can be considered for the determination of the above
parameters. This paper has shown that better performance
is obtained with the appropriate values of the embedding
dimension and time lag. An embedding dimension greater
than the appropriate one does not dramatically improve the
prediction results.

This paper demonstrated that good one step prediction is
obtained when the time horizon extends to half the average



cycle length. This was because of the dynamics of the time
series that were used. Both have a potential trend change at
about half of their period. However, this is not the case
when performing multiple step prediction. The reason is
that the prediction one step ahead is more correlated than
the prediction two steps ahead, and so on. When predicting
multiple steps ahead, the knowledge of initial conditions is
lost. Constructing the appropriate input/output data pairs
seems to work better, since better predictions can be
achieved.
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