
Abstract
An image segmentation method is proposed based on the

integration of motion and luminance information. The
method is composed of two parallel pathways that process
motion and luminance, respectively. Inspired by the visual
system, the motion pathway has two stages. The first stage
estimates local motion at locations with reliable informa-
tion. The second stage groups locations based on their
motion estimates. In the parallel pathway, the input scene is
segmented based on luminance. In the subsequent integra-
tion stage, motion estimates are refined to obtain the final
segmentation result in the motion pathway. For segmenta-
tion, LEGION (Locally Excitatory Globally Inhibitory
Oscillator Networks) is employed whereby the phases of
oscillators are used for region labeling. Results on syn-
thetic and real image sequences are provided.

1.  Introduction
A central problem to computational investigation of motion
perception is the selective integration of local motion
estimates. Most approaches assume that motion integration
can be addressed using only motion information. However,
recent studies, e.g. [10, 4], show that the assumption may
not be valid. Their investigation is based on a well known
visual stimulus, namely plaids, which are constructed by the
superimposition of two moving gratings at different
orientations. When presented, observers report either a
coherent motion corresponding to that of the plaid or a pair
of component motions belonging to the gratings. Without
changing the underlying motion, when the luminance at the
intersection of the gratings is varied to support that gratings
belong to two different surfaces, component motions are
more frequently perceived. Consistent with their
observation, other studies [9,12] also indicate that non-
motion cues, e.g. stereo, might play a role in motion
integration. Similarly, engineering studies, e.g. [2],
demonstrate that the inclusion of luminance information
improves motion-based segmentation.

Motivated by these studies, we propose a segmentation
method based on the integration of motion and luminance

information using neural oscillator networks. Our method
consists of two parallel pathways for motion and luminance,
respectively. The motion pathway has two stages. First,
local motions are estimated by an adaptive temporal block
matcher, a variation of the Reichardt detector [7]. In the
second stage, locations are grouped based on motion
similarity in a multilayered LEGION network. LEGION is
based on the idea of oscillatory correlation [5, 14, 11],
whereby phases of neural oscillators encode region labeling.
In order to complement the initial motion segmentation, a
stationary scene analysis is performed in parallel in the
luminance pathway also using a LEGION network [14].
Next, the integration stage refines motion estimates. The
final segmentation is obtained in the motion network based
on the refined estimates.

The following section describes the two building blocks of
our method. Next is the detailed presentation of our method.
Finally, its performance is demonstrated on both synthetic
and real scenes, and conclusions are drawn.

2.  Background
2.1 Temporal block matcher (TBM)

TBM detects different velocities by comparing luminance
within a block, , with those located at different distances
and directions on the previous snapshot (frame) of the scene
as shown in Figure 1. At location  and timet, the
correlation corresponding to displacement, , is:

(1)

where  is the luminance at location  in frame
t and  is centered at location . As in that of (1),
denominators in all expressions include a small quantity to
avoid division by zero. Note that a large correlation implies
a high probability for the displacement,  at

.

2.2 LEGION
LEGION is based on the idea of oscillatory correlation [5,
14, 11], where the phases of the neural oscillators encode the
grouping of locations with similar stimuli. The building
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ṽr x y t, ,( ) I j k t, ,( )
I j k t, ,( ) I j r x– k ry– t 1–, ,( )–
---------------------------------------------------------------------------------

j k,( ) NB x y,( )∈

∑=

I x y t, ,( ) x y,( )
NB x y,( )

r rx ry,( )=
x y,( )

Image Segmentation based on Motion/Luminance Integration and
Oscillatory Correlation

Erdogan Çesmeli1 and Deliang L. Wang2
1Biomedical Engineering Center

2Department of Computer and Information Science and Center for Cognitive Science
The Ohio State University, Columbus, OH 43210, USA

{cesmeli, dwang}@cis.ohio-state.edu



block of a LEGION network is a single relaxation oscillator,
, and is defined as a feedback loop between an excitatory

unit  and an inhibitory unit  [14,11]:

(2a)

(2b)

Here  denotes coupling,  is the variance of Gaussian
noise, and  and  are system parameters. The parameter

 is chosen to be a small positive number so that (2) defines
a relaxation oscillator where the x-nullcline ( ) is
a cubic curve and the y-nullcline ( ) is a sigmoid,
as shown in Figure 2A. Only when these curves intersect
along the middle branch of the x-nullcline, the system is
oscillatory. Oscillator  travels along the left branch (LB)
reaching the left knee (LK) and jumps to the right branch
(RB), where it becomesactive. After traveling along RB, it
reaches the right knee (RK), where it jumps back to LB
completing a limit cycle. A temporal trace of several limit
cycles of an oscillator is depicted in Figure 2B.

 includes a variable called lateral potential and coupling
from neighboring oscillators and a global inhibitor:

(3)

Here,  is the connection weight from oscillator  to
oscillator ,  is the Heaviside step function,  and

 are the weights for the potential, , and the global
inhibition, , respectively.N represents a local coupling
neighborhood, e.g. four nearest neighbors. Each oscillator is
assigned the potential variable, , to distinguish
homogeneous regions from noisy ones:

where  is the potential neighborhood. The potential
of an oscillator is initially high but continuously decays.
When an oscillator is active and has a number of active
neighbors more than  in itsNp, its potential rises to 1.
Oscillators that maintain high potential are referred to as
leaders while others are called followers. Groups of strongly
coupled oscillators are candidates to form segments.
However, due to the potential term, only when a group has
a leader can it form a segment. Oscillators that cannot
become active form background.
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Whether an oscillator can become active also depends on
the global inhibition, :

When no oscillator is active,  decays to 0, otherwise it rises
to 1. Sole leadership allows an oscillator to jump only when

, as indicated by the last term in (3). Otherwise, an
oscillator can become active only when it has strong
couplings with currently active oscillators. Parameters
including , , , , , and the weights  and  are
constant and  is defined for a particular feature space,
e.g. luminance, motion. A common form of a LEGION
network is a two dimensional (2D) array of oscillators and a
global inhibitor (see Fig. 4B below).

3.  The Method: Adaptive TBM and LEGION
Our method is shown in Figure 3 where the motion pathway,
outlined in a box, performs motion analysis. The parallel
pathway segments the scene based on luminance.
Performing occlusion analysis, estimates are refined to
obtain the final segmentation in the motion network.

3.1 Motion Pathway
Consistent with psychology and neurophysiology (see [8]
for a review), our method has two stages for motion
estimation and grouping, respectively.
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Figure 1. TBM cross-correlates luminance within
 in two subsequent frames to detect the motion

corresponding to  pixel/frame.
NB 3 3×=

r 1 1,( )=

Framet-1 Framet

Figure 2. A) Phase plane diagram of a single oscillator. The
x-nullcline is the dotted line and the y-nullcline is the solid
line. The oscillator produces a limit cycle, drawn as thick
solid line.B) The temporal activity of the oscillator in A,
where , , , , and
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We apply an adaptive TBM to calculate the correlation
corresponding to displacement :

(4)

where  is the correlation at  between the
frames  and  as given in (1). We have a total number
of  different velocities corresponding to a set
of displacements varying from  to  in the x- and y-
directions. In estimation, we also employ local spatial
correlation surfaces (SCS). An SCS is obtained by applying
(1) within the same frame. Replacing luminance blocks with
SCSs, a cross-correlation, , is obtained using (4).
Consequently, the temporal correlation at  for
displacement  is defined as:

(5)

The shape of a cross-correlation surface depends on the
underlying luminance structure at a location. In order to
obtain a unique solution in the presence of aperture
problem, as in the case of a straight border, we multiply the
cross-correlation surface, , obtained using (5) with a 2D
Gaussian centered at zero velocity:

(6)

where  is large enough to allow the maximum velocity
considered. We assume the displacement, , yielding the
peak correlation, , to be the local motion estimate at

. Note that a peak obtained for a location along a
straight border may not be as well-localized as that of a
corner. In order to quantify these differences, we define an
estimate certainty along a direction axis which is
perpendicular to the speed axis passing through origin and
in the cross-correlation space. Dropping  from the
expressions, the certainty, , of  is given by:

(7)

Here,  and  are the nearest neighboring
displacements to  along the direction axis and correspond
to correlations  and , respectively. According to
(7), the larger  is, the sharper  is and the more certain
the estimate, , is.

An estimate and its certainty are obtained at locations that
satisfy a reliability criterion quantified by amobility value:

(8)

where  is the mobility neighborhood. A large value at a
location indicates a high probability of motion at that
location. Based on mobility values,  is selected at each
location. Initially small  is expanded until it includes
sufficiently large total and average mobility or its size
reaches an upper limit. Unless the limit is reached, (6) and
(7) are employed to obtain an estimate and its certainty.
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In order to allow for multiple overlapping motions, i.e.
motion transparency [3], our method represents each
velocity with a LEGION network as depicted in Figure 4A.
The coupling weight between two oscillators,i andk, on a
velocity layerr is given by:

When oscillators have similar correlations for a particular
displacement, they are strongly coupled in the
corresponding velocity layer. At locations without
estimates, couplings are set to zero. We replace  in (3) by

 where  is a threshold and

The second  multiplying  ensures that only
locations with large mobility values can become leaders.
The last  only allows for a single leader within each
velocity column. Due to this competition within each
column, the oscillator with the largest correlation becomes
a winner. Provided that a winner has sufficiently high
mobility and potential, it becomes a leader and starts
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Figure 3. The flow diagram of our method. Processing
progresses downward. Occlusion analysis facilitates the
refinement of motion estimates based on which the final
segmentation is obtained in the motion network.
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forming its segment. A leader recruits oscillators on its layer
through local couplings when they have similar
correlations. As in the single layer LEGION network,
recruited oscillators become active simultaneously
(synchronization). Because of the global inhibition across
all layers, leaders form their segments at different times
(desynchronization). Also, note that an oscillator can
become active when it is a leader or a follower recruited by
a leader on its layer. Since there could be several followers
in the velocity column of a leader, more than one oscillator
at a single location can become active representing different
motions. This ability has a key role in the representation of
motion transparency.

3.2 Luminance Pathway
The parallel luminance pathway processes the middle frame
of the sequence analyzed in the motion pathway. In this
pathway, where also a LEGION network is employed as
depicted in Figure 4B, we assume that each region is
approximately homogeneous. The coupling weight between
two oscillators,  and , is defined as:

When locations have relatively similar luminance, a strong
coupling weight results. We employ the network model
given in (3) by replacing  with  where  is
a threshold. Strongly coupled oscillators with at least one
leader become synchronized. Oscillators corresponding to
regions with different luminances become desynchronized.
When oscillators correspond to textured regions, they tend
not to have strong couplings and thus, leaders. Lacking
leaders, they do not form segments and are distinguished
from homogeneous regions, a distinction that has a
significant role in the integration stage.

3.3 Integration Stage
The first step of the integration stage is an occlusion
analysis. It first considers motion segments. When all
locations in a motion segment belong to a textured region,
estimates in this segment are not changed. However, when
the majority of locations belong to multiple homogenous
regions, an occlusion relationship among these regions is
obtained by detecting T- and X-junctions. A T-junction
detected among three homogenous regions indicates the
occluding opaque region and the occluded ones. An X-
junction shows which two of the four homogeneous regions
form a transparent occluding surface [6, 1]. Our method
detects T- and X-junctions by applying a set of templates to
the luminance segments.

When a segment includes both textured and homogenous
regions, the occlusion relationship among them is resolved
by determining two types of motion distributions in the
homogenous regions. The first one includes estimates at all
locations. The second one considers only those along the
boundary of a textured region. When the peak of the first
distribution is the same as that of the second in a
homogenous region, the textured region is assumed to
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occlude the homogenous one. Otherwise, the two regions
are assumed to move together.

In the second step of the integration stage, estimates along
an occluding boundary are eliminated in occluded regions.
The remaining estimates in each luminance segment, ,
interact iteratively and result in a segment velocity, , for
that segment:

(9a)

(9b)

Here,  and  are the segment velocity and the sum of
certainties, , in  at iteration step , respectively.

 is the dot product of vectors  and , and  is the
magnitude of . In (9a),  is determined by weighing the
estimates in  by their certainties. In (9b),
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Figure 4. Neural network architectures. Small ellipses
represent oscillators. The black circle is the global inhibitor.
A) Multilayered motion network where each velocity layer
is a LEGION network.B) 2D luminance network.
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increases when  and  have a similar direction.
Finally, when ’s in  do not change,  is
assumed to have converged to its final value, . As a result,

 is filled-in at all locations in .

The motion interaction in (9) takes place in all luminance
segments. Since textured regions, which already have
reliable estimates, do not form luminance segments, the
motion interaction does not take place in these regions.

Also, noting that large homogeneous regions touching
image borders tend to be perceived stationary, prior to (9),
estimates of zero velocity are assigned to locations without
estimates in luminance segments along the image borders.

Following the integration stage, couplings in the motion
network are updated based on the refined estimates and the
final segmentation result is obtained.

4. Results
We demonstrate the performance of our method using both
synthetic and real scenes. Figure 5A shows an input scene
where two vertical rectangles are moving toward each other
while a horizontal one is moving downward. In the motion
pathway, first, the mobility image is obtained using (8) as
shown in Figure 5B. Next, local motions and their
certainties are estimated at locations with large mobility
values, as depicted in Figures 5C-D. As shown in Figure 5E,
the initial motion segmentation is based on these estimates.
Note that erroneous estimates in occluded regions along
occluding boundaries cause inaccurate segmentation.
However, the segmentation result in the luminance pathway,
as shown in Figure 5F, matches well with the input scene. In
the subsequent integration stage, the occlusion analysis is
performed using these segmentation results. Having
detected T-junctions as depicted in Figure 5G, it is found
that the large vertical rectangle occludes the background and
the horizontal rectangle, which, in turn, occludes the
background and the small vertical rectangle. Figures 5H-I
show the remaining estimates and their certainties after
removing the ones in the occluded regions along the
occluding boundaries. Finally, the motion interaction takes
place in luminance segments, filling-in their locations with
their resulting segment velocities as illustrated in Figure 5J.
The final segmentation result based on the refined estimates
is shown in Figure 5K and compares well with the regions
and their motions in the input scene. Note that the
homogenous background is assigned zero velocity due to
the introduction of estimates along the image borders.

The input scene in Figure 6A is composed of two square
regions. The upper region moves in the right and downward
direction while the lower one is having a left- and downward
motion. In the center of the scene, the regions overlap
transparently. Similar to the example in Figure 5, the scene
is processed and initial segmentation results are obtained in
the two pathways. By detecting X-junctions, transparency is
inferred and locations in each region are filled-in with their

r x y,( ) rB
τ

ωτ 1+ x y,( ) B rB
τ

rB
rB B

segment velocities as shown in Figure 6B. Note that
locations in the overlapping area are assigned both
velocities. Thus, the final result includes two overlapping
square segments as depicted in Figure 6C.

An intriguing visual illusion occurs when gratings move
behind an aperture. Gratings in Figures 7A and C move
vertically upward. When the aperture is circular, the motion
is perceived to be in the perpendicular direction to the
grating orientation, consistent with our result shown in
Figure 7B. When the aperture is rectangular, our method
results in a distribution of velocities which are parallel to the
longer axis of the aperture mimicking the barber pole

A

B C D F

G

H I

J

E

K

Figure 5. A segmentation example.A) The middle frame of
the input sequence.B) Mobility analysis. C-D) Motion
estimates and their certainties.E) Initial motion
segmentation.F) Luminance Segmentation.G) Occlusion
analysis where T-junctions are detected.H-I)  Unreliable
estimates and their certainties are removed.J) The result of
motion interaction where estimates are refined and filled-in.
K)  Final motion segmentation.

Figure 6.Motion transparency.A) The middle frame of the
input sequence.B) Refined motion estimates.C)
Overlapping segments represent motion transparency.
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illusion [13] as shown in Figure 7D.

Our method also performs well with real scenes. In Figure
8A, a rider and his motorcycle move diagonally left and
downward while the background appears to move in the
opposite direction due to the camera motion. Our method
eliminates erroneous estimates in the occluded regions, e.g.
homogenous background occluded by the motorcycle. The
final result segregates the rider and his motorcycle from the
background as shown in Figures 8B. Similarly, in Figure
8C, the camera pans to the right. Due to their different
distances to the camera, a woman and two dish antennas
appear to have different motions. Our method is able to deal
with neighboring homogenous regions in the scene, e.g the
woman’s hat and the antenna, as depicted in Figure8D.

In addition to the network parameters given in Figure 2, we
used , , , ,
and . In (8), , which is also the
initial size of . For all results, the threshold set,

, is , except for Figure 8B
where . Numerical subscripts, 1 and 2, in
correspond to initial and final segmentations, respectively.
Motion estimates in Figures 5-7 are spatially subsampled
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NB
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for visual clarity.

5.  Conclusion
We proposed a segmentation method based on the
integration of motion and luminance information. Our
method is able to represent motion transparency and deal
with occlusion in both synthetic and real scenes. It can also
mimic visual illusions. Since our neural network
architecture is biologically plausible, our method has
implications for new psychophysical experiments to study
human visual system.
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Figure 7. Barber-pole illusion. The input scenes and the
resulting motion distributions when the aperture isA-B)
circular orC-D) rectangular. Even though gratings have the
same motion in A and C, the results in B and D depend on
the aperture shape.

A

Figure 8. Real scenes.A-B) The motorcycle and the rider
have a different motion than the background.C-D) Due to
their different distances to the camera, the woman and the
antennas appear to move differently.
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