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PREFACE

To detect and identify defects in machine condition health monitoring, classical

neural classifiers, such as Multilayer Perceptron (MLP) neural networks, are proposed to

supervise the monitored system. A drawback of classical neural classifiers, off-line and

iterative learning algorithms, is a long training time. In addition, they are often stuck at

local minima, unable to achieve the optimum solution. Furthennore, in an operating

mode, it is possible that new faults are developing while a monitored system is running.

These new classes of defects need to be instantly detected and distinguished from those

that have been trained to the classifier. Those classical neural classifiers need to be
.

retrained by both old and new patterns in order to learn new patterns without forgetting

the learned patterns. Conventional classifiers cannot detect and learn the new fault types

on-line real-time.

Using incremental learning algorithms in the monitoring system it is possible to

detect those new defects of machine conditions with the system operating while

maintaining oLd knowledge. Inspired by the promising properties of an incremental

learning algorithm named Fuzzy ARTMAP Neural Network, a new algorithm suitable for

pattern classification based on fuzzy neural networks called an Incremental Learning

Fuzzy Neuron Network (ILFN) is developed. The ILFN uses Gaussian neurons to

represent the distributions of the input space, while the fuzzy ARTMAP neural network

uses hyperboxes. The ILFN employs a hybrid supervised and unsupervised learning

scheme to generate its prototypes. The network is a self-organized classifier with the
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capability of adaptive learning of new information without forgetting old knowledge. The

classifier can detect new classes of patterns and update its parameters while in an

operating mode. Moreover, it is an on-line (real-time) and fast learning algorithm

without knowing a priori information. In addition, it has the capability to make soft

(fuzzy) and hard (crisp) decisions, and.it is able to classify both linear separable and non­

linear separable problems.

To prove the concept, simulations have been performed with the vibration data

known as the Westland Data Set. This data set was obtained from the Internet at

http://wisdom.ar1.psu.edulWestland/ collected from U.S. Navy CH-46E helicopters

maintained by Applied Research Laboratory (ARL) at Penn State University. Using a

simple Fast Fourier Transform (FFT) technique for the feature extraction part, the

network, capable of one-pass, on-line, and incremental learning performed quite well.

Training by various torque levels, the network achieved 100% correct prediction for the

same torque level of testing data. Furthermore, the classification performance of the

network has been tested using other benchmark data, such as the Fisher's Iris data, the

two-spiral problem, and a vowel data set. Comparison studies among other well-known

classifiers were preformed. The ILFN was found competitive with or even superior to

many classifiers.
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CHAPTER I

INTRODUCTION

1.1 Machine Health Monitoring Overview

Machine condition health monitoring and fault diagnosis are critical issues to be

addressed in the competitive world of manufacturing. Increased product quantity and

improved product quality result when the production speed of the industrial machine is

increased, and the downtime due to system failures is decreased. Machine condition

health monitoring and fault diagnosis are used to detect and distinguish faults occurring

in machinery so that it is possible to perfonn condition-based maintenance before

catastrophic failures. Moreover, it decreases operation and maintenance costs and

prolongs the service life ofmachinery [6,50,95,101, 119].

To provide predictive and preventive maintenance plans, traditional health

monitoring techniques are based upon conventional nondestructive testing and evaluation

(NDT/E) such as fluoroscopy, radiography [109], ultrasonic [28, 114], acoustic emission

[128], optical scan [55], thermal inspection [45], current test [32, 44], and magnetic

analysis [43, 85]. Usually the conservative NDTIE methodologies are local in nature,

passive and labor intensive. The prototype instruments that are developed are heavy,

expensive, and fault-prone. Thus, it is difficult to implement these methods in a

transportable, on-board, automatic, real-time, and global health assessment tool.

Three main techniques are used in machine condition health monitoring and fault

detection and isolation: experimentally-based techniques, model-based techniques, and

model-free techniques.
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In the experimentally-based approaches, an expert is essential for comparing the

measurements of vibration signatures of a monitored system with some known fault

patterns. Modal analysis regularly used in the experimentally-based methods include

natural frequencies, damping ratios, mode shapes, and curvature shapes [2, 93, 99]. The

success of the experimentally-based techniques relies on a priori collection of fault

patterns and proficient experts.

On the other hand, the model-based approaches have rigorous mathematical

foundation in detecting machine defects. Examples of the model-based method are finite

element model [83, 135], experimental model analysis [110, 121], periodic time-varying

autoregressive models [85], state observer theory [56], severity based updates [76], and

eigenstructure assignments [70, Ill]. These methods assume an accurate mathematical

model before using as a tool for detecting machine damages. Their performance depends

on a precise numerical representation of the monitored structure.

The third type of machine health monitoring techniques stems from recently

emerged computational intelligence. These "model-free approaches" include expert

system [66], neural network [7, 86], fuzzy logic, and fuzzy neural networks [24]. These

methods offer the potential of real-time decision-making via the use of effective leaming

and evolution algorithms [39].

1.2 Concept of Machine Health Monitoring

Figure 1.1 shows a simple idea of machine health monitoring systems. A health

monitoring system consists of 1) the system to be monitored; 2) sensors; 3) signal

processing; 4) feature extraction; 5) pattern classification or fault identification; 6) human
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operators; and 7) condition-based maint,enance prooess. An optional, automatic control

block may be subscribed to the system to instantly correct the problems or shut down the

system before serious damage occurs.

iPerfonn
r----------1 Condition-Based 1-4-------,-------..

Maintenanc,e

Sensor
1

Monitored.
System 1'----'

Sensor
n

i Feature
Extraction

Pattern
Classification!

Fault
Indenti'fication

Figure 1.1 Conceptual Model ofMachine Health Monitoring Systems

The monitoring system can be established in a bottoms-up hierarchy. The

monitored system includes materials (e.g. steel, composites), elements (e.g. bearing

balls/rollers, gear tooth), components involving the interaction of elements in the failure

initiation and progression process (e.g., ball/roller bearings, gear meshes), subsystems

(e.g., transmission), systems (e.g., power train), and platform (e.g., ship, helicopter).

Sensors or transducers are used to sense the physical characteristics of the monitored

systems. The physical characteristics such as vibration signals and acoustic emissions are

the indications of system condition. From the sensors, digital signal processing and

feature extraction are used to preprocess and reduce the dimension of data in order to

obtain paUems containing enough information to discriminate in a lower dimension.
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Next, pattern classification classifies and identifies the types of fault conditions. After the

faults are identified, either human operators or automatic control systems feedback

infonnation to condition-based maintenance. The monitored system is then prescribed

maintenance actions before severe damages occur [50].

Pattern classification or fault identification is a key component of condition health

monitoring systems. Its function is to identify fault types induced from the monitored

systems. Service and maintenance can be promptly and correctly performed if the pattern

classifier makes an accurate decision. This thesis focuses on the investigation of a new

methodology for pattern classification specifically suitable for machine condition health

monitoring.

1.3 Motivation of tbe Research

In machine health monitoring systems, a vibration signal is one of the most

common tools for detecting defects using pattern classification techniques. While

operating, mechanical components generate vibration signals that contain information

about the state of the machine [97]. Vibration data provide effective information for

detecting and diagnosing some of the incipient failures of machines and equipment. The

input data are entered into a classifier which is a component of a health monituring

system. With pattern classification techniques, signatures can be extracted from the

vibration data that contain information about machine defects and their causes [119].

With the accurate decision of the classifier in a monitoring system, machine maintenance

can be performed before catastrophic failures occur.
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Vibration monitoring is based on the principle that components in engineering

systems and p~ants produce vibrations during operation. When a machine is operating

properly, vibration levels are generally small and constant. However, when faults develop

which lead to variations of process dynamics, the vibration signatures (i.e., power

spectrum density, natural frequency, and mode shape) also change [1, II]. To detect

these changes, classical off-line iterative learning classifiers are proposed to supervise the

monitored system. These classifiers have a drawback in that they generally require a long

training time. In addition, they are often stuck at local minima, unable to achieve the

optimum solution.

Furthennore, in an operating mode, it is possible that new faults are evolving

while a monitored system is running. These faults are different from those that have been

trained to the classifier. These new classes of defects need to be promptly detected and

distinguished from those that have been trained to the classifier. Conventional neural

classifiers need to be retrained by both old and new data in order to learn new

information while remembering existing information (112]. Moreover, the monitored

system may generate one fault or multiple faults (more than one fault). A decision for

these muhipl,e defects is needed in order to perform correct maintenance. However, with

a crisp decision, the traditional classifiers are able to detect one and only one fault.

1.4 Objectives of the Thesis

The primary objective of this thesis is to develop a methodology of pattern

classification for condition health monitoring systems. This new classifier is called an

"Incremental Learning Fuzzy Neural Network" (lLFN) implementing a neural network
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theory and the fuzzy set theory. The classifier IS considered to have the following

features.

1) A hybrid supervised and unsupervised learning algorithm: A supervised

learning algorithm is used in the training phase where the corresponding targets are

known. On the other hand, in the operating phase where the corresponding target is not

known, an unsupervised learning algorithm is used.

2) Fast, on-line, one-pass, incremental learning without local minimum

problems:

Many well-known neural networks and conventional pattern classification

techniques use "off-line" learning which assumes all training patterns and their targets are

known. On the other hand, for "on-line" learning only one training pattern and mts target

are needed at a time. Thus on-line learning requires less memory than off-line learning

does. Off-line learning tends to use longer training time.

A "one-pass" learning algorithm, where training patterns are presented to the

classifier only one time instead of many times, is preferred; however, in one-pass, the

classifier should use as little computation time as possible.

"Incremental learning," the capability of learning new classes and quickly

refining existing classes without forgetting learned information, is a very important

concept of pattern classification. With incremental learning, classifiers learn new

infonnation without forgetting old information.

A gradient learning algorithm often has a problem of trapping at local minima;

moreover, it needs an iterative presentation of data thus leading to long training times. So

this new classifier avoids using the gradient learning procedure.
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3) Ability to detect new classes and label them differently from the existing

corresponding targets: In some condition health monitored systems, such as vibration

monitoring systems, new patterns may be generated while the systems are operating.

These new patterns need to be detected and learned by the classifiers in order to prescribe

correct maintenance actions. After training, traditional classifiers cannot detect the

difference between the learned fault patterns and unseen fault patterns. They can identify

the new patterns only to the closest learned patterns even when they are significantly

different. This may lead to misunderstanding and incorrect service.

4) Ability to build decision regions that separate nonlinear separable problems:

Many neural classifiers have overcome the nonlinear separable classes. This new

classifier should also provide the ability to build the decision boundaries to separate both

linear and nonlinear separable classes.

5) Ability to make decision boundaries of all overlapping classes: Bayesian

classifiers are generally used to classify overlapping classes~ however, constructing the

Bayesian classifiers requires knowledge of the probability density function for classes.

Unfortunately, for on-line incremental learning classifiers, the probability density

function for each class is unavailable beforehand. The classifi.ers should be ahle to find

the probability density function or their equivalents on the fly. If the input class patterns

are overlapped, a classifier should make a decision equivalent to a Bayesian classifier

[112] .

6) A nonparametric classifier: Parametric classifiers need a priori information

about the probability density functions of pattern classes; on the other hand,

nonparametric classifiers do not have a priori information available [112].
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7) Ability to provide both soft and hard classification decisions: A "hard"

decision means that a given pattern either belongs to or does not belong to class

prototypes. On the other hand, a "soft" decision allows a given pattern belonging to more

than one class prototype with different membership grades [112]. It is possible to detect

multiple defects in monitored systems if a soft decision is used.

8) Few tuning parameters: Tuning parameters are used fOJ controlling a system

and there should be as few parameters as possible to tune in the system [112].

1.5 Organization of the Thesis

For the completeness of the presentation, the remainder of this thesis is organ~zed

as follows: Chapter 2 provides a literature review for the concept of pattern classification,

neural networks,. fuzzy set theory, and fuzzy-neural networks used for pattern

classification problems. Chapter 3 introduces the proposed network architecture and the

classification algorithm of the ILFN dassifier. Chapter 4 shows the simulation results and

comparisons to some existing classifiers on benchmark problems. Chapter 5 provides the

conclusion of the research and possible future work.



CHAPTER II

LITERATURE REVIEW

2.1 Introduction

Pattern classification forms a fundamental solution to different problems in real

world applications. The function of pattern classification is to categorize an unknown

pattern into a distinct class based upon a suitable similarity measure. Thus, similar

patterns are designated into the same classes while dissimilar patterns are classified into

different classes.

Engineers and scientists have developed variOUS methodologies to deal with

classification problems. A large number of classification algorithms have been proposed

to deal with classification problems. Statistical pattern classification is a traditional

technique for classification problems [54, 73]. This classical classification technique

makes use of statistical decision theory to classifY patterns. Various researchers

scrutinized parametric Bayesian classifiers [34) assuming that the forms of input

distributions ar,e known. The parameters of distributions are computed using all training

data. The training data are usually assumed to be Gaussian when using Bayesian

classifiers. Because of their simplicity, they are still widely used [4,41,80, 94].

Automatic pattern classification has been highly considered by scientists and

engineers from different fields. Many researchers in the area of pattern classification have

paid attention to neural network classifiers because of the capability of modeJ-free and

trainable systems, parallel computation, and noise tolerance of neural networks. These

properties of artificial neural networks inspire the researchers to study neural network

9
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applications to deal with pattern classification problems. Neural networks with the

abilities of real-time learning, parallel computation, and self-organizing make pattern

classification more suitable to handle complex classification problems through their

learning and generalization abilities [14, 86, 120, 132].

In addition, fuzzy set theory [134] has been extensively applied to pattern

classifications. Fuzzy set theory supports pattern classification by dealing with inexact

rather than exact problems. Fuzzy systems perfonn well on uncertain infonnation, very

similar to the way human reasoning does. The human brain perfonns very well even in

imprecise circumstances. In the real world, most situations are fuzzy rather than crisp.

Moreover, the information in pattern classification problems is imprecise rather than

precise in nature, and fuzzy set theory aUows us to properly model this vague infonnation

[15,35,40,82].

The integration of neural networks and fuzzy sets is also an active area for pattern

classification problems. A growing number of researchers have designed and examined

various forms of fuzzy-neurons and neurofuzzy networks. The idea is to merge the

capabilities of model-free and trainable systems, parallel computation, and noise

tolerance of neural networks and the ability of dealing with imprecise situations of the

fuzzy set theory. The int,egration of neural networks and the fuzzy set theory results in a

classifier that has useful properties of both neural networks and fuzzy sets. The

combination of neural networks and fuzzy sets fonns a synergetic network that handles

pattern classification problems very effectively and efficiently [24, 57, 77,107, 108].

The foHowing section discusses the basic idea of pattern classification. Some

pattern classifiers developed from neural networks, fuzzy sets, and fuzzy-neural networks

are also briefly discussed for the sake of completeness of the presentation.
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2.2 Review of Pattern Classification Concept

Physical real world

+-=:::::::liiJinite dimensional

Real world

Figure 2.1 The Conceptua]ized Pattern Classification Problem

Figure 2.1 illustrates the framework of the pattern classification problem. The

physical real world is sensed by a transducer system that feeds its data into the pattern

space after a preprocessing procedure. The physical real world. or sensed system, can be

characterized by a continuum of parameters that are basically infinite in dimensionality.

Transducers are used to transfonn signals from real environment to the pattern vector

space with the dimensionality of R, typically a large value. Then a feature extractor is

employed to reduce the dimension from R to a much smaller value. M. while still

preserving the discriminatory features for classification expectation. Using an M-

dimension feature space. a classifier performs much faster than using an R-dimension

pattern space. Finally, in the classification space. one of K classes is chosen for a given

input pattern [3].

The d.ata that win be classified are presented into pattern classifiers by sets of

measurements. Each measurement associates an axis in a multidimensional space called

"hyperspace." Figure 2.2 shows a two-dimensional space with three classes of patterns.

Figure 2.3 illustrates a linear separable problem in which a line exists to separate the two
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classes. Figure 2.4 demonstrates a non-linear separable problem where a straight line

cannot separate the two classes. A non-linear decision boundary is needed to separate this

problem. An overlapping class is depicted in Figure 2.5. Neither a linear nor a non-linear

boundary can separate this problem. However, the decision can be made by using "Bayes

strategy" to reduce misc1assification for this problem.

class 1

••• •••• class 3

•••••••......-
•••••••

---__r+-__---aJE-------+ P,

Dimension= 2
Classes = 3
Patterns in class 1 = 20
Patterns in class 2 = 28
Patterns in class 3 = 25
Total patterns = 73

class 2

Figure 2.2 Example of a 2-Dimensional Vector Pattern Space

class 1

x x x x
x x x x x

x x x
x x x x

x x x
x

• ••• ••• • ••• •• ••••• •• ••• ••

class 2

Figure 2.3 A Linearly Separable Problem
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p,

X

•class 1 X
X X X ••• •X X X.. •

X X X X. ••

X Xx XX •• •
X X ••

X •• •
-I-----~ •.'. ..• • •••• •• ••

class 2

_+-__...;L_._---------...... P,

Figure 2.4 A Nonlinearly Separable Problem

•

class 2

•
•
• •

class 1 x : •
X X X X x.:- •'.X X X.:X •• •

X Xx ·x ••
x x • x;: • • ••

X X X •
X X ' .' ••x'· •:- . . .:.. ...'.. ..

• • •
-+-----'-...-------------+- P,

Figure 2.5 An Overlapping Problem

2.3 Neural Networks for Pattern Classification

An artificial neural network is a data processing system consisting of a massive

number of simple and highly interconnected processing units operating in a parallel

manner. The networks are inspired by the structure and the function of the human brain.

The characteristics of an artificial neural network are model-free and trainable systems

with paralilel computation. These properties are considered as benefits to many

applications in the real world, including pattern classification problems.
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As a complement to the statistical pattern classification, scientists and engineers

from different fi.elds have considered neural networks for pattern classification. Neural

network technologies make pattern classification capable of parallel computation, self­

organization, and self-adjusting parameters.

Neural networks applied to pattern classification have two main types: a

supervised learning and unsupervised learning (clustering) algorithm. The use of the

supervised neural network as a classifier assumes the input and the corresponding target

pairs are known. This approach assumes that appropriate input features have been chosen

and that the training data are representative of all the problem conditions. Some examples

of supervised learning networks are Multilayer Perceptron Network (MLP) trained by the

Backpropagation algorithm (BP) [104-]06], Probabilistic Neural Network (PNN) [1l5­

118], Learning Vector Quantization Network (LVQ) [71], and Radial Basis Function

Network (RBFN) [12,52,60,91].

On the contrary, in unsupervised neural networks, the input does not have a

corresponding target. Since there are no target outputs available, the network

distinguishes the input data into a number of clusters and selects which features are

important. The system learns to categorize the input patterns into a finite number of

classes using some similarity measurements. The two most-used unsupervised neural

networks are Adaptive Resonance Theory Networks (ART) [17] and Self-Organizing

Maps (SOM) [71].

The MLP neural network trained by the backpropagation algorithm has been a

good candidate for pattern classification problems. The MLP is a fully connected

feedforward network with sigmoidal activation functions. There are many developed

algorithms that are used to train the network such as the steepest descent, Newton's
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methods [8], conjugate gradient [23], and Levenberg-Marquardt algOFithm [48].

Rumelhart and McClelland in [104-106] present an extensive detail of the MLP network.

Two major drawbacks of steepest descent backpropagation algorithm are a long training

time and the fact that there is no guarantee of convergence to a global minimum,

especially when complex decision boundaries are required and networks have more

hidden layers [31, 80]. Levenberg-Marquardt backpropagation is the fastest algorithm for

training the MLP network but it requires a considerable amount of memory [48]. The

architecture of the MLP network is shown in Figure 2.6.

Input
Output

Input Layer Hidden Layer Output Layer

Figure 2.6 The MLP Neural Network

The Probabilistic Neural Network (PNN), developed by Donald Specht in 1988, is

a useful methodology for solving pattern classification problems. Its decision boundaries

are formed by conditional probability density functions (PDF). The network is able to

form complex nonlinear decision boundaries created by the Bayes strategy when given

enough examples. The training speed of the PNN is faster than the Backpropagation

Neural Network (BPNN) to achieve the same level of generalization. On-line learning is

another advantage of the PNN; thus it is suitable to use the PNN for real-time

applications. However, the PNN uses extensive memory requiring one neuron for each
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training pattern. Henceforth, a lot of researchers have proposed various remedies to solve

the memory problem, such as using clustering techniques to implement a cluster center

which represents a prototype of training patterns [115-118]. Figure 2.7 shows the

architecture ofthe PNN.

P,

INPUT
UNITS

PATTERN
UNITS

SUMMATION
UNITS

Figure 2.7 The PNN Network Architecture

Another good candidate for pattern classification is the Radial Basis Function

Network (RBFN) [5, 12, 52, 84, 90, 60]. The RBFN is functionally equivalent to a fuzzy

inference system [51, 63]. The network is a feedforward network consisting of three

layers: an input layer, a hid.den layer, and an output layer. Each neuron of the input layer

connects to each element of an input vector. Neurons of the input layer are fully

connected to neurons of the hidden layer via weights that represent the centers of radial

basis functions in the hidden layer. The hidden layer has kernel functions (activation

functions), usually Gaussian type, which are centered on the mean vectors of clusters or

prototypes in the input space.

Training of the RBF netwOJ['k can proceed in two steps: first cluster the training

patterns to a reasonable number of groups using SOM clustering [71], k-means clustering
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[91], a successive approximation method [79], or APC-III algorithm [59]. After the

training of the hidden layer, the output layer is trained by gradient descent method or least

mean square error method [30]. It is worth noting that either APe-III or the successive

approximation method is an incremental learning method (meaning that it learns new

infonnation without retraining old information). It can cluster input patterns within only

a single pass through all patterns. A variety of techniques for training radial basis

function networks are discussed in the literature [26, 58, 60, 65, 67, 72, 75, 88, 91]. In

general, REF networks require an order of magnitude less in training time compared to

the backpropagation algorithm [93]. Moreover, their functions can be interpreted

equivalent to a fuzzy inference sys~em [63]. The architecture of the radial basis networks

is shown in Figure 2.8. A drawback of the REF networks is that they require off-line

training that assumes knowing all the inputs and the corresponding targets.

W(2)

Figure 2.8 Radial Basis Function Neural Network

The Self-Organizing Map (SOM) neural network is an unsupervised learning

algorithm that is very effective for pattern classification problems. The SOM network is
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usually composed of an input layer and an M-dimensional Kohonen or competitive layer.

Typically the Kohonen layer is a two-dimensional layer. The weight vector is the same as

the dimension of the input feature vectors. The weight vectors are randomly initialized in

the feature space at the first stage. Then, the network determines the wining neuron for a

given input vector. Next, all neurons within a certain neighborhood of the winning neuron

are updated moving toward the input. The moving step is controlled by the learning rate

[71]. One drawback of the SOM network is that it needs to know the number of clusters

in advance. For some applications, it may not be acceptable that the number of clusters is

not known. In addition, the choice ,of learning rate forces a trade-off between the speed of

learning and the stability of the final weight vectors. Moreover, the SOM network needs

iterative presentations of input patterns for learning.

A generalization of the SOM network, namely the Learning Vector Quantization

(LVQ) neural network, has been extensively used for pattern classification problems. The

LVQ network uses both an unsupervised and supervised learning algorithm. The LVQ

algorithm applies a reinforced or punished learning principle. If the current training

pattern is correctly classified, the winning prototype vector will be moved closer toward

the input pattern. If the input pattern is incorrectly classifi.ed, the prototype vector will be

moved away from the input [71]. A drawback of the LVQ network is that the number of

clusters in the competitive layer needs to be determined. Moreover, it needs off-line

training, assuming that all input patterns and corresponding targets are known.

Furthermore, in the learning process, the LVQ requires iterative presentations ofthe input

patterns. Thus, the LVQ network is not suitable for handling on-line real-time problems

that require continuous learning.
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2.4 FUizzy Sets for Patte..n Classificati@D

Zadeh introduced fuzzy sets in 1965 as a means of representing and manipulating

data that were not precise but rather fuzzy. As an alternative of crisp logic, fuzzy logic

serves as a useful theoretical foundation for information characterization in uncertain and

fuzzy circumstances. Using fuzzy set theory as the basis of ~nference establishes an

estimated foundation for obtaining an accurate form that carries out the condition of

inexact rather than exact rationale [134]. The main advantage of all fuzzy classification

techniques Imes in the fact that they provide a soft decision, a value that describes the

degree to which a pattern fits within a class.

Fuzzy logic inference is comprised of three principal processes: a fuzzification

process, a rule evaluation process, and! a defuzzification process. The fuzzification

process fuzzifies inputs using memiJership functions to obtain membership values

between aand 1. In the rule evaluation process, the fuzzified inputs are detennined via a

set of "if-then" rules using fuzzy operators. Defuzzification process is then used to

integrate the fuzzy outputs back to a crisp solution.

input
feature
vector

Similarity
Fuzzification.. .. (via membership - Defuzzificationmesurement

~

fimction)

,it

Learned Output Gass
Samples

Figure 2.9 The Concept of Pattern Classification Problems Using Fuzzy Systems
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A pattern classification system may be derived from the fuzzy set theory as

depicted in Figure 2.9. At the first stage, the similarity criterion is determined between

the input pattern and reference samples or prototype patterns. After that, the similarity

measurement is fuzzified to membership domain by a membership function. Then, the

membership values of all prototypes in that class are integrat-ed to detennine the overall

degree of a specific class to which the input pattern belongs. Finally, the defuzzification

process detennines a crisp value ofa certain class [74].

The fuzzy set theory has obviously had a great impact on pattern classification

techniques. Various researchers have studied and developed different fuzzy classification

algorithms. The main benefit of all fuzzy classifiers lies in the fact that they have the

capability of human-like decisions, which is appropriate for real world problems [134].

Some existing fuzzy classification approaches are Fuzzy-Rule-Base Methods [61],

Linguistic Recognition System [98], Weighted Fuzzy Pattern Matching [33], Fuzzy

Integral [46], Fuzzy c-Means [9], Fuzzy k-Ncarest-Neighbor [10, 69], and Fuzzy

Decision Tree [22].

2.5 Fuzzy Neural Network for Pattern Classification

The integration of neural networks and fuzzy sets into the same architecture

results in fuzzy neural network pattern classifiers. Because of their massive parallel

computational units, neural networks have the advantage of fast computation so that it is

possible to process real time estimation of extensive information. The benefit of fuzzy

systems lies in their ability to handle unclear data usually experienced in real world

problems [134]. Fuzzy neural networks tend to be very advantageous dealings with fuzzy

problems in real life. Fuzzy neural classifiers have become a primary area of research.
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classification problems are Knowledge-Bas,ed Fuzzy MLP [89J, Neural-Network-Based

Fuzzy Classifier [126], Fuzzy Self-Organizing Map [127], Fuzzy Learning Vector

Quantization [67], Adaptive Neural FuzzY Inference System [62], On-hne Sdf­

Constructing Neural Fuzzy Inference Network (SONFIN) [64], Fuzzy Min-Max Neural

Network [112-113], Fuzzy ART Neural Network [19], Fuzzy ARTMAP Neural Network

[18,20,21], Gaussian ARTMAP Neural Network [130], and RBF Fuzzy ARTMAP

Neural Network [123].

Fuzzy ARTMAP neural network is a good example of incremental learning

networks that can learn new knowledge without forgetting existing knowledge. It can

learn new information without retraining old information. The concept of the Fuzzy

ARTMAP is used as the main model to develop the algorithm proposed in this study. The

Fuzzy ARTMAP is briefly discussed here.

2.5.1 Fuzzy ARTMAP Neural Network

Figure 2.10 depicts the architecture of the Fuzzy ARTMAP neural network. The

Fuzzy ARTMAP neural network classifies analog or binary input-output pattern through

on-line supervised learning. It combines two Fuzzy ART [19] modules, Fuzzy ARTa and

Fuzzy ARTb• Input patterns are presented at Fuzzy ARTa module while their

corresponding outputs are presented at Fuzzy ARTb module. The two modules are linked

together via an inter Fuzzy ART module called a map field, pb, which is used to

determine whether the correct mapping from inputs to outputs has been achieved and to

realize the match tracking rule whereby the vigilance parameter of Fuzzy ART. increases

in response to a predictive mismatch at Fuzzy ARTb [18l
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Figure 2.10 Fuzzy ARTMAP Architecture [18]

The main concept of the Fuzzy ARTMAP is that input patterns are presented to

Fuzzy ARTa to be clustered into groups while the corresponding targets are presented to

the Fuzzy ARTb to be also clustered into groups. Then the two modules are mapped to

correct input and output pairs via a map field module. The Fuzzy ARTMAP learns to

classify inputs by a fuzzy set of features or a pattern of fuzzy membership values between

o and 1 [18]. A hyperbox is used to represent the distributions of the input space. Its

minimum point and its maximum point define a hyperbox fuzzy set. A membership

function is defined with respect to these hyperbox minimum and maximum values in each

dimension. Extensive details of the Fuzzy ARTMAP neural network are discussed in

[18].
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Figure 2.11 Two-Dimensional Hyperboxes ofFuzzy ART
Showing Ambiguous Classes in Shaded Area.

Despite the beneficial property of on-line incremental learning, some drawbacks

of the Fuzzy ARTMAP neural network presented in the literature are as foHows: 1) It is

sensitive to the presentation order of training pattern. Different presentation orders of

training pattern yield different decision boundaries. 2) It has no mechanism to avoid

overfitting and hence should not be used with noisy data. 3) In the Fuzzy ART system

full membership functions are allowed to overlap for each hyperbox, leading to the

confusion ofpattern classifying, as shown in Figure 2.11.

2.6 Summary of the Literature Survey

Pattern classification techniques have become important to handle many real-

world applications. As a complement to statistic classifiers, neural network classifiers,

fuzzy classifiers, and neural-fuzzy classifiers have been applied to deal with the

classification problems. However, those neura~ network, fuzzy, and neural-fuzzy

classifiers have some deficiencies in many aspects.

For example, the MLP and the LVQ classifiers reqUIre off-line training and

iterative presentation of training input. Thus, they use extensive training time to learn
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input patterns. Furthermore, these networks need predetennination of their architecture

parameters in advance. Repeated design work is needed to fmd the optimal parameters to

gain reasonable result in classifying patterns. Moreover, sometimes they fail in the

learning process by being unable to converge to the optimal solution because the initial

random condition is unsuitable. Hence, MLP and LVQ classifiers are not acceptable in

some cases of pattern classification problems that need fast, on-line, real-time,

incremental learning.

Despite neural net classifiers, fuzzy classifiers provide the ability of handling

vague information. In addition, they offer a soft decision that allows a pattern to belong to

several classes in different membership degrees. This property is applicable in many

pattern classification problems. Nevertheless, designing fuzzy classifiers needs expert

knowledge to form "if-then" rules. Moreover, the designing process is time consuming,

especially when the dimension of feature space becomes large. Thus, fuzzy classifiers are

not candidates for on-line, rea~-time, incremental learning pattern classification.

The integration of fuzzy neural network for pattern classification has been

increasingly applied in pattern classification problems since it provides trainable systems

and parallel computations with the ability of dealing with inexact information and

forming a soft decision. Despite many iterative off-line learning fuzzy-neural classifiers,

the Fuzzy ARTMAP neural network is an on-line supervised incremental learning

classifier. Thus, it is acceptable for real-time learning pattern classification. However,

some drawbacks of the Fuzzy ARTMAP neural network have been discussed in the

literature.

To overcome some of those deficiencies of neural net classifiers, fuzzy classifiers,

and fuzzy-neural network classifiers, we have developed a novel class of fuzzy-neural
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network, called an "Incremental Learning Fuzzy Neoral Network" (lLFN). The ILFN

preserves all the benefits of existing fuzzy neural networks, while addressing the issues of

(l) fast, one-pass, on-line, real-time, incremental learning; (2) forming a soft or hard

decision, or both soft and hard decisions; (3) dealing with nonlinear and overlapping

classes; and (4) detecting new classes with a fast update of its parameters while in an

operating mode. Details of the ILFN classifier are given in the next chapter.

~
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CHAPTER III

NETWORK ARCHITECTURE AND CLASSIFICATION ALGORITHM

3.1 Introduction

In this Chapter, the network architecture and the classification algorithm of the

proposed ILFN network are introduced. The ILFN is a synergetic combination of fuzzy

sets [134] and neural networks. A fuzzy set membership function is employed as a

discriminant function to detennine the degree of similarity of input patterns to the

prototypes of the input space. Gaussian neurons are used in the hidden layer of the input

subsystem of the ILFN system. The concept of the fuzzy ARTMAP [18) is applied in the

ILPN such that input patterns are presented to an input subsystem to be clustered into

groups, while the corresponding targets are presented to a target subsystem. Then the

outputs from the two subsystems are mapped together via a decision layer.

The ILFN classifier employs both an unsupervised and supervised learning

scheme. The supervised learning algorithm is used when the classifier is in a training

phase, provided input and output pairs are given. On the contrary, the unsupervised

learning algorithm is used when the target is to be detennined, especially when the

system is in an operating phase. The system is allowed to detect novel categories that

may be developing during operation. The learning process of the ILFN network is

developed not only in the training step but also in the operation step.

26
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3.2 The ILFN Network Architecture

The network architecture of the !LPN classifier is distinguished by two different

modes: a training mode (shown in Figure 3.1) and an operating mode (shown in Figure

3.2). The two modes have differences only in the controller module and the target

labeling module. The training mode uses the supervised learning scheme requiring pairs

of input and target of patterns to construct prototypes of the system. On the other hand,

the operating mode uses the unsupervised learning algorithm to detennine the target class

for a given input pattern. When the system detects new categories, it uses the target

labeling module to assign the corresponding targets to the coming input patterns. The

targets that are assigned to the novel prototypes are significantly different from the

existing targets in the target module. The following discussion describes the details of

the architecture of the ILFN classifier.
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Figure 3.2 Network Architecture of the ILFN Classifier in the Operating Mode

The ILFN system has four layers: one input layer, one hidden layer, one output

layer, and one decision layer, as shown in Figure 3.1 and Figure 3.2. Generally, the

system is composed of two subsystems: an input subsystem and a target subsystem. Eat;h

subsystem has three layers: one input layer, one hidden layer, and one output layer. The

hidden layer of both the input subsystem and the target subsystem are linked together via

a controller modu'e which is used to control the growing neurons in the hidden layer.

Each output layer of both subsystems consists of two modules. The output layer of the

input subsystem consists of a pruning module and a membership module, while the

output layer of the target subsystem consists of a pruning module and a target module.

The membership module of the input subsystem and the target module of the target

subsystem are simultaneously updated with their number of neurons controlled by the

pruning modules. The output of the classifier is linked together via a decision layer.
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3.2.1 Input Subsystem

Figure 3.3 illustrates the input subsystem of the ILFN classifier. Each neuron of

the input layer connects to each element of an input vector. Neurons of the input layer are

fully connected to neurons of the hidden layer via a dynamic synaptic weight matrix,

W p' whose rows represent prototype vectors which are the centriods of radial basis

function in the hidden layer. When the neurons of the hidden layer grow, Wp adds more

rows. In addition, it is a long-term-memory trainable weight. (Long-term memory refers

to the information that will be stored and used from the begin.ning to the end of the

process.)

Membership
module

input
vector

to the
decision layer

Radial basis
functl·on

Figure 3.3 The Input Subsystem ofthe ILFN Classifier

Gaussian membership functions are used in the hidden layer of the ILFN. The

Gaussian functions are centered on the mean vectors of clusters which are called

prototypes of the input pattern space. The membership functions are used to fuzzify

input vectors, p, into membership values, mi, with respect to the distance measure
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between the input vectors, p, and the vector prototypes The membership function at the

ith neuron, mj (p, W Pi ) , is defined by the following equation:

[
lip - W Pir) .

nt. W. =ex - =I (P, P, ) p 2cr; ,1 1, 2, ... , L (3.1)

where 11-11 denotes the Euclidean distance which is used as similarity measure between two

vectors. A vector p represents an input vector. The weight vector between the input

layer and the ith hidden neuron, W Pi' is the center or mean vector of data at the ith

neuron in the hidden layer. cr. represents the standard deviation of the ith neuron in the
I

hidden layer. The membership function, mi (p, W Pi ), of the hidden layer is used to

fuzzify the distance between a given input vector p and the ith centers W Pi into a real

value mi which represents the degree of similarity between p and W Pi' The membership

functions produce localized, bounded, and radially symmetric kernels. The membership

value monotonically decreases as the distance from the function's centers increases.

The pruning module in the output layer of the input subsystem which is short term

memory (referring to information that will be stored and used for only a short period of

time, i.e., only for each presenting input) is used to eliminate redundant classes from the

hidden layer. Instead of passing many duplicate subclasses, only distinguished classes are

passed to the membership module making the system easier to interpret at the output. The

pruning module in the input subsystem works together with the pruning module of the

target subsystem. Moreover, they have the same number of neurons.

The membership module in the output layer of the input subsystem receives

information transmitted from the pruning module and passes them to the decision layer.
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The infonnation stored in the membership module is a short-term memory, which means

that the information in the membership module differs for different input vectors. Each

membership value in the membership module indicates the degree of similarity of an

input vector with respect to the target classes of the classifier. The membership values

will be mapped to classes in the target module in the target subsystem via the decision

layer.

3.2.2 Target Subsystem

The target subsystem of the ILFN classifier is depicted in Figure 3.4. Each

neuron of the input layer in the target subsystem is fully connected to each element of a

target vector. A synaptic weight matrix, WT , is used to connect the neurons of the input

layer to the neurons of the hidden layer. Unlike W p in the input subsystem which is a

trainable weight, WT needs no training. However, WT increases the number of rows

when more hidden neurons are added. In addition, WT is a long-terrn-memory weight

like Wp • The hidden functions of the target subsystem are simply linear functions.
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Figure 3.4 The Target Subsystem of the ILFN Classifier
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As in the input subsystem, the pruning module of the output layer in the target

subsystem, which is also short tenn memory, ]S used to eliminate redundant classes in the

hidden layer. Instead of passing many duplicate subclasses. only subclasses that have the

highest degree of membership for a given input are passed to the membership module. As

mentioned before, the pruning module in the target subsystem works together with the

pruning module in the input subsystem and they have the same number of neurons.

The target module, which is in the output layer of the target subsystem, receives

infonnation passed from the pruning module and submits it to the decision layer. Each

neuron of the target module is a class or a target of an input vector. The target module is a

short-tenn memory as is the membership module of the input subsystem. In the same

order of indices, the target module will be mapped to the membership module of the input

subsystem via the decision layer.

3.2.3 Controller Module

The controller module is used to control the growing of the neurons of the hidden

layer of both input subsystem and target subsystem. There are some differences of the

controller module in training mode and operating mode.

In the training mode, there are three components in the controller module: two

comparators and one AND gate. One comparator is used to compare the winning

membership value from the hidden layer of the input subsystem to the threshold, E. The

output of this comparator becomes "true" if the winning membership value is smaller

than the E. This implies that the input vector is significantly different from all existing

prototype vectors. The output is sent to one input of the AND gate. Another comparator,
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which has two inputs., is used to compare the desired target to the predicted output which

is stored in the hidden layer of the target subsystem. The output of the comparator

becomes "true" if both the desired target and the predicted output are the same, and it is

sent to another input of the AND gate. If both input of the AND gate are "true," its

output becomes "true." This allows the system to add one more neuron in the hidden

units. In other words, the system generates more neurons whenever the membership

value of the winning neuron is smaller than the threshold, E, and the desired target and the

decision output are the same.

In the operating mode, the controller module of the ILFN classifier has only one

component which is a comparator. The comparator is used to compare the winning

membership value in the hidden layer to the threshold, E. The output of this comparator

becomes "true" if the winning membership value is smaller than E. If the output of the

comparator is "true," meaning that a new category is detected, the system adds a new

neuron to the hidden layer using the input pattern as the new pl'Ototype, and the target

labeling module distinguishabJy assigns a corresponding target to the new prototype.

3.2.4 Target Labeling Module

The target labeling module is used onJy in the operating mode (see Figure 3.2)

that the system is allowed to detect new classes and update the existing infonnation. The

learning algorithm in the operating mode is an unsupervised learning since the target is

unknown. The module receives one input from the output of the controller module in

hidden layer of the target subsystem. The input from the controller module is utilized to

tell the target labeling module to assign a target when a new neuron is added to the
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system. The other input of the target labeling module, representing targets of prototypes,

is used to check the existing targets in order to assign a new target that differs from the

existing targets.

3.2.5 Decision Layer

The decision layer is used to map the membership values in the membership

module of the input subsystem to the target classes in the target module of the target

subsystem. The output from the decision layer is the output of the system. The decision

output can be interpreted as a soft decision or a hard decision. For the soft decision, the

decision output assigns different membership values to the pattern classes or prototypes.

This allows a given pattern belonging to more than one class with different degrees of

similarity measure. On the other hand, for the hard decision, only one decision which is

the class that has the highest membership value is chosen as the output.

3.3 Mathematical Model of the ILFN Classifier

T
Let 91 M be a pattern vector space. Let p =[p I P2 ... PM] E ~H M bt: an input

vector. Each element of the vector is a measurement or feature, and each one corresponds

to one dimension (axis) in the space. For M elements of the vector we have an M-

dimensional space, or M-space. Let 9t N be N-dimensional space. Let

t =[t I t2... tNrEm N be a corresponding target or class vector of the input vector p. Let

matrix WI' = [Wpl W p2 ••• W pLrbe a synaptic weight matrix whose each row

vector, W;i , i = 1, '" , L, represents a prototype of the pattern space. Each class may have
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more than one prototype. Each prototype w ~j is the mean vector of the patterns that

belong to the ith node. Let matrix WT = [wT1 W T2 ••. W TL ] T be a synaptic weight

matrix whose each row vector, W ~i' i = 1> ... ,L, represents a target of a prototype stored

in W in the same order of their neurons. The number of rows of W and W
T

are thep p

same and they grow dynamically as more neurons are added into the hidden layer.

3.3.1 Similarity Measure

In order to analyze distances between objects or points in the pattern space, a

distance measure is used. There are a number of distance metrics that can be used as a

tool to measure a similarity between vectors. For example, Euclidean distance,

Mahalanobis distance, and Minkowski distance [71] are shown below:

3.3.1.1 Euclidean Distance (hypercirc1e):

d(p, w) = J(p _W)T (p- w), (3.2)

where p == an input vector,

w == a prototype vector (or mean vector).

3.3.1.2 Mahalanobis Distance (hyperellipsoid):

(3.3)

where A == a covadance matrix (symmetric and positive defmite) detennining

shape and orientation of input patterns.
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3.3.1.3 Minkowski Distance:

where A == a parameter used to control the shape of regions of attraction.

(3.4)

The necessary conditions that the similarity measure must satisfy with relation to

these points (xJ',z) in the pattern space are as following [3]:

1) d(x,y) = d(y,x),

2) d(xJ') < d(y,z)+ d(x,z),

4) d(xJ') = 0 iff y = x.

Since it is a suitable representation (i.e., the shape and orientation of the class

patterns) for any input space, generally Euclidean distance is used as a distance metric

[74]. In our work, each datum p presented to the network is measured distances to the

prototypes stored in W p (each row vector of Wp represents a prototype), as follows

(3.5)

i = 1,2, ... , L (3.6)

where D(p, Wp) is a row vector of d(p,WPi) which is the Euclidean distance between the

input vector p and the vector prototype WPi, the rows of the weight matrix W p.
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3.3.2 Membership FUNction

The membership function is employed to represent the degree of similarity

between the input pattern and the reference prototypes. Consider the K pattern classes:

WI, W2, ... , WK. The membership function will be defmed such that for all points p within

the region describing Wk , k = I, 2, ... , K, there exists a function mk(p,wk) such that

v j :;t:. k. Figure 3.5 is an example of a one-dimensional space. A point p is classified to

be the class OfWk since mtcCp,wk) is larger than mj{p,wj).

Decision
boundary

Figure 3.5 A One-Dimensional Pattern Space with
Gaussian Membership Functions

Thus within region Wk, the kth membership function will have the largest value.

The decision boundary separating region Wk and Wj is given by mk(p,wk) - mip,wj) = 0

which is equivalent to those points in the space which have equal membership functions

for both Wk and Wj, as shown in Figure 3.5.

The membership function m(p,w) should satisfy the following conditions [3, 74]:

1) m(p,w) should be unity ifd(p,w) = 0 (i.e., maximized for p = w),

2) m(p,w) should monotonically decrease to zero as d(p,w) increases,
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3) m(p,w) should be approximately zero as d(p.w) reaches infmity.

In this thesis Gaussian radial basis functions are used as membership functions for

fuzzifying input vector p by the equation

[
lip - w Pi Ir J .

mi(p, w pi ) = exp - 2cri ' l = 1, 2, ... , L. (3.7)

The Gaussian membership functions fuzzify an input pattern into membership domain

which is stored in the vector m,

(3.8)

where m is a row vector of membership values mi, i = 1, 2, .... L, which represents the

degree of similarity between p and W Pi •

3.3.3 ILFN System Dynamics

Both Wp and W T are allowed to dynamically grow the number of neurons when

the system detects new classes. However. only W p can adaptively change its information

or learn new prototypes. At the initialized state, there is no neuron in the hidden layer.

The first neuron in the hidden layer is setup after the first input vector p is presented to

the input subsystem of the network while the first target vector t is presented to the input

layer in the target subsystem. Then both W p and W T setup the first neuron using p and t

respectively. The next input vector will be compared to the existing prototype. If there is

a significant difference, then a new neuron is added to the hidden layer; p is added to Wp

and t is added to W T. On the other hand, if it meets the similarity criterion then, instead
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of adding a new neuron, the learning process is performed. The W p and other parameters

are updated to include the new data to the existing subclasses.

3.3.4 Learning Process in ILFN System

The learning process takes place only in the hidden layer which is the changing of

the synaptic weight W p which keeps the prototypes of the input space. Each input vector

p in input space is fuzzified to a membership value at each node of the hidden layer with

respect to distance measure between input vector p and the synaptic weight matrix W p.

The winning node of the hidden layer is detennined by the defuzzification process using

the fuzzy OR operation [134] defmed as

winner = max(m) (3.9)

J == winner index = arg max(m), (3.10)

where In, V 1n2 = m, if m, > 1n2 ; m, V 1n2 = m2 if m, < m2. Only the parameters of the

winner node (i.e., Jth neuron) including count, mean, and standard deviation are updated,

while other losing nodes remain the same, as foHows:

(3.11 )

(3.12)

cr =J

if C J > 1,

otherwise.

(3.13)
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CJ represents the number of inputs that have been counted into the Jth subclass. The

mean IlJ, the center or prototype of the Jt:h subclass, is indeed a row in the synaptic

weight W p . The standard deviation, GJ, will be used to indicate the spread of the data in

the Jth subclass. Go is the initial standard deviation representing the isotropic spread in

pattern space of a new category for the first sample.

3.3.5 Decision Boundaries

PI-+

Figure 3.6 Two-Dimensional Voronoi Tessellation

To understand the decision boundaries made by the ILFN, a concept of the vector

quantization method called Voronoi tesselation is introduced. The vector quantization

method is widely used in pattern recognition problems. Figure 3.6 iHustrates a two

dimensional space where a [mite number of prototypes (or codebook or reference

vectors) is shown as points corresponding to their coordinates. This space is separated

into portions, bordered by lines (hyperplanes in multi-dimensional space) such that each

portion contains a prototype vector that is the ''nearest neighbor" to any vector within the

same portion. These lines, or the "midplanes" of the neighboring prototype vectors,

together compound the Voronoi tessellation. All p vectors that have a particular



41

prototype vector as their closest neighbor, i.e, all p vectors in the corresponding portion

of the Voronoi tessellation, are said to make up the Voronoi set [71].

The purpose of pattern classification is to detennine to what category of class a

given sample belongs. Through an observation or measurement process, we obtain a set

of numbers which make up the observation vector. The observation vector serves as the

input to a decision rule by which we assign the sample to one of the given classes.

.....

t

PI -..

Figure 3.7 The Decision Boundaries among Prototypes of the ILFN

The decision boundaries of the ILFN network distinguish among prototypes in the

Voronoi tessellation. Each prototype has its own region separated by the decision

boundaries. However, the decision boundaries of the ILFN network are slightly different

from the Voronoi tessellation of the vector quantization. For the vector quantization, the

decision boundary is the (imaginary) line drawn perpendicular at half the distance to the

(imaginary) line between two prototypes. Since the ILFN uses Guassian type membership

functions with different standard deviations, the boundary is not half the distance

between the adjacent prototypes. However, the decision boundary between the

neighboring prototype vectors is a line containing the points that have the same degree of

the membership value, as an example shown in Figure 3.7. Figure 3.7 shows the decision
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boundaries among prototypes of the ILFN in which dotted circles indicate the spread of

statistical data for each prototype.

3.4 Classification Algorithm

There are two learning procedures in the classification algorithm of the ILFN

network: learning in a training procedure and learning in an operating procedure. The

summaries of the classification algorithm in the training and operating procedures of the

ILFN are as follows.

3.4.1 Training Procedure

Step 1: Set the user-defmed threshold parameter, 6, and the initial standard

deviation 0"0.

Step 2: Read in the first input pattern

- Use the first input pattern to set up the first prototype (or mean) to W p.

- Set the number of patterns for the first node to be 1.

- Set the standard deviation equal to the initial standard deviation, 0'0·

- Set a new neuron to WT using the first target t to be the corresponding target

of the prototype in W p .

Step 3: Read in the next training sample with an input and target pattern.

Step 4: Measure Euclidean distance between the input p and the prototype W p,

using equation (3.5) and (3.6).

Step 5: Calculate membership values for each node, using the Gaussian type

radial basis function as in equation (3.7) and (3.8).
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Step 6: Assign membership values to each node (Le., subclass). The current input

pattern has different degrees for each node or subclass. For each class, select the

maximum membership value from each subclass to represent the degree of similarity

with respect to that class.

Step 7: Identify the largest membership using the Fuzzy OR operator as in

equation (3.9) and (3.10).

Step 8: For the winner node, perform two rules:

Rule 1: If the winner is larger than E and the target t is the same value as WT at

the winner node then update weight W p, the standard deviation, and the number of

patterns belong to this node, using equation (3.11), (3.12), and (3.13).

Rule 2: If Rule 1 is not satisfied, then:

- Set a new node center for W p using the input pattern p.

- Set the number ofpatterns for the new node to be 1.

- Set the initial standard deviation to the new node.

- Add a new neuron to WT using the new target t as the corresponding

target of a new prototype in Wp.

Step 9: If there are no more input patterns, then stop. Otherwise, go to step 3.

3.4.2 Operating Procedure

Step 1: Read in an input pattern.

Step 2: Measure Euclidean distance between the input p and the weight Wp,

using equation (3.5) and (3.6).
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Step 3: Calculate membership values for each node, using the Gaussian type

radial basis function as in equation (3.7) and (3.8).

Step 4: Assign a membership value to each node (i.e., subclass). The current

input pattern has different degrees for each node or subclass. For each class, select the

maximum membership value from each subclass to represent the degree of that class.

St,ep 5: Find the largest membership value using the Fuzzy OR operator as in

equation (3.9) and (3.10).

Step 6: For the winner node, perfonn two rules:

Rule 1: If the winner is larger than t and the number of patterns is less than the

maximum number of allowed patterns, then update the weight W p, the standard

deviation, and the number of patterns belonging to this node, using equation (3.11),

(3.12), and (3.13).

Rule 2: If the winner is smaller than G then

- Set a new node center tor W p using the input pattern p.

- Set the number of patterns for the new node to be 1.

- Set the initial standard deviation to the new node.

- Add a new neuron to WT and assign a new target as the corresponding

target of a new prototype in W p . (The assigned new target must be

significantly different from the existing targets already stored in WT.

For example, if the existing targets in WT = [1 2 3]T, the new target

should be "4," that is WT becomes (1 2 3 4]T.)

Step 7: If there are no more input patterns, then stop. Otherwise, go to step 1.
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3.5 Summary of the ILFN Algorithm

The ILFN algorithm can learn pattern classes within one pass through the infinite

number of training data in the pattern space and it can add new pattern classes or

prototypes on the fly. Moreover, it can refine current pattern classes as new information

is acquired and it uses simple operations that allow quick perfonnance. The system

learns adaptively from given examples as a supervised learning algorithm. Input vectors

are presented to the system one at a time as on-line learning. Each row (i.e., node of the

hidden layer) of WI' represents a mean or centroid of a cluster. The number of clusters is

determined by both the threshold and class prediction. The system generates many

clusters if the threshold is large and few cluster if it is small. However, clusters that

belong to the same class are grouped together via the pruning module. Each node ofWT

stores the corresponding target of the input prototype patterns. The system has the ability

to learn new information on-line wHhout forgetting the learned infonnation.



CHAPTER IV

SIMULATIONS AND RESULTS

To demonstrate the performance of the ILFN classifier~ software simulations were

used in our experiments. The simulation programs were written to run under MATLAB

version 5.1 or higher. A Pentium 233MMX PC hosted the simulation programs. Four

data sets were used for training and testing the classifier in our studies. The first

benchmark data set was the well-known Fisher's Iris data set [38]. The second data set

was a vowel data set. The third data set was the two-spiral problem. The vowel data set

and the two-spiral data set are electronically available from the connectionist benchmark

collection at Carnegie-Mellon University, Pittsburgh, PA [129]. For the first three data

sets used in this study, the results have shown that the ILFN is capable of learning on-line

real-time in only one pass through all ~raining data. In addition, the prediction capability

of the lLFN classifier was found to be as good as or even better in many cases than many

existing classifiers. With the ability of "fast, one-pass, on-line, real-time, incremental

learning," the ILFN has shown to be applicable in real-world applications. The last and

most important data set was a time-series vibration data set known as Westland vibration

data [16]. The detail of four experiments is as follows.

4.1 Fisher's Iris Flower Data Set

The Fisher's Iris flower data set consists of 150 patterns and four features: sepat

length, sepal width, petal length, and petal width. The four features describe the shape

and size of the Iris flowers. Each pattern in the data set falls into one of three classes:

Setosa, Versicolour and Virginica, with a total of 50 patterns per class. For the purpose of

46
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this experiment, we wiU call them Class 1, Class 2, and Class 3, respectively. Class 1 is

linearly separable from the other two. However, Class 2 and Class 3 are not linearly

separable from each other.

4.5
Scatter plot of sepal width and length features
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Figure 4.1 Scatter Plot ofSepal Width and Length Features of the Fisher's Iris Data

Figure 4.1 shows the scatter plot of Iris data for sepal width and length features.

It is worth noting from the plot that Class I can be easily separated from Class 2 and

Class 3. However, Class 2 and Class 3 seem very difficult to separate since there is an

overlap between them. Moreover, in Figure 4.2, the petal width and length features are
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plotted showing that Class 1 is very well separated from Class 2 and Class 3. However,

Class 2 and Class 3 remain overlapped [38].
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In this study, the training data set was composed of the first 25 patterns of each

Figure 4.2 Scatter Plot of Petal Width and Length Features of the Fisher's Iris Data

4.1.1 A Comparison between the ILFN and the Fuzzy ARTMAP

class, while the testing data set was composed of the remaining 25 patterns of each class.

Twenty trials were performed in this experiment. For each trial, the presentation order of

the training data was randomly selected. To compare the performance of the ILFN with a

similarly supervised on-line incremental learning classifier, the Fuzzy ARTMAP neural

network was used in this study. The ILFN and the Fuzzy ARTMAP were trained with the

same training data set. Then, both networks were tested for the robustness using the same

-------------------
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testing data. The parameters of the ILFN were set as follows: the threshold 8 was set

between 0 and 1, and the initial standard deviation, 0"0 = 0.001. The parameters of the

Fuzzy ARTMAP were set as follows: the vigilance parameters pa = 0.5 and Pb = 0.5, and

the learning rate B= 1. The results of the study are shown in Table 4.1.

TABLE 4.1

CaMPARlSON PERFORMANCE BETWEEN
THE [LFN AND FUZZY ARTMAP

ILFN Classifier Fuzzy ARTMAP

Trial Number Hidden % correct Number Hidden % correct
number iterations nodes testing set iterations nodes testing set

1 1 6 94.67 1 4 92
2 1 7 98.67 3 6 90.67
3 1 4 96 3 6 93.33
4 1 - ~,-- 97.33 2 5 96-----
5 1 6 93.33 2 6 93.33
6 1 6 98.61 4 6 94.67
7 1 6 94.67 1 4 92
8 1 7 98.67 3 6 90.67
9 1 8 91.33 2 5 93.33 -- ,--, ----- -----
10 1 6 93.33 2 5 94.67
11 1 5 96 2 5 96
12 1 6 9,3.33 2 6 93.33
13 1 7 98.67 2 5 96
14 1 6 94.67 1 4 92

-
2 4 94.6715 1 6 98.67

16 1 7 98.67 3 6 90.67

17 1 6 94.67 1 4 92

18 1 5 96 2 5 94.67

19 1 6 94.67 2 6 93.33

20 1 7 97.33 2 5 96

Average 1 6.1 96.26B 2.1 5.15 93.467

Remark: Fuzzy ARTMAP used in this study IS ill the Art Gallery versIOn I,
written by Lar Liden. The Art Gallery was obtained from ftp://cns­
ftp.bu.edu/pub/ ART_GALLERY/Windows/win_gal.zip.

From Table 4.1, using the testing data, the IFLN achieved maximum correct

classification of 98.67% and minimum correct classification of 93.33%. The average of

96.268% correct classification was obtained. On the other hand, the Fuzzy ARTMAP

-
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dac;sifier achieved the average of 93.33%, the maximum of 96%, and the minimum of

92% correct classification. It was found that the ILFN classifier performed better than the

Fuzzy ARTMAP did in this data set.

Moreover, the ILFN used only one-iteration learning through all training data

while the Fuzzy AR1MAP used one to four iterations to learn the training patterns.

However, both algorithms used training times within only a few seconds. For this data

set, the number of nodes of the ILFN was not sensitive to the threshold value, E, i.e.,

different values of c (between 0 and 1) yielded the same nwnber of hidden neurons and

the same performance of correct classification. On the contrary, the number of hidden

neurons of the Fuzzy ARTMAP was very sensitive to the choices of vigilance

parameters, Pa and Pb·

4.1.2 Comparisons among other Classpfiers

Table 4.2 shows the classification performance among other dassifiers with the

Fisher Iris data. The classifiers in row one to row six were reported by Simpson [112],

showing that most of the classifiers were able to predict testing data with the number of

incorrect classification between 2-4. (See details in [112] on how to construct the training

and the testing data for these experiments.) It is worth mentioning that those classifiers,

except the fuzzy min-max classifier, cannot learn on-line. Fuzzy min-max classifier,

which is an unsupervised algorithm, uses hyperboxes for representing the input

distribution; on the other hand, the ILFN classifier uses the Gaussian function which is

more appropriate to represent the distribution of data space. The summary results of the
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ILFN and the Fuzzy ARTMAP in this study are also included in the last two rows of

Table 4.2.

TABLE 4.2

A COMPARlSON PERFORMANCE
AMONG EXISTING CLASSIFIERS

Technique No. Wrong Remarks

_!3_ay~§_cJ~sjfi~~~ _ 2 Y~ry_ ~~!l~!?!~ !~ !l!i§_type of data. .------------- ----------
~:~~~~~~~~ig~~9!~ 4 Scales up.,Roody.------------- ------ ----------------------

Fuzzy' k-NN* 4 ~I)g~s_~z~_l~~~~s_ fo_rA'!.t~ p_oj~~s.: __------ -------,-- -------------
___ ?~f~e.Qt!~1];~ ___ 3 Limited to linear discrimination.------------- ------------------------------

I J:.l!~zyJ?,~r_c~p!r.9.n*_ 2 Fuzzifies linear boundaries.------------- ------------------------------
Fuzzy min-max * 2 Single pass learning, learns on-line.

(hyperbox distribution).

Fuzzy ARTMAP 2-6 Learns on-line with 1 to 4 passes
(Run 20 trials) less than one second. Uses hyperbox

distribution.
, ILFN classifier 1-5 One-pass on-line learning within

(Run 20 trials) less than one second. Uses
Guassian distribution.

* According to Simpson in [112]

4.2 Vowel Recognition Data

The Vowel Recognition Data (Deterding Data) [29] used speaker independent

recognition of the eleven steady-state vowels of British English spoken by 15 speakers

for a speaker normalization study, using a specified training set of lpc derived log area

ratios. Four male and four female speakers were used for training, and an additional four

male and three female speakers were used for testing. The data set is in 10-dimensional

input space with 528 samples for the training set and 462 samples for the testing set.
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In our study, using different thresholds ranging from 10-1 down to 10-2°, the ILFN

classifier generated hidden neurons ranging in number from 127 down to 78. Larger

thresholds allowed the classifier to create more neurons than smaller thresholds.

However, a larger number of neurons in the hidden layer do not imply a better

performance in predicting the testing data. The results of the ILFN experiment with the

vowel recognition are shown in Table 4.3.

TABLE 4.3

THE ILFN CLASSIFIER PERFORMANCE ON VOWEL DATA
USING DIFFERENT VALVES OF THE THRESHOLD

Threshold # hidden training % correct % correct
nodes time of training data of testing data

10- 1 127 2.48S 99.05 52.81

10-4 101 1.92 S 99.05 54.98

10.8 90 1.92 S 98.67 57.36

10-12 82 1.92 S 98.48 54.55

10-20 78 1.92 S 97.54 53.90

Table 4.3 shows the ILFN classifier performance on vowel data using different

values of the threshold, e. The classifier generalized the testing data in various

percentages of correct prediction. When using the threshold of 10.1
, 127 hidden nodes

were generated and the correct prediction of testing data was only 52.81%. On the other

hand, 54.98% correct prediction was achieved using the threshold of 10-4 given 101

neurons in the hidden layer. Using the thresho~d of 10-8
, the ILFN classifier was able to

classify with the highest generalization of 57.36% for the number of hidden nodes of 90.

Again when thresholds smaller than 10.8 were used, the percent of correct prediction was
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decreased. The proposed IFLN classifier was trained in one pass through all data with

the average training time less than two seconds.

The vowel classification using various nonlinear classifiers is shown in Table 4.4.

The comparison study was performed by Tony Robinson [103]. In Robinson's study, the

best results with the correct prediction of 56% were reported using the nearest neighbor

classifier. On the other hand, the IFLN can achieve 57.36%. The complete detail of

Robinson's discussion is archived at http://www.boltz.cs.cmu.eduibenchrnarks/vowel.

html, CMU Repository of Neural Network Benchmarks.

TABLE 4.4

VOWEL CLASSIFICATION WITH DIFFERENT
NONLINEAR CLASSIFIERS [103]

no.of no. percent
Classifiers hidden correct correct

units
Single-layer perceptron - 154 33
Multi-layer perceptron 88 234 51
Multi-layer perceptron 22 206 45
Multi-layer perceptron 11 203 44

II
Modified Kanerva Model 528 231 50
Modified Kanerva Model 88 197 43
Radial Basis Function 528 247 53
Radial Basis Function 88 220 48
Gaussian node network 528 252 55
Gaussian node netwOll'k 88 247 53
Gaussian node network 22 250 54

Gaussian node network 11 211 47
Square node network 88 253 55
Square node network 22 236 51
Square node network II 217 50

Nearest neighbor - 260 56
.. . ... .. ... .. ~ . ~ ~ .. ~ ............. .................. ......... .... '..................

ILFN 90 265 57.36

,..

---------------
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4.3 Two-Spiral Benchmark

Learning to tell two spirals apart is a neural network benchmark task proposed by

Alexis Wieland in 1989. The objective is to learn to discriminate between two sets of

training points that lie on two distinct spirals in the x-y plane. These spirals coil three

times around the origin and around one another.

The training set exemplar sequence is (PU), l(i»), i = 1, 2, ... ,] 94 with Pi E m1

and t E 9l l . For n = 0, 1, '" , 96, the training patterns are obtained from the foHowing

equations:

P(2n+I.) = [xn YnY, (4.1)

l(2n+l) = [ 0 ], (4.2)
j~~

-Yn]T, (4.3) .:~P(2n+2) [-xn
"

".
l(2n+2) = [ 1 ]; (4.4)

·.. ·-t

,a

-:a(4.5) -,where Xn = rn cos (9),

'~8;.,
= rn sin (9), (4.6) :~11tlYn

'·'11
'.1-.,...e04

-
n

)
I"

(4.7) ,and rn 6.5. 104 '

rrn
(4.8)9
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From the above equations, 194 pairs of inputs and outputs in two dimensions were

obtained. The classification task was to train the patterns in this data set to the ILFN

classifier producing the correct outputs for all of the inputs. Figure 4.3 shows 194

patterns of the two-spiral problem.
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Figure 4.3 A Plot of the Two-Spiral Problem

4.3.1 The ILFN Experimental Result of the Two-Spiral Problem

TABLE 4.5

THE ILFN CLASSIFIER PERFORMANCE
ON TWO-SPIRAL DATA USING DIFFERENT THRESHOLDS

Threshold # hidden train ing % correct
nodes time(S) of training data

5x 10- 1 146 0.72 100

5x I 0- 13 92 0.49 100

5x 10- 14 90 0.49 100

5xlO- 15 82 0.49 96.97

5xlO- 16 78 0.49 94.85

5xlO- 17 56 0.44 89.69

5x10- 18 52 0.44 86.60

less than 5x JO- 19 46 0.39 77.32

".,
'.
•,."

'"

'.,
:.iJ

.,...,
'.
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Table 4.5 shows the results of the ILFN classifier on the two-spiral problem using

different threshold values. For the threshold of 5xl 0-1
, 146 nodes were generated with the

result of 100% correction using the same training data as the testing data. In the

experiment, the classifier generated fewer neurons when the threshold was reduced;

however, the testing results still achieved 100% accuracy with the final threshold value of

5x10-14 and the hidden layer of 90 nodes.. The minimum number of hidden nodes is 46,

setting the threshold value to be less than or equal to 5xl0-19 and achieving the

correctness of 77.32%. It is worth noticing that our proposed classifier was able to

distinguish between two spirals in only one epoch within less than one-second training

time. Figure 4.4 depicts the two-spiral problem with the prototypes created by the ILFN

when the threshold G was set to be 5xlO- '4, obtaining 90 nodes in the hidden layer.

0= Class I
0= Class 0

.. =Prototype of Class 1
x = Prototype of Class 0

•

o

6 .----.-----r---,--...--...-----.,.......,~--,--.,.--_,• • •

-4

-2

Figure 4.4 90 Prototypes Created by the ILFN for the Two-Spiral Problem

4.3.2 An MLP Experiment on the Two-Spiral Problem

To compare the speed performance with the ILFN, we also used the MLP trained

by the Levenberg-Marquardt algorithm [48], one of the fastest training algorithms for the

--------------
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MLP. The MLP network was constructed with one input layer with 2 neurons, two

hidden layers with 20 neurons each, and one output layer with one neuron. Logsigmoidal

functions were applied in the network. With the sum-squared error (SSE) of 0.001, the

MLP network used a training time of 1.38 hours with 248 iterations to converge.

4.3.3 Results from other Resear,chers on the Two-Spiral Prtlblem

Fahlrnan's quickprop algorithm with hyperbolic arctangent error [36] was used

with the same network and starting values, and the training times were 4500 iterations,

12,300 iterations, and 6800 iterations with average of 7900 iterations [37]. (Note that

each iteration probably took more than ten seconds.) More results on the two-spiral

experiments from other researchers can be electronically achieved on the Internet at

http://www.boltz.cs.cmu.edulbenchmarks/two-spirals.html (129].

Using the IFLN classifier, the results from the experiments used with the above

three data sets were found to be competitive with many existing classifiers. However, the

ILFN features an advantage with the capability of fast, on-line, incremental learning. This

feature is very important for vibration monitoring systems that allow the classifier to

learn new information during operation when new classes of failure modes are

developing. Only new data (i.e., new classes) are added to the classifier without

retraining the old data that have been learned. The ILFN was developed to handle this

kind of problem. To demonstrate the perfonnance of the ILFN on a vibration

classification task, the experiments with the Westland vibration data set were performed

as described in the next section.

<f_ ..

"0

".
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4.4 The Westland Vibration Data Set

This data set consists of vibration data recorded using eight accelerometers

mounted on different locations (shown in Figure 4.5) on the aft main power transmission

of a U.S. Navy CH-46E helicopter. The CH-46E Chinook is a twin-rotor, fore/aft

transmission rotorcraft powered by two turbine engines. The data was archived at the

Applied Research Laboratory (ARL) of Penn State University. The vibration data was

collected by using an International Recording Instruments Group analog tape recorder

and a single mixbox and aft main 'transmission installed on a test stand and run at nine

different torque levels (i.e., 100%,80%, 75%, 70%,60%,50%,45%,40%,27%). While

collecting the data, only one faulted componen~ was installed in the mixbox and

transmission and vibration data were recorded. The data were recorded for many types of

faults listed in Table 4.6. Employing a 10-channel data acquisition system, the data were

digitized at a sample rate of 103,116.08 Hz with 16-bit quantization level and were saved

in 1.506-MB data files. All together, there are 71 files; each file contains all eight

accelerometer signals. The data files used in this study were one-second data files [16].

TABLE 4.6

A LIST OF THE FAULT TYPES
CREATED IN THE TEST GEARBOX

Fault # Description

2 I, Epicyclic Planet Gear BorelBearing/Inner Race Corrosion Spalling

3 SEiral Bevel Input Pinion Bearing JO..!:!T:nal_g~rrosio~J'ittingl~~J1ing - ---
Spiral Bevel Inout Pinion Gear Tooth SpaJling/ScLlffing ... . '4

5 Hi~h Speed Helical Input Pinion Tooth Chipping and Freewheel CI.utch Beanng False Brmnellmg

6 Helical Idler Gear Crack Propagation - - ---------- --- - - . ---- - - - - - -
-----

7 Collector Gear Crack ProoalIation

8 Quill Shaft Crack Propagation

9 No Defect

-----------------
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Figure 4.5 Accelerometer Positions on the Aft Transmission of the CH-46E Helicopter

4.4.1 Westland Data Characteristics

Figures 4.6 and 4.7 show two samples of vibration data in time domain pertaining

to fault Class 2 and Class 3 from Accelerometer 1 of the Westland Data Archive.

However, it is difficult to discriminate the two raw time-series data. The raw time series

data provide little information to use for classification.
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Figure 4.7 A Plot ofTime Series Data ofFault 3 fonn Sensor 1

It is preferable to transform the signal from time domain to frequency domain.

The vibration signatures in frequency domain are shown in Figure 4.8 and Figure 4.9,

which are power spectral density plots of the two signals given in Figure 4.6 and Figure

4.7, respectively. It is easy to see that frequency contents above 20 kHz are less useful.

The effective information for classification is in frequency range of 3 kHz to 10kHz.
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Figure 4.9 Power Spectrum Density dB Plot of Fault 3 from Sensor I

For the interested frequency range of 0-12 kHz, Figures 4.10 and 4.11 illustrate a

"zoom-in" version of the power spectrum density plot shown in Figures 4.8 and 4.9,

respectively. These two signatures from Sensor I seem difficult to separate. Figure 4.12

illustrates the power spectrum density plot of Fault 2 from Sensor 3. Figure 4.13

represents the power spectrum density plot of Fault 3 from Sensor 3. The two signatures

from Sensor 3 are relatively easy to classifY.

-------------_.~
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More sample plots on frequency domain of 100% torque level of Westland

vibration data are shown in Figures 4.14 and 4.15. Figures 4.14 and 4.15 show sample

patterns ofFault 2, Fault 3, Fault 4, Fault 5, Fault 6, Fault 7, Fault 8, and no fault from all

8 accelerometers.
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It is worth noting that data from each sensor alone is not sufficient to classify the

fault classes. Moreover, it is easier to classify the data by using all patterns obtained

from 8 sensors. Integrating fault patterns from aU 8 accelerometers, it is more informative

for classification as shown in Figure 4.16 through Figure 4.23. Figure 4.16 through

Figure 4.23 show frequency domain plots of all fault classes that are pattern vectors

combined from 8 sensors. All signatures in Figure 4.16 through Figure 4.23 are more

informative and easier to distinguish. In this study, most of our experiments used the

combined signatures from all 8 sensors as training patterns, except the comparison with

the Fuzzy ARTMAP neural network for which only data from Sensor 1 was used.

A sample pattern of Fault 2, combined from 8 sensors
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Figure 4.16 A Frequency Domain Plot of Fault 2, Combined from 8 Sensors
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A sample pattern of Fault 3, combined from 8 sensors
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Figure 4.17 A Frequency Domain Plot of Fault 3, Combined from 8 Sensors

A sample pattern of Fault 4, combined from 8 sensors
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Figure 4.18 A Frequency Domain Plot of Fault 4, Combined from 8 Sensors
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A sample pattern of Fault 5, combined from B sensors
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Figure 4.19 A Frequency Domain Plot of Fault 5, Combined from 8 Sensors

A sample pattern of FaL,;lt 6, combined from 8 sensors
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Figure 4.20 A Frequency Domain Plot of Fault 6, Combined from 8 Sensors
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A sample pattern of Fau'lt 7, combined from B sensors
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A sample pattern of FaL:lt 8, combined from B sensors
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A sample pattern of no fault, combined from 8 sensors
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Figure 4.23 A Frequency Domain Plot of No Fault, Combined from 8 Sensors

4.4.2 Using ILFN Classifier on Westland Vibration Data

In our experiments, vibration time-series data were preprocessed using FFT

technique in transformation from time domain to frequency domain. Power spectrum

command (SPECTRUM. in Matlab Signal Processing Toolbox) with Hanning window of

1024 samples was utilized. We filtered the data with the interested frequency band of 3

kHz - 10kHz, getting a 141 x1 vector for each channel. Vectors from 8 channels were set

into one vector (l128xl vector, as shown in Figure 4.16 through Figure 4.23). Then, it

was input into the ILFN classifier as wen as other classifiers used in this study (except

the Fuzzy ARTMAP which used only Channel 1). The Fault types and torque levels of

the Westland vibration data used in the experiments are shown in Table 4.7 and Table

4.8. The summary results from the experiments are given in Table 4.9.
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TABEL4.7

FAULT TYPES AND TORQUE LEVELS OF
WESTLAND VillRATION DATA USED IN THE EXPERIMENTS

FAULT
TYPES

100% : 80% : 75% :

TORQUE LEVELS

70% : 60% : 50% : 45% : 40% : 27%

1

9 (no fault)

I I I

2 USED I NA I NA 'NA NA NA NA NA NA
f-------l- -- - - -}----- - -{-- -- --1-- ---- -:- -- - - -+ ------:- --- --T- - - - - -}-- - - __

3 USED : USED : USED : USED : USED : USED : USED : lIS!':D I USED '
------~-----~------r-----~------+------~-----~------~-----

4 USED I USED I USED , USED : USED : USED : USED : USED : USED
r------I-.- - -- -~ -- - -- ~- -- - --~ -- --- ~- --- - - t- - -- - -:- - ---- t---- - -~- - - --

5 USED : USED : USED : USED: NA , NA I NA , NA I NA
r------~------r ---- - -,- -- - -- r - - - - --,- -- - - -~- - - - - -:-- - - --f - - --- -}- - - ---

6 USED: USED: USED: USED: NA : NA : NA : NA : NA
------i-----i------~-----~------+------~-----~------~-----

USED I USED , USED : USED : USED : USEn: NA : USED : USED
1-------1-----+----- ~------t------:--- ---+ ---- --:-- -----t- ----+-----

8 USED : USED : USED : USED ' USED I USED I USED I USED I USED
1-------1-- -- - -r--- ---..,- - - - -- r --- - -~- - - - - -~ -- - -- -:- - - - - - -i- - - - - -~ -- --_

USED : USED : USED : USED : USED : USED : USED : USED : USED

N A=N ot available

TABEL4.8

TORQUE LEVELS AND THE NUMBER
OF PATTERNS USED IN THE EXPERIMENTS

Torque levels 100% 80% 75% 70% 60% 50% 45% 40% 27%

# pattems 400 700 350 700 500 500 400 500 500

Table 4.9 shows the results from all experiments in our studies. In the

experiments ofthe Westland data set, all torque load levels (i.e., 100%, 80%, 75%, 70%,

60%,50%,45%,40%, and 27%) were used to train the ILFN classifier. Only 10 patterns

were used for training, and the remaining data were used for testing when thc same

torque level was used for both training and testing. All patterns were used for training

when different torque load levels were used for testing. For the last column of Table 4.9,

the training set was composed from the frrst 10 patterns of each torque level.

------------------
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TABEL4.9

PERCENT CORRECT CLASSIFICATION OF
THE ILFN FOR THE WESTLAND VIBRATION DATA

WITH DIFFERENT TORQUE LEVELS FOR TRAINING AND TESTING

Remark. (1) Only lO patterns were used for trammg when the same torque load was used for teSllng.
(2) All patterns were used for training when the different torque load were used for testing.
(3) For the last column, only 10 patterns from each torque load level were used for training.

TRAINING DATA (TORQUE LEVELS)

100% 80% 75% 70% 60% 50% 450
/0 40% 27% all torque levels

Hidden nodes 8 7 7 7 5 5 4 5 5 5\

100% 100 60.57 35 36 40 40 50 30.8 40 100

80% 71.43 100 71.29 59.71 50 33.33 36.3{) 33.33 33.33 tOO
:

75% 81.42 71.43 100 96.29 40 33.33 36.36 33.33 39 100
<qj"
""'~ 70% 57.14 71.43 100 I'f 100 80 33.33 36.36 33.33 39 1·00<;.
~""
~,.J 60% 41.2 48.6 80.4 93.2 100 92.6 56 40 78.2 LOO
~§

~i 50% 37.2 59.8 80 80 99.8 100 1.00 100 100 100
""'@.

45% 42.5 50 50 53.5 81.25 lOO 100 100 95.75 100

40% 4 40 60 59.3 80.2 100 100 100 100 100

27% 7.4 42.4 60 60 80 80.6 91.25 lOO 100 LOO
. .

In Table 4.9, the columns represent the training data with different torque levels,

and the rows indicate the testing data with different torque levels. The percent of correct

cl.assificati.on results are interpreted by crossing each column with each row. For instance,

100% correct classification was achieved when the ILFN was trained by the 40% torque

level and was tested by the 50% torque level. The numbers of hidden neurons resulting

from the training process of the ILFN are shown in Table 4.9 in the row leading with the

words "Hidden nodes." These numbers indicate how many prototypes that the ILFN

classifier has created.

Using 10 patterns of the 100% torque level for training, the classifier created 8

neurons in the hidden layer. The ILFN obtained 100% correct classification using the

remaining data of the same torque load for testing. Moreover, using all 400 patterns of
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the 100% torque level for training, the ILFN also created 8 neurons in the hidden layer.

The other torque levels were used to test the "robustness" of the ILFN network. The

correct classification of 71.43% was achieved for the 80% torque load, and for the 75%

torque load, 81.42% correct prediction was obtained. The ILFN classifier yielded the

correct classification of 57.14%,41.2%,37.2%,42.5%,4%, and 7.4% for torque levels of

70%, 60%, 50%, 45%, 40%, and 27%, respectively.

It is worth noticing that when the same torque level was used both for training and

testing, the ILFN achieved 100% correct classification. (Note that testing patterns were

different from the training patterns, i.e., obtained from different time series, but they were

in the same torque leveL) Furthermore, using high torque levels (i.e., 100% and 80%)

for training, in the testing phase the ILFN achieved perfect classification only when the

testing patterns from the same torque level were used. However, using 75%, 70%, 60%,

50%, 45%, 40%, or 27% torque level for testing, the ILFN was able to correctly classify a

larger range of torque levels. For example, when the ILFN was trained by a 50% torque

level, 100% correct classification was obtained from the range of 40% through 60%

torque levels.

4.4.3 A Comparison between the Fuzzy ARTMAP and the ILFN

Another experiment was perfonned to compare the classification performance

between the Fuzzy ARTMAP [18] and the ILFN classifier since both of them are

supervised incremental learning algorithms. Data from each sensor alone was used to

train and test the networks because using data from an individual sensor was more
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difficult to classifY than using combined data from all sensors. 200 patterns from each

channel of 100% torque load were used for training, and the other 200 patterns were used

for testing. For this experiment, each pattern from each sensor was a 141-dimensional

vector.

The Fuzzy ARTMAP was set at the vigilance parameters Pa = 0.7 and Pb = 0.7

and the learning rate ~ = 1. The ILFN was set at the threshold I> = 0.001 and the initial

standard deviation 0"0 = 0.001. Table 4.10 shows the result of this experiment.

TABLE 4.10

A PERFORMANCE COMPARISON BETWEEN
THE FUZZY ARTMAP AND THE ILFN (USING WESTLAND

VIBRATION DATA FROM INDIVIDUAL SENSORS)

Sensor 1 I Sensor 2 1 Sensor 3 1 Sensor 4 I Sensor 5 I Sensor 6 I Sensor 7 I Sonsor 8

Fuzzy Hidden nodes a = 9', b = 4; a =4, b =4i a = 4, b = 4i a = 4, b =4i a =4, b = 4; a =4, b = 4' a = 4, b = 41 a = 4, b = 4________ . 1 ~ L 1 -1 ~ 1- _

ARTMAP .~:.a~,:g_i~~ ~ : :3 J 3 L ~ L 2 J 3 L ~ L 2 _

pa =0.7 I % correct on 64 : 80 : 90.5 : 84 : 67 : 57 : 72.5 : 43.5
pb =0.7 I testing data I I 1 I I I I

ILFN Hidden nodes 15 1 12 I 8 I 12 : 13 I 10 1 12 : 15
---~-~--. -------~------i-------t-------r------i-------,-------r------

E= 0.001 Learmng Iter. 1 1 1 1 1 1 1 t 1 I 1 I 1 1 1
'-- - - - - - -. - - -- - - -1-- - ----,-- - --- - r--- - - - -,- - - - ---, - - - - - -- r--- -- - -r - - - ---

100 =0.00 % correcl on 79.5 I 79.5 I 95.5 I 98.5 I 50 1 78.5 , 91 1 78.5
lesting data : I I 1 I I 1

Table 4.10 shows a comparison of classification performance between the Fuzzy

ARTMAP and the ILFN classifier. Using data from each sensor alone, the Fuzzy

ARTMAP (with the specific parameters) was able to classify the testing data with the

highest correct classification of 90.5% from Sensor 3. It resulted in the lowest correct

classification of 43.5% using Sensor 8. The results were varied when the Fuzzy

ARTMAP performed on other sensors. (Note that the Fuzzy ARTMAP is sensitive to the

parameter. By changing the values of the parameter, the correct classification may be

--------------
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significantly changed up or down. A larger vigilance value yields higher correct

classification.)

On the contrary, the ILFN was able to classify the data from Sensor 4 and Sensor

3 with 98.5% and 95.5% correct classification, respectively. The lowest correct

classification was on Sensor 5 with 50% correct classification. The Fuzzy ARTMAP

performed better than the ILFN did on Sensor 5. However, on the other sensors, the ILFN

classifier was able to classify the testing data with higher correct classification than did

the Fuzzy ARTMAP. The number of hidden neurons of the ILFN was higher than that of

the Fuzzy ARTMAP. However, the number of hidden neurons of the ILFN was

automatically grown controlled by the threshold e, and it was not sensitive to e. Changing

the value ofe had little effect on the ILFN performance.

4.4.4 Comparisons among Other Classifiers

More experimental results on Westland vibration data are shown in Table 4.11.

Table 4.11 shows the comparison among the Multilayer Perceptorn (MLP), Radial Basis

Function Network (RBFN), Learning Vector Quantization (LYQ), and ILFN classifier.

This experiment was performed using 200 patterns of 100% torque levels to train each

classifier. The testing data sets were composed of 200 patterns from 100% torque load,

700 patterns from 80% torque, 350 patterns from 75% torque, and 700 patterns from 70%

torque load. The data used were I 128-dimensional vectors that were combined from aU 8

sensors.

The first network was the MLP trained by the Backpropagation (BP) with variable

learning rates. The MLP was comprised of one hidden layer with 10 hidden nodes and
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one output layer with 4 nodes. Logsigmoidal functions were utilized in the MLP network.

The sum of square error (SSE) goal was set to 0.001. The MLP was trained for IOtrials.

To meet the SSE goal, the MLP network used a training time of 475 iterations with 400

seconds on the average of 10 runs. We noticed that for many trials the MLP was stuck at

some local minima, unable to converge to the global minimum.

TABEL 4.1 1

PERCENT CORRECT CLASSIFICATION OF THE MLP,
RBFN, LVQ, AND ILFN, TRAINED BY 100% TORQUE LEVEL

AND TESTED BY DIFFERENT TORQUE LEVELS

..:,;.. . ,·1 . . Classifier types
(trained With 1:00% torque level)

MI.P RBFN LVQ ILFN
. Learning time 400S 125 194 S 45

475 epochs 1 epoch 500 epochs 1 epoch

!~
100% 96.5 100 100 100

CQ>
80% 58.71 4.57 71.43 71.43::*.a ~.• ;:l 75% 61.14 0.57 74.29 74",1:1"

~ ....
~.s 70% 37.43 0.57 57.14 57.44'-'

• Learning type OFF-LINE OFF-LINE OFF-LINE ON-LINE

MLP => 1 hidden layer, 10 hidden neurons; trained by BP with
variable l:,~arning rate; sum square error goal (SSE) = 0.001

RBFN => 8 hiddenneurons determined by one-pass clustering; 4 output neurons.
LVQ => 8 hidden neurons; 4 ouput neurons.

The second network was the RBF network. Using one-pass self-selection of the

hidden centers by a successive approximation method [79], the RBFN constructed 8

hidden neurons in the hidden layer. Then, the output weight was detennined using the

method proposed by Haykin [52].. The RBFN quickly learned within a single iteration.

The third network was the LVQ network. The LVQ network of Neural Network

Toolbox version 2.0.4 of Matlab version 5.1 was used in this study. The network was
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composed of an 8-neuron LVQ layer and a 4-neuron linear layer. The maximum training

time of the LVQ was set to be 500 iterations. The LVQ used approximately 194 seconds

for training.

The ILFN incrementally learned and generated 8 neurons in the hidden layer. The

training time was about 4 seconds within a single iteration. On this data set the ILFN

used training time approximately 100 times, 3 times, and 64 times faster than the MLP,

the RBFN (constructed in this experiment), and the LVQ, respectively.

For the generalization capacity, it was shown that the ILFN was competitive with

the LVQ. In Table 4.11, both the ILFN and the LVQ were able to classifY the 100%­

torque-load testing data with 100% correct classification. The percent correct

classification of the two networks was reduced to 71%, 74%, and 57% when using 80%,

75%, and 70% torque load, respectively. However, considering the capability of on-hne,

real-time, incremental learning, the ILFN was superior to the LVQ. Moreover, based on

generalization and fast on-line learning ability, the ILFN was superior to the MLP and to

the RBFN off-line learning algorithms.

4.4.5 An ILFN Learning Simulation in an Operating Mode

To study the ability of the ILFN in an operating mode, we used 100% torque load

to train the ILFN network.. First, only a "No Fault" class was trained to the network.

Acting as a monitoring system, the ILFN repeat.edly received unseen patterns in order to

classify them. The ILFN was able to detect new classes, and it learned the incoming

faults by creating new neurons and designated new targets for the unseen patterns that

--------------
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were significantly different than the patterns that had been learned as shown in Table

4.12.

Table 4.12 illustrates the perfonnance of the ILFN in an operating mode. In

Table 4.12, first the ILFN was trained using class "No Fault" with the corresponding

target "0000." Then, patterns from Fault 8, Fault 5, Fault 2, Fault 3, Fault 6, Fault 7, and

Fault 4 were presented to the ILFN network without targets. The ILFN assigned targets to

be "0001," "0010," "0011," "0100," "0101," "0110," and "0111," respectively. In order

to have different targets with the existing targets, first the ILFN classifier checked the

existing targets finding the highest number in the target module. Then, using the

increment of the highest number by one, the ILFN classifier assigned the new target to

the incoming pattern.

TABLE 4.12

THE ILFN ASSIGNED CLASSES TO
THE UNSEEN PATTERNS (IN A BINARY FORMAT)

.,
,IIoFaults Labeled classes

Learned Fault No fault 0 0 0 0
• >·c - ..'

Fault 8 0 0 0 1
.....................................................................................

Fault 5 . 0 o 1 o
............................: .

............ u ••·••••.. •••••• .Unseen
faults

Fault 2

Fault 3

o
o

o

1

1

o
1

o
••••" •••••••••~••••••••• ., %••••••••••••~••• ~ H •••

t . ; .

Fault 6 0 1 0 1
..................................... H •• .. •••••••••••••••••••••••••• .. •

<Fault? ,0 l' ,1 o
......................~ ~ .._ .

Fault 4 o 1 o o



CHAPTER V

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions of the Research

A new algorithm based on fuzzy neural networks called "Incremental Learning

Fuzzy Neuron Network" (ILFN) has been developed for pattern classification. The ILFN

employs a hybrid supervised and unsupervised learning scheme to generate its prototypes.

The network is a self-organized classifier with the capability of adaptive learning of new

information without forgetting existing information. The classifier can detect new classes

and update its parameters while in an operation mode. Moreover, it utilizes fast real-time

on-line learning without knowing a priori information (i.e., without knowing the

probability density functions of pattern classes). In addition, it has the capability to make

both soft (fuzzy) and hard (crisp) decisions and is able to classify both linear separable

and non-linear separable problems.

The network is a synergetic combination of fuzzy sets and neural networks. It

employs the fast parallel computation and learning capability of neural networks. In

addition, fuzzy set theory adds the ability to represent and manipulate imprecise

information.

The ILFN consists of two subsystems: one input subsystem and one target

subsystem. Each subsystem is comprised of three layers: an input layer, a hidden layer,

and an output layer. Input patterns are presented to the input subsystem while the

corresponding targets are presented to the target subsystem during training. The learning
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process occurs in the hidden layer of the system. The two subsystems are linked together

via the decision layer where the output of the network is obtained.

The hidden layer of the input subsystem employs the Gaussian radial basis

functions as a fuzzy membership function. The membership. function is used to fuzzif)r

the distance between input patterns and prototypes into the membership domain. If the

degree of membership function of the distance between a pattern to a prototype closes to

"1," the pattern likely belongs to the prototype. On the contrary, if the degree of

membership function closes to "0," this indicates the pattern is different from the

prototype. With different degrees of membership function, input patterns are considered

to have various grades of similarity to the prototypes. Hence, a given input pattern is

allowed to have many class prototypes with different degrees.

For a pattern space with the bounded number of categories, even if the number of

exemplars in the pattern space is unbounded, the ILFN surely converges to limits in

response to an arbitrary sequence of input vectors. Convergence of the ILFN are satisfied

because a finite number of categories in the hidden layer of the input sub~ystcm are

generated and the prototype vectors are updated to include new information to move only

toward the centroids of the categories. The prototypes always move toward the centroids

of the categories since the statistical mean of data is used. For every new input data

satisfying the criterion to have the same category, a new statistical mean will be

calculated to include the new input to the category. These prototype vectors constitute the

Voronoi tessellation making the system to classify a given pattern to a correct class in the

Voronoi set.

Four benchmark data sets: the Fisher's Iris data set, a vowel data set, the two-

spiral problem, and the Westland vibration data set, were used in simulation experiments
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to demonstrate the performance of the ILFN classifier. Comparisons between the ILFN

and some existing methods were made. The results show that, in terms of classification

performance, the ILFN is competitive with or even better than many well-known

classifiers, including the MLP, the RBFN, the LVQ, and the Fuzzy ARTMAP classifier.

For example, in the classification performance comparison between the ILFN and the

Fuzzy ARTMAP on the Fisher's Iris data set, the ILFN achieved 96.268% correct

classification while the Fuzzy ARTMAP achieved 93.467%, on average of 20 trials.

Moreover, in the comparisons among the MLP, RBFN, LVQ, and ILFN using the

Westland data set with 100% torque level for training and testing, 96.5%, 100%, 100%,

and 100% correct classification were achieved by the MLP, RBFN, LVQ, and ILFN,

respectively. When using 100% torque level for training and 80% for testing, the MLP,

RBFN, LVQ, and ILFN achieved 58.71 %,4.57%,71.43%, and 71.43%. respectively.

Additionally, in terms oftrainiag time, the ILFN is superior to those classifiers.

Furthermore, the on-line, real-time, one-pass, incremental learning behavior supports

ILFN in its ability to detect new classes and update its parameters without using old data

to retrain the network. The ILFN classifier, acting as a component in a monitoring

system, was used extensively to investigate the Westland vibration data. The results from

the simulation studies have shown that the real-time and on-line ILFN classifier IS

efficient for fault classification and identification in machine condition monitoring.

5.2 Recommendation of Possible Future Work

A disadvantage of the ILFN is that there is no mathematical proof of the

convergence. This network seems less sensitive to the order of presentation of the sample

feature vectors than does the Fuzzy ARTMAP (as shown from the experiment); however,

------------------
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it is still dependent upon the order of presentation as do other one-pass learning

algorithms. These problems are left for future research projects.

Another possible future work on the ILFN system is to add a capability of

knowledge representation, ability to translate knowledge induced by the ILFN network

into linguistic rules that can be easily comprehended by human system operators. In

addition, research to merge an adaptive feature extraction system into the ILFN classifier

to enable the ILFN system to higher performance is needed. In this study, a simple FFT

technique was used for feature extraction. It was found that the FFT technique was very

sensitive to the torque level~ i.e., different torque levels generated significantly different

patterns for the same faults resulting in incorrect classification.

Implementation of the ILFN into hardware architecture is another area for

additional research. In order to apply for real-time, on-board and transportabie machine

health monitoring, the ILFN classifier should be designed into suitable electronic

hardware architecture.

---------------
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APPENDIX A

MATLAB Source Code of the ILFN Classifier

INPUTS ARGUMENTS:
p = A vector or a matrix of training data (each column

represent a vector of each datum).
= A vector or a matrix of training target (each column

represent a vector ofeach target).
wa = A eeight matrix in the hidden layer of the Input Subsystem.
wb = A eeight matrix in the hidden layer of the Input Subsystem.
c = Count of patterns that have been added in prototype in wa.
stdv = Standard deviation at each prototype in wa.

function [Wa,Wb,count,stand_A]=ilfn(p,t,wa,wb,c,stdv)
% [Wa,Wb,count,stand_A]=ilfn(p,t,wa,wb,c,stdv)
%
% lLPN (Incremental Learning Fuzzy Neural) is an
% on-line one-pass incremental learning classifier with capability of both hard
% and/or soft decision (assuming that data is normal distribution).
%
%
%
%
% t
%
%
%
%
%
%
% WRITEN BY: PHAYUNG MEESAD 10/11/98 10:24am

sigma_O = 0.001;
new_cate_cutoff= 0.3;
maxpop = 100;

% Initial standard deviation
% The threshold (epsilon)

% The maximum number allow to add in
% a prototype in operation mode

J=I;
ifnargin == 1,

Ptr=p; Wa = Ptr(:,l)'; Wb = ones(l,l);
count=1; start=2;train=O;
stand A = sigma O*ones(size(Wa»;- -
fprintf('TRAINING ... \n');
tic

elseif nargin = 2,
Ptr=p; Ttr=t; Wa = Pir(:,l)'; Wb=Ttr(:,l)';
count=1; start=2;train=1;
stand_A = sigma_O*ones(size(Wa»;
fprintf('TRAINING ... \0');
tic
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elseif nargin = 5,
Ptr=p; Wa=t; Wb=wa; count=wb;
stand A=c', train=O'start= l'

- "
fprintf('PREDICTING ... \n');
fprintf(['Number of nodes = ',num2str(size(Wb,l)),'\n']);

elseif nargin = 6, .
Ptr=p; TtFt; Wa = wa; Wb == wb;
count = c; stand_A = stdv; start=1; train= 1;
fprintf('TRAINING ... \n');
tic

else
error('Invalid arguments.');

end

if train==1,
for i=start:size(ptr,2),

A = Ptr(:,i)';
B = Ttr(:,i)';
Ta = dist(A,Wa');
st=norm(stand_A(J,:»;
ifst<O.OOl, st=O.OOl; end
net = Ta.lst;
member = exp(-(net:"2)/2);
[winner, 1] = max(member);
if (winner>=new_cate_cutoff)&(dist(Wb(J,:),B')=O),

count(J) = count(J)+1;
Wa(J,:) = (Wa(J,:)*(count(J)-1) + A)/count(J);
stand_A(J,:) = sqrt( (1-( l/count(J»)*(stand_A(J ,:).1\2) ...

+ (Wa(J,:)-A).1\2);
else %if (winner<new_cate_cutoff)

Wa= [Wa' A]'., .,
Wb= [Wb; B);
count = [count; 1];
stand_A = [stand_A; sigma_O*ones(size(A)));

end
end

else
for i=start:size(Ptr,2),

A =Ptr(:,i)';
Ta = dist(A,Wa');
st=norm(stand_A(J,:»;
ifst<0.001, st==0.001; end
net = Ta./st;
member = exp(-(net.1\2)/2);
[winner, J] = max(member);
if (winner>new_cate_cutoft)&(count(J)<maxpop),
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count(J) = count(J)+ 1;
Wa(J,:) = (Wa(J,:)*(cOlillt(J)-l) + A)/count(J);
stand_A(J,:) = sqrt( (l-(lIcount(J))*(stand~A(J,:).1\2)...

+ (Wa(J,:)-A).1\2);
elseif (winner<=new cate cutoff),

- -
Wa= tWa; A];
if size(Wb,2» I,

dummy=[];
for loop I=1 :size(Wb,I),

bin=[];
for loop2= 1:size(Wb,2),

bin=[bin,num2str(Wb(1oop I,loop2»]
end
dec=bin2dec(bin);
durnmy=[dummy; dec);

end
maxd=max(dummy);
newWb=maxd+1;
newWb=dec2bin(newWb,size(Wb,2»;
new=[];
for loop,2=1:size(Wb,2),

new=[new,str2num(newWb(loop2»];
end

else
new=max(Wb)+ 1;

end

Wb = [Wb; new];
count = [count; 1];
stand_A = [stand_A; sigma_O*ones(size(A»];
Ta = dist(A,Wa');
st=nonn(stand_A(J,:»;
ifst<O.OOl, st=O.OOl;end
net = Ta.lst;
member = exp(-(net.1\2)/2);
member = member/sum(member);

end

%pruning module
y=Wb(l,:);
mvy=[member(l)];
1=1; k=2;
while k<=size(Wb, 1),

ifdist(y(1,:),Wb(k,:)')==O,
maxMV=max(mvy(l),member(k»;
mvy(l)=maxMV;
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else
y=[y; Wb(k,:)];
rnaxMV=member(k);
mvy=[mvy; rnaxMV];
1=1+1;

end
k=k+l;

end;
% end pruning module

%_=y;
MV=rnvy/sum(mvy);
[winner_, J~ = max(MV);

fprintf('\nHARD DECISION \n');
fprintf(['Predict Class: ',num2str(Wb_(J_,:»,'\n']);
fprintf('\nSOFT DECISION \n');
for c=1:size(Wb_,1),

fprintf(['Class ',num2str(Wb_(c,:»]);
fprintf([', MV = ',nurn2str(mvy(c),2),'\n']);

end
pause(l)

end
end
if train==1,

fprintf(['Training time = ',num2str(toc), , seconds\n']);
end
return
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APPENDIXB

MATLAB Source Code for Testing the ILFN Classifier

function checknet(P,T,Wa,Wb,stdv)
% checknet(p,t,wa,wb,std)
%
% Use to test the performance of the ILFN classifier
% p = input patterns
% t = target patterns
% wa = weigth centers of Gaussian kernel
% wb = weigth target
% std = standard deviation of Gaussian kernel
% WRITTEN BY: PHAYUNG MEESAD OCTOBER 11, 1998 1: 13PM

wrong_class=O;
percent_correct=O;
tota1=O;
J=l;
tprintf('\nTESTING: Please wait ... \n');
for i=1:size(P,2),

A=P(:,i)';
B=T(:,i)';
Ta = dist(A,Wa');
st=norm(stdv(J,:)};
net = Ta.lst;
member = exp(-(net:'\2)/2);
[winner, J] = max(member);

%pruning module
y=Wb(l,:};
mvy=[member(l)];
1=1; k=2;
while k<=size(Wb,l),

if dist(y(1,:),Wb(k,:)')=O,
maxMV=max(mvy(1),member(k»;
mvy(l)=maxMV;

else
y=[y; Wb(k,:)];
maxMV=member(k);
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mvy=[mvy; maxMV];
1=1+l;

end
k=k+l;

end;
% end pruning module
Wb =y.- ,
MV=mvy/sum(mvy);
[winner_, J_J = max(MV);
if dist(Wb_(J_,: ),B')-=O, wrong_c1ass=wrong_class+1; end
tota1=tota1+1;

end
percent_correct=(totat-wrong_class)* laO/total;
tprintf(['\nPercent correction = ',num2str(percent_correct»));
iprintf(['\nTotal data for testing = ',num2str(tota1)])
fprintf(['\nNumber ofwrong prediction = ',num2str(wrong_class),'\n']);

IOl

&



APPENDIXC

An Example ofMATLAB Source Code
For Preprocessing ofWestland Vibration Data

format short g;
load w20099ff.mat
d200=data;
load w30058ff.mat
d300=data;
load w40088ff.mat
d400=data;
load w50091 ff.mat
d500=data;
load w60046ff.rnat
d600=data;
load w70095ff.mat
d700=data;
load w80087ff.mat
d800=data;
load w9000 I ffmat
d900=data;
data= {d200 d300 d400 d500 d600 d700 d800 d900} ;
T=[00IO;OOll;OI00;0101;OI10;0111;1000;100I]';
%T=[2 3 4 5 6 7 8 9];
fs=103116.08; MaxP = ge8; w=halJ111ing(l024); nfft=3072; novl=512;
PI OO=[]; T 1OO=[]; index= I;
for i=l:nov1:novl*lOO, % data 100 samples

for j=1:size(T,2), % faults
P_=[]; for k=l :8, % channels

[p, f] = spectrum(data{j}(k,i:i+nfft-l),nfft,novl,w,fs);
p = p(70:21O,1)/MaxP;%/norm(p(70:210,1»;
p =[P . pl'- -' ,

end % channels
PlOO=[PIOO P~;

TIOO=[TlOO T(:,j)];
index=index+ 1;

end % faults
end
save pattl 00 PI 00 TIOO
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