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Abstract

Optical measurements provide a non-invasive method for
measuring deformation of wind tunnel models.  Model
deformation systems use targets mounted or painted on the
surface of the model to identify known positions, and
photogrammetric methods are used to calculate 3-D
positions of the targets on the model from digital 2-D
images.  Under ideal conditions, the reflective targets are
placed against a dark background and provide high-
contrast images, aiding in target recognition.  However,
glints of light reflecting from the model surface, or
reduced contrast caused by light source or model smooth-
ness constraints, can compromise accurate target
determination using current algorithmic methods. This
paper describes a technique using a neural network and
image processing technologies which increases the relia-
bility of target recognition systems.  Unlike algorithmic
methods, the neural network can be trained to identify the
characteristic patterns that distinguish targets from other
objects of similar size and appearance and can adapt to
changes in lighting and environmental conditions.

Introduction

At the NASA Langley Research Center, airfoil models are
placed in environmentally controlled wind tunnels for
aerodynamic testing and are subjected to pressure and
temperature extremes.  Aerodynamic loads are applied to
the test specimen, and forces, moments, and other model
parameters are measured directly.  However, some
properties, such as model twisting and bending, must be
measured indirectly to avoid interactions with the test
article.  Optical measurement systems provide a non-
intrusive solution for these applications [1].

Model deformation data can be acquired using a
photogrammetric determination of 2-D coordinates of
reflective targets from digital images.  A frame grabber
reads the digital image data from a camera and stores the
digitized image in the frame grabber memory.  The
software acquires the image data from the frame grabber
and a target recognition system analyzes the image to
determine the location of the targets on the two-
dimensional image.  From these 2-D coordinates, the
system transforms the coordinates into a 3-D coordinate
space.  These coordinates are compared to the known
positions previously measured under steady-state
conditions to determine the amount of twisting and
bending under load [2, 3].

Traditional target recognition systems use algorithmic
methods for identifying the position of the targets.
Systems at NASA Langley Research Center compare the
intensity of each pixel to a threshold; values below the
threshold are eliminated by setting the intensity to zero.
Groups of adjacent pixels that exceed the threshold are
identified, and a region enclosing the adjacent pixels is
defined.  The size of this region is computed, and if the
calculated size matches the expected size, the software
concludes that a target has been found.  When the software
has located the expected number of targets, no further
searching is performed; if it finds fewer, the search termi-
nates unsuccessfully.

The algorithmic method described above has problems in
many situations. Normal changes in test conditions can
make accurate identification of targets difficult.  Variations
in model attitude alter target reflectivity levels, requiring
the intensity thresholds to be constantly adjusted.  Worse,
using a threshold cutoff value can cause strong glints of
light to be retained, while dim reflections from targets may
be discarded.  Physical constraints may often inhibit
placing the light source near the camera, which reduces the
amount of light reflected back at the camera and reduces



the contrast of the image.  To compensate for poor lighting
conditions, the test cell walls are painted black to increase
the contrast.  However, the paint may peel during a test run
due to harsh environmental conditions.

On the other hand, targets have a distinct round shape and
a characteristic light intensity pattern, allowing them to be
distinguished from glints of light by a neural net.  Unlike
algorithmic methods, neural networks can identify patterns
and adapt to changing conditions without reprogramming,
resulting in a more flexible and robust method for target
recognition.

This paper describes the development and evaluation of a
neural net based target recognition system.  The next
section describes the methodology used, including the
segmentation method and neural net design and training.
This is followed by an implementation section that gives a
brief description of the actual software used. In the final
section the neural net target recognition system is
evaluated and future directions are considered.

Methodology

The target recognition system acquires image data from a
frame grabber and analyzes the image to determine the
location of targets on the two-dimensional image. This
involves six stages.

1. Preprocessing
2. Segmentation
3. Normalization
4. Feature extraction
5. Classification
6. Postprocessing

The Preprocessing stage consists of two optional
transformations that can be applied to make the targets
easier to recognize.  One transformation consists of a
uniform contrast enhancement technique.  The other
involves wavelet filtering. For most images they are not
required and will not be described further.

The Segmentation stage splits the image into smaller
overlapping segments to simplify the processing by the
neural network.  The Normalization stage prepares the
input data for the neural network by scaling the range of
pixel intensities from 0 through 255 to 0 through 1.  The
Feature Extraction stage uses the trained neural network to
determine which segments might contain a target.  The
Classification stage examines the results from the previous
stage to determine which segments contain targets.

The final stage, Post-Processing, determines the
coordinates of each target by computing the centroid of

each segment using the weighted average of the intensity
of each pixel.  The x-coordinate of the target center is
computed using each pixel’s x-coordinate as a weighting
factor; the y-coordinate is calculated in a similar manner.

The two most important areas for the design of the system
involve segmentation and the neural net.

Segmentation

Each image is segmented into a series of rectangular
regions.  To simplify the identification of targets, it would
be desirable to impose constraints on the size of the
segment and the degree of overlap between segments.
Since the neural net will indicate which segment contains a
target we require:

1. A segment contains either no targets or a single
target.

2. Each target has one or more segments that contain
it.

The first condition limits the size of the segment to be no
greater than the size of two of the smallest targets, Tmin,
separated by the minimum separation distance, Dmin, plus a
one-pixel border.  The second condition dictates the
segment size must accommodate the largest target size,
Tmax, plus a one-pixel border on all sides.  The second
condition also places a lower bound on the overlap
between adjacent segments as described previously.  Thus,
the segment size, S, and overlap, O, should be selected
such that:
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Based on the sizes of the targets on the images used, a
segment size of 23 pixels per side, with an overlap of 16
pixels per side, was selected.  These choices were selected
so that each target would be contained in at least one
region and that no region would contain more than one
target.  Based on these parameters, a single image with 752
x 240 pixels can be divided into 3360 segments.

Neural Net Design and Training

The selected design approach for the neural network
topology used a feed-forward network with a single hidden
layer.  The training method selected was backpropagation
using a variable learning rate. These choices were selected
because of their simplicity, robustness, and minimal
memory requirements. (Second derivative methods turned
out to require too much memory.) An adaptive learning
rate approach was selected to compensate for the slow
training times associated with backpropagation networks.



The adaptive learning rate approach was used by
employing a small learning rate initially, then dynamically
increasing the learning rate each training epoch as long as
the error rate did not increase significantly.  This approach
achieved high accuracy due to the low learning rate, but
avoided lengthy training times by increasing the rate where
appropriate.  If the error rate increased significantly, the
newly calculated weights were discarded, the learning rate
was rapidly decreased, and the training process continued
at a more conservative pace.

The number of input neurons was determined by the
choice of segmentation parameters, as described
previously.  However, the training time required depends
on the number of neurons, and compressing the image size
can dramatically reduce the training time.  The image was
compressed by averaging two pixels in each dimension,
which reduced four pixels to one with relatively little loss
of information.  Thus the actual input size was 112, or 121,
instead of 232.

The determination of the optimal number of neurons in the
hidden layer was achieved by starting at a very low value
and increasing until the network could be trained to an
acceptable error level.  The optimal number was 25.

For training purposes twelve sample images of a model
with painted targets were used.  These images were
acquired under a variety of lighting and environmental
conditions.  Some of the images represented ideal
conditions: bright reflections from the targets against a
dark background.  Other images taken at oblique angles
produced darker reflections from the targets.  Some images
had a bright, uneven background caused by paint peeling
from the chamber walls, and a few images were obtained
when fog was present in the test section.

One problem encountered during the training of the neural
network was premature saturation.  The network would
often reach a level of saturation early in the training cycle,
requiring the training to be frequently restarted using a
new set of random weights.  This problem was overcome
by limiting the initial range of values for the random
weights and altering the training process.  With this
process, the network was initially trained on a set of
patterns primarily containing targets.  Patterns that did not
contain targets were gradually added to the training set
until the network was successfully trained.

Implementation

The target recognition system uses a neural network for
pattern recognition by analyzing images acquired by
cameras from an external video measurement system.  The

system provides the capability to preprocess the images,
train and test the neural network, and to identify targets
from the images.  The system was implemented using
MATLAB  Version 5.1 by The MathWorks, Inc.
MATLAB is a mathematical environment with support for
matrix operations, file input and output, and image proces-
sing.  It features a powerful programming language with
built-in graphical user interface (GUI) and plotting
capabilities.  MATLAB has a large user base and has many
add-on “toolboxes” which may be purchased from the
vendor.  Similar freeware packages are available on the
Internet.

The target recognition system uses the Neural Network
Toolbox from The MathWorks, Inc. for implementation of
the neural network, and WaveLab, a freeware package for
wavelet analysis for image filtering.  WaveLab was
developed through a collaboration between Stanford
University and NASA Ames Research Center.  Source
code for WaveLab is available for UNIX, Windows, and
Macintosh systems via the Internet at
http://playfair.stanford.edu/~wavelab.

The software consists of five major functional com-
ponents.

1. Manual Target Identification
2. Training Set Definition
3. Neural Network Training
4. Neural Network Testing
5. Target Recognition

The target recognition system provides a graphical user
interface to allow the user to manage data files, specify
operating parameters, apply image processing transfor-
mations, manually identify targets, divide the image into
segments, and operate the neural network.  These oper-
ations are performed through a menu structure.

Results and Conclusions

The neural network proved to be a valuable tool for target
recognition.  Unlike algorithmic methods, the neural
network can be trained to perform under different condi-
tions without reprogramming or adjusting tuning para-
meters and thresholds.  The neural network was successful
in distinguishing targets from glints of light and back-
ground noise because of its ability to recognize the dis-
tinctive shape and intensity distribution of targets, com-
pared to the less symmetric patterns of other objects.

The neural network successfully classified nearly all of the
segments in the image as containing or not containing a
target.  Table 1 shows the data obtained by this
implementation using six test images.  The number of
segments correctly classified and the number of targets



accurately identified are given for each image.  Based on
the average number of targets correctly found, the overall
percent of segments accurately identified is 99.7%.  The
overall percent of targets properly identified is 92%.

Img
#

# Seg
Right

# Seg
Mis-
sed

#
Seg
Xtra

# Tgt
Right

# Tgt
Mis-
sed

#
Tgt
Xtra

1 3348 5 7 8 0 0
2 3340 19 1 7 0 1
3 3346 10 4 8 0 0
4 3360 0 0 8 0 0
5 3341 13 6 7 1 1
6 3350 6 4 6 1 1

Table 1.  Neural Network Training Results.

The reason the percent of targets identified is lower than
the overall percent of segments correctly identified is due
to the mixture of training data provided to the neural
network.  Since the network was trained on complete
images, most of the training patterns did not contain
targets.  Out of the 3360 training patterns obtained per
image, only an average of 29 of these segments contained
targets, or 0.86%.  More realistic results would be
expected if the proportion of patterns containing targets to
those not containing targets was more balanced.

Overall, the neural network approach, combined with
preprocessing techniques where appropriate, was success-
ful at identifying targets.  Of the 13,440 training patterns,
the neural network classified which of these patterns
contained targets with 99.7% accuracy.  Unlike algo-
rithmic methods, which simply identify objects of
particular sizes and intensities, the neural network was able
to identify the distinctive characteristics of the targets and
to successfully discriminate between targets and other
objects.

An alternative training method using auxiliary information
was also explored to determine if this would decrease
training time. The x and y coordinates of each segment
were included with the intensity data. This approach did
result in faster training times, but adversely affected the
accuracy of the network.  By adding the coordinates, the
number of “false positives” was greatly increased.  The
segments that were falsely identified as containing targets
were most often located in straight lines radiating from
actual targets.  There was a distinct pattern to these
regions: they followed a path parallel to the edge of the
model wing.  It appeared that the network learned to
expect where the targets should be, based on the
coordinates, instead of identifying where targets are
actually located.  The problem was easily corrected by

only training the network on the image data without
coordinates.

Future Directions

Neural networks, combined with the appropriate use of
preprocessing methods, have proved to be effective at
identifying targets in digital images.  However, additional
research may be required to implement this technique in a
production environment.

For full-scale production use of this system, additional
images would need to be acquired to provide more
thorough training under a greater variety of conditions.  In
particular, more training patterns containing targets are
required.  Further research into other preprocessing and
encoding techniques may prove beneficial in improving
accuracy or reducing training time.

Identification of the coordinates of the targets relies on the
centroid computations, which determine the center of an
object based on the center of mass of the image segment.
The “mass” of each pixel is the intensity level.  This
method works well for identifying the center of a target
against a uniform, dark background, but is affected by the
presence of background noise and glints of light.  Further
research areas may include the development of better
techniques for computing the center of a target.
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