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Abstract information using neural oscillator networks. Our method

An image segmentation method is proposed based on thconsists of two parallel pathways for motion and luminance,
integration of motion and luminance information. The respectively. The motion pathway has two stages. First,
method is composed of two parallel pathways that proces:'oca| motions a.re.estimated by an adaptive temporal block
motion and luminance, respectively. Inspired by the visualMatcher, a variation of the Reichardt detector [7]. In the

; . second stage, locations are grouped based on motion
Syf’itrinl’ thle m(l)“r(r:ntip ?lthv,l’?y h?is ;W?,vitﬁ?eﬁ ) their?frsrtrst?gsimilarity in a multilayered LEGION network. LEGION is
estimates focal motion at focations eliable Informa- ased on the idea of oscillatory correlation [5, 14, 11],

tion. The ;econd stage groups locations bgsed on the_'whereby phases of neural oscillators encode region labeling.
motion estimates. In the parallel pathway, the input scene isy order to complement the initial motion segmentation, a
segmented based on luminance. In the subsequent integristationary scene analysis is performed in parallel in the
tion stage, motion estimates are refined to obtain the finaluminance pathway also using a LEGION network [14].
segmentation result in the motion pathway. For segmentaNext, the integration stage refines motion estimates. The
tion, LEGION (Locally Excitatory Globally Inhibitory final segmentation is obtained in the motion network based
Oscillator Networks) is employed whereby the phases o0n the refined estimates.

oscillators are used for region labeling. Results on syn-

thetic and real image sequences are provided. The following section describes the two building blocks of

our method. Next is the detailed presentation of our method.
Finally, its performance is demonstrated on both synthetic

. and real scenes, and conclusions are drawn.
1. Introduction

A central problem to computational investigation of motion
perception is the selective integration of local motion

estimates. Most approaches assume that motion integratia 2.1 Ter_nporal block_matcher (TBM) .
can be addressed using only motion information. However 1 BM detects different velocities by comparing luminance
recent studies, e.g. [10, 4], show that the assumption maWithin a block,Ng , with those located at different distances

not be valid. Their investigation is based on a well known&nd directions on the previous snapshot (frame) of the scene
visual stimulus, namely plaids, which are constructed by the2S Shown in Figure 1. At locatiofx, y) ~ and timethe

2. Background

superimposition of two moving gratings at different cOrrelation corresponding to displacement (r,,r) ., is:
orientations. When presented, observers report either . | 1(j,k,t)

coherentmotion corresponding to that of the plaid or a pair  V; (X ¥ )= TR Z1G o k=1 t=D)] 1)

of componenimotions belonging to the gratings. Without (i, k) ONg(x, y)’ ' X y'

changing the underlying motion, when the luminance at the
intersection of the gratings is varied to support that gratingswherel (x, y, t) is the luminance at locatigr, y)  in frame
belong to two different surfaces, component motions aret and N is centered at locatidix,y) . As in that of (1),
more frequently perceived. Consistent with their denominators in all expressions include a small quantity to
observation, other studies [9,12] also indicate that non-avoid division by zero. Note that a large correlation implies
motion cues, e.g. stereo, might play a role in motiona high probability for the displacement,= (r,,r,)  at
integration. Similarly, engineering studies, e.g. [2], (X, ¥).
demonstrate that the inclusion of luminance information
improves motion-based segmentation. 2.2 LEGION

LEGION is based on the idea of oscillatory correlation [5,
Motivated by these studies, we propose a segmentatiol4, 11], where the phases of the neural oscillators encode the
method based on the integration of motion and luminancegrouping of locations with similar stimuli. The building



block of a LEGION network is a single relaxation oscillator, Whether an oscillator can become active also depends on
i, and is defined as a feedback loop between an excitatorthe global inhibitionz :
unit x; and an inhibitory uniy; [14,11]: dz/ di = H[ S H (%) _1} _,
dx/dt = 3x —x3+ 2—y.+ S+ p (2a) K
When no oscillator is active, decays to 0, otherwise it rises
dy,/dt = g%} El + tanh%ﬁ %—yi% (2b)  to 1. Sole leadership allows an oscillator to jump only when
B z<0.5, as indicated by the last term in (3). Otherwise, an
Here S denotes couplingy s the variance of Gaussiaroscillator can become active only when it has strong
noise, andn an@ are system parameters. The parametcouplings with currently active oscillators. Parameters
€ is chosen to be a small positive number so that (2) defineincludinge ,p ,a , .6, , and the weight&/,  abd, are
a relaxation oscillator where the x-nullclirdxy dt = 0 )is constant andM, is defined for a particufar featire space,
a cubic curve and the y-nuliclindy/ dt = 0 ) is a sigmoid, €.9- luminance, motion. A common form of a LEGION
as shown in Figure 2A. Only when these curves intersecnetwork is a two dimensional (2D) array of oscillators and a
along the middle branch of the x-nullcline, the system isglobal inhibitor (see Fig. 4B below).
oscillatory. Oscillatori  travels along the left branch (LB) )
reaching the left knee (LK) and jumps to the right branch 3. The Method: Adaptive TBM and LEGION
(RB), where it becomeactive After traveling along RB, it  Our method is shown in Figure 3 where the motion pathway,
reaches the right knee (RK), where it jumps back to LBoutlined in a box, performs motion analysis. The parallel
completing a limit cycle. A temporal trace of several limit pathway segments the scene based on luminance.
cycles of an oscillator is depicted in Figure 2B. Performing occlusion analysis, estimates are refined to
obtain the final segmentation in the motion network.
S includes a variable called lateral potential and coupling
from neighboring oscillators and a global inhibitor: 3.1 Motion Pathway
_ Consistent with psychology and neurophysiology (see [8]
S = 2 Wi H(4) + WoH(p 0.5 -W,H(z-0.5) (3) o 4 review), our method has two stages for motion
KON estimation and grouping, respectively.

Here, W, is the connection weight from oscillator  to
oscillatori , H (.) is the Heaviside step function. and
W, are the weights for the potentigl, , and t%e global A

inhibition, z, respectivelyN represents a local coupling
neighborhood, e.g. four nearest neighbors. Each oscillatoris 20

When an oscillator is active and has a number of active
neighbors more thaB, in ifd,, its potential rises to 1.
Oscillators that maintain high potential are referred to as
leaders while others are called followers. Groups of strongly -5 2 1 0 1 5
coupled oscillators are candidates to form segments. X

However, due to the potential term, only when a group has

a leader can it form a segment. Oscillators that cannot

become active form background. RB—

assigned the potential variablep, , to distinguish dy/dt= 0
homogeneous regions from noisy ones: 15
dpi/dt = (1—p-)H[ > H(x)—e}—sp-
! S RO N B 101 gx/dt= 0 .
. . : . y . -
whereN, >N is the potential neighborhood. The potential 5 <« —— RB
of an oscillator is initially high but continuously decays. L{%\\L‘K e \\ /

\
\
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—_—
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Figure 2. A) Phase plane diagram of a single oscillator. The
x-nullcline is the dotted line and the y-nulicline is the solid

Framet-1 Framet line. The oscillator produces a limit cycle, drawn as thick
Figure 1. TBM cross-correlates luminance within solid line.B) The temporal activity of the oscillator in A,
Ng = 3x 3 in two subsequent frames to detect the motionWhere € = 0.005,a = 10.0,p = 0.02,1; = 2.0, and
correspondingto = (1,1) pixel/frame. p = 0.02.




We apply an adaptive TBM to calculate the correlation
corresponding to displacement= (r,,r,) In order to allow for multiple overlapping motions, i.e.
- - motion transparency [3], our method represents each
= + +
Vi %D =V (o ) v Oyt ) “) velocity with a LEGION network as depicted in Figure 4A.
whereV, (x, y, f) is the correlation &tx, y)  between the The coupling weight between two oscillatarsndk, on a
framesf and—1 as givenin (1). We have a total numbervelocity layerr is given by:

of L =(2R+ 1)? different velocities corresponding to a set V(i) *+ V. (K)
of displacements varying fromR tB in the x- and y- L S e —
directions. In estimation, we also employ local spatial ‘Vr(l) _Vr(k)‘

correlation surfaces (SCS). An SCS is obtained by applyincwhen oscillators have similar correlations for a particular
(1) within the same frame. Replacing luminance blocks withdisplacement, they are strongly coupled in the

SCSs, a cross-correlatiogy,(x, ¥, ), is obtained using (4).corresponding velocity layer. At locations without

Consequently, the temporal correlation @t vy, 1) for estimates, couplings are set to zero. We reface  in (3) by
displacement = (rX, ry) is defined as: S, =H (Sri _eM) whereeM is a threshold and

VoY, ) = v (XYt +c (XYt 5 -

(XY 9 (XY ) e (XYt ) o W, , H(x) — W, H(z—0.5)

The shape of a cross-correlation surface depends on th ! KON (i)

underlying luminance structure at a location. In order to L

obtain a unique solution in the presence of aperture+w H(Pri—0-5)H(Mi—0-25)H{ 2 H(V, -V, i)—L}
problem, as in the case of a straight border, we multiply the P q=1 d
cross-correlation surfac®| , obtained using (5) with a 2D

Gaussian centered at zero velocity:
_ 0 Irl20y, The lastH (.) only allows for a single leader within each

Ve (v 9 ZHGZEXDD_ZGZDVr (%9 © velocity co(lljmn. yDue to this corr?petition within each
where ¢ is large enough to allow the maximum velocity column, the oscillator with the largest correlation becomes
considered. We assume the displacement, , yielding th@ winner. Provided that a winner has sufficiently high
peak correlationV, , to be the local motion estimate atmobility and potential, it becomes a leader and starts
(%, v, ). Note that a peak obtained for a location along a
straight border may not be as well-localized as that of a
corner. In order to quantify these differences, we define an
estimate certainty along a direction axis which is ,/V
perpendicular to the speed axis passing through origie and /'
in the cross-correlation space. Droppifgy, 1) from the
expressions, the certainty, ,ef is given by:

( ) ( ) 0 t iy

V_ -V V. -V

e e e—k e e+ k (7) F— — — = _ — — 4
2Ve—V, -V

The second H(.) multiplyingW ensures that only
locations with large mobility values can become leaders.

e+k | - ) | )
Here, e—k and e+ k are the nearest neighboring | Xr?atl)lgll?i/s i Eg/tli?rt]lgtri]on I Sl_e%r:\nlggpaciieon
displacements te along the direction axis and correspond |
to correlations/,_, an¥,, |, , respectively. According to |
(7), the larger, is, the sharp®f,  is and the more certain |
the estimateg | is. I Motion | Occlusion

An estimate and its certainty are obtained at locations that Segmentatior Analysis

satisfy a reliability criterion quantified byraobility value !_ ' J| ‘

(5, K) DNy (% y) Motion
M (X, yv t) = B (8) 1
Z 1G,k,1) Refinement

(1K) DNy (% 3) 8;'@

whereN,, is the mobility neighborhood. A large value at a
location indicates a high probability of motion at that
location. Based on mobility valuebl; is selected at each
location. Initially smallNg is expanded until it includes
sufficiently large total and average mobility or its size
reaches an upper limit. Unless the limit is reached, (6) and
(7) are employed to obtain an estimate and its certainty.

Figure 3. The flow diagram of our method. Processing
progresses downward. Occlusion analysis facilitates the
refinement of motion estimates based on which the final
segmentation is obtained in the motion network.



forming its segment. A leader recruits oscillators on its layerocclude the homogenous one. Otherwise, the two regions
through local couplings when they have similar are assumed to move together.

correlations. As in the single layer LEGION network,

recruited oscillators become active simultaneouslyIn the second step of the integration stage, estimates along
(synchronization). Because of the global inhibition acrossan occluding boundary are eliminated in occluded regions.
all layers, leaders form their segments at different timesThe remaining estimates in each luminance segnient,
(desynchronization). Also, note that an oscillator caninteract iteratively and result in a segment velogity, , for
become active when it is a leader or a follower recruited bythat segment:

a leader on its layer. Since there could be several follower:

in the velocity column of a leader, more than one oscillator rg=0 5 o' (xyrx y)%/QTB (9a)

at a single location can become active representing differen (x,y) OB

motions. This ability has a key role in the representation of o 0 r(x,y) erl 0

motion transparency. w'tl(xy) = © (XT’ ) SR/ O (9b)
Qe 0 Jiroxyifrg| B

3.2 Luminance Pathway
The parallel luminance pathway processes the middle fram:
of the sequence analyzed in the motion pathway. In this

pathway, where also a LEGION network is employed asmagnitude ofa .In(9a)y§ is determined by weighing the

depicted in Figure 4B, we assume that each region i< . ' " 1
approximately homogeneous. The coupling weight betweer‘aStIrnateS inB by their certainties. In (k) **(x,y)

two oscillators,i andk , is defined as:

= 1) +1(k)

ki) =1 ()|
When locations have relatively similar luminance, a strong
coupling weight results. We employ the network model
given in (3) by replacingg,  witld (S—65) wherg; s
a threshold. Strongly coupled oscillators with at Ieast one
leader become synchronized. Oscillators corresponding to
regions with different luminances become desynchronized.
When oscillators correspond to textured regions, they tend
not to have strong couplings and thus, leaders. Lacking
leaders, they do not form segments and are distinguished
from homogeneous regions, a distinction that has a
significant role in the integration stage.

Here,ri andQf are the segment velocity and the sum of
certainties,w' (x, y) , inB at iteration step , respectively.
a+ b is the dot product of vectoss amd , didl is the

3.3 Integration Stage
The first step of the integration stage is an occlusion
analysis. It first considers motion segments. When all
locations in a motion segment belong to a textured region,
estimates in this segment are not changed. However, when
the majority of locations belong to multiple homogenous
regions, an occlusion relationship among these regions is
obtained by detecting T- and X-junctions. A T-junction
detected among three homogenous regions indicates the B
occluding opaque region and the occluded ones. An X-
junction shows which two of the four homogeneous regions
form a transparent occluding surface [6, 1]. Our method
detects T- and X-junctions by applying a set of templates to
the luminance segments.

When a segment includes both textured and homogenous

regions, the occlusion relationship among them is resolved - —
by determining two types of motion distributions in the
homogenous regions. The first one includes estimates at all

locations. The second one considers only those along thFigure 4. Neural network architectures. Small ellipses
boundary of a textured region. When the peak of the firsirepresent oscillators. The black circle is the global inhibitor.
distribution is the same as that of the second in aA) Multilayered motion network where each velocity layer
homogenous region, the textured region is assumed tis a LEGION networkB) 2D luminance network.



increases whem (x,y) and;  have a similar direction. segment velocities as shown in Figure 6B. Note that
Finally, whenw'*1(x,y)'s inB do not change} is locations in the overlapping area are assigned both
assumed to have converged to its final valge, . As aresulivelocities. Thus, the final result includes two overlapping
rg is filled-in at all locations iB . square segments as depicted in Figure 6C.

The motion interaction in (9) takes place in all luminance An intriguing visual illusion occurs when gratings move

segments. Since textured regions, which already havidehind an aperture. Gratings in Figures 7A and C move
reliable estimates, do not form luminance segments, thevertically upward. When the aperture is circular, the motion
motion interaction does not take place in these regions. is perceived to be in the perpendicular direction to the

grating orientation, consistent with our result shown in

Also, noting that large homogeneous regions touchingFigure 7B. When the aperture is rectangular, our method
image borders tend to be perceived stationary, prior to (9)results in a distribution of velocities which are parallel to the
estimates of zero velocity are assigned to locations withoulonger axis of the aperture mimicking the barber pole
estimates in luminance segments along the image borders.

A

Following the integration stage, couplings in the motion
network are updated based on the refined estimates and the
final segmentation result is obtained.

4. Results

We demonstrate the performance of our method using both
synthetic and real scenes. Figure 5A shows an input scengd
where two vertical rectangles are moving toward each other
while a horizontal one is moving downward. In the motion
pathway, first, the mobility image is obtained using (8) as
shown in Figure 5B. Next, local motions and their
certainties are estimated at locations with large mobility
values, as depicted in Figures 5C-D. As shown in Figure 5E,
the initial motion segmentation is based on these estimates.

Note that erroneous estimates in occluded regions along
occluding boundaries cause inaccurate segmentation.
However, the segmentation result in the luminance pathway, H
as shown in Figure 5F, matches well with the input scene. In
the subsequent integration stage, the occlusion analysis is | -~ -
performed using these segmentation results. Having o
detected T-junctions as depicted in Figure 5G, it is found RERE:
that the large vertical rectangle occludes the backgroundand | - -
the horizontal rectangle, which, in turn, occludes the
background and the small vertical rectangle. Figures 5H-I

show the remaining estimates and their certainties afteiz. 5 A tati 18) The middle f f
removing the ones in the occluded regions along the'9ure S.A segmentation exampld) The middie frame o
occluding boundaries. Finally, the motion interaction takestN€ iNPut sequences) Mobility analysis. C-D) Motion
place in luminance segments, filling-in their locations with €Stimates and their  certaintiesE)  Initial - motion
their resulting segment velocities as illustrated in Figure 5JS€gmentationF) Luminance Segmentatio) Occlusion

The final segmentation result based on the refined estimate2nlysis where T-junctions are detectedl) Unreliable

is shown in Figure 5K and compares well with the regions€Stimates and their certainties are removgdhe result of -
and their motions in the input scene. Note that themotion interaction where estimates are refined and filled-in.
homogenous background is assigned zero velocity due i) Final motion segmentation.

the introduction of estimates along the image borders.

A

The input scene in Figure 6A is composed of two squar
regions. The upper region moves in the right and downwar
direction while the lower one is having a left- and downward
motion. In the center of the scene, the regions overla
transparently. Similar to the example in Figure 5, the scen
is processed and initial segmentation results are obtained in ) ]
the two pathways. By detecting X-junctions, transparency isFigure 6. Motion transparencyA) The middle frame of the

inferred and locations in each region are filled-in with their inPut  sequence.B) Refined motion estimatesC)
Overlapping segments represent motion transparency.




illusion [13] as shown in Figure 7D. for visual clarity.

Our method also performs well with real scenes. In Figure 5. Conclusion

8A, a rider and his motorcycle move diagonally left and We proposed a segmentation method based on the
downward while the background appears to move in theintegration of motion and luminance information. Our
opposite direction due to the camera motion. Our methocmethod is able to represent motion transparency and deal
eliminates erroneous estimates in the occluded regions, e.with occlusion in both synthetic and real scenes. It can also
homogenous background occluded by the motorcycle. Themimic visual illusions. Since our neural network
final result segregates the rider and his motorcycle from thearchitecture is biologically plausible, our method has
background as shown in Figures 8B. Similarly, in Figure implications for new psychophysical experiments to study
8C, the camera pans to the right. Due to their differenthuman visual system.

distances to the camera, a woman and two dish antenns

appear to have different motions. Our method is able to dez Acknowledgments
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initial size of N, . For all results, the threshold set,
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where 85°= 50 . Numerical subscripts, 1 and 2, @,

correspond to initial and final segmentations, respectively.[z]
Motion estimates in Figures 5-7 are spatially subsamplec
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Figure 7. Barber-pole illusion. The input scenes and the
resulting motion distributions when the apertureAi8)
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