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Abstract

This paper discusses robust function approximation when the Takagi-Sugeno type model is used for
the consequent part of fuzzy rules. With this model, the parameters of the liner equation that defines
the output value of the fuzzy rule are determined by the least-squares method. Therefore, if the training
data include outliers, the method fails to determine the parameter values correctly. To overcome this
problem we use the least median of squares method. Among the original training data set, we randomly
select training data more than the number of parameters, and determine the parameter values using
the least-squares method. We repeat this many times and determine the parameters with the smallest
median of squared errors. We compare the proposed method with the least-squares method and the
conventional least median of squares method using the data generated by the Mackey-Glass differential
equation.

1 Introduction

Fuzzy systems are suited for nonlinear function approximation and many fuzzy systems with training capa-
bilities have been developed [1]–[7]. In general, fuzzy systems have faster training capabilities than multilayer
neural networks and have comparable generalization ability. But most fuzzy systems do not consider the
situation when the training data include outliers and their performance is deteriorated.

In statistics, robust regression is an important research topic and several methods have been developed
[8], but most of them are applicable to linear systems.

In this paper, we discuss robust function approximation with the Takagi-Sugeno type model for the
consequent part of fuzzy rules. Since in the model the output is expressed by a linear combination of input
variables, we determine the parameters by the least median of squares method (LMS) [8, 9]. Since inclusion
of outliers is usually not known, approximation performance should not be deteriorated when there are no
outliers. Thus, unlike the conventional LMS, we repeat determining the parameters with the least-squares
method (LS) using randomly selected training data and then select the parameters with the smallest median
of squared errors.

In the following we discuss robust fuzzy function approximation based on the fuzzy function approximator
with ellipsoidal regions [4]. First we overview the approximator and then we discuss the robust approximation
method for the approximator. Finally we compare the performance of the proposed method with our previous
method and the conventional LMS.



2 Fuzzy Function Approximator with Ellipsoidal Regions

2.1 Fuzzy Rule Representation

We discuss function approximation using fuzzy rules with ellipsoidal regions as follows:

Ri : If x is ci then y = oi for i = 1, . . . , N, (1)

where x is the m-dimensional input vector, ci is the center of the ellipsoidal region for the ith fuzzy rule,
y is the output for x, oi is the corresponding output, and N is the number of fuzzy rules. The degree of
membership of the fuzzy rule Ri, mi(x), is given by

mi(x) = exp(−d2
i (x)), (2)

d2
i (x) = (x− ci)tQ−1

i (x− ci), (3)

where di(x) is the weighted distance between x and ci = (ci1, · · · , cim)t, Qi is the m× m covariance matrix
and given by either of the following ways:

1. a constant diagonal matrix with the same diagonal element σ2; and

2. the diagonal matrix calculated using the set of data around the center ci, Si,

Qi,jj =
1
|Si|

∑
x∈Si

(xj − cij)2, (4)

where |Si| is the number of data in Si.

In the Takagi-Sugeno type model, instead of using constant oi in (1), the linear combination of input variables
is used:

oi = p0i + p1ix1 + · · · + pmixm for i = 1, . . . , N, (5)

where p0i, . . . , pmi are constants and are determined by the LS when robust approximation is not considered.
The output of fuzzy rules Ri(i = 1, . . . , N), ŷ(x), for the input x can be synthesized by the center-of-

gravity method:

ŷ(x) =

N∑
i=1

oimi(x)

N∑
i=1

mi(x)

, (6)

where oi are calculated by (5).

2.2 Fuzzy Rule Generation

We generate fuzzy rules dynamically until the approximation error meets the required error limit. For
each rule we determine the subset of the training data dynamically that should be used to determine the
parameters pji.

The center of the fuzzy rule needs to be at the center of a cluster where data gather. In [7], for each
training datum, the potential is calculated and the training datum with the maximum potential is selected as
the cluster center. To avoid consuming the calculation time in clustering, here we use the simplified version



of the method discussed in [7]. Namely, to generate the first fuzzy rule, for each training input, we count the
number of the training inputs that are within the distance R(> 0) from the training input in consideration.
Then we select the training input that has the maximum number of the training inputs within the specified
distance as the center of the first fuzzy rule and determine the parameters p01, p11, . . . , pm1 using the data
within the distance R from the center.

The ith (i > 1) fuzzy rule is generated as follows: We delete the training inputs that are within the
specified distance from the center of the kth (k = 1, . . . , i− 1) fuzzy rule. For each of the remaining training
inputs, we count the number of the training inputs that are within the distance R from the training input
in consideration. Then we select the training input that has the maximum number of training inputs within
the specified distance as the center of the ith fuzzy rule. We set the set Si with the training data that
are within the distance R from the center. And determine the parameters p0i, p1i, . . . , pmi using the data
in S1 ∪ · · · ∪ Si. By deleting the training inputs that are within the distance R from the already selected
centers, we can avoid selecting the training inputs that are near some of the centers.

3 Robust Parameter Estimation

In Takagi-Sugeno type model, the parameters p0i, . . . , pmi are determined by the LS. Thus if the training
data include outliers, approximation performance is worsened. Therefore, to realize robust function approx-
imation, we apply the LMS, instead of the LS, to the fuzzy function approximator with ellipsoidal regions.

3.1 Robust Estimation by the Least Median of Squares Method

When we generate the i fuzzy rule, the parameters p0k, . . . , pmk(k = 1, . . . , i − 1) have already been deter-
mined. Thus from (6) the parameters p0i, . . . , pmi satisfy

ŷ = a0(x)p0i + a1(x)p1i + · · · + am(x)pmi = a(x)tpi for x ∈ S1 ∪ · · · ∪ Si, (7)

where ai(x) are determined by (5) and (6), and ŷ is the estimate of the training output y. Define the residual
as r(pi) = yi − ŷi = y−a(x)tpi and the set of the data for determining pi as Zi = {(x, y)|x ∈ S1 ∪ · · · ∪Si}.
Then the estimate p̂i(Zi) of pi by the LMS is given by

p̂i(Zi) = argmin
pi

(r2(pi))h:|Zi| = argmin
pi

|r(pi)|h:|Zi|, (8)

where |Zi| is the number of the input-output pairs in Zi and for |Zi| outputs of a real valued function r(x),
r(x)h:|Zi| stands for the h-th element of the ordered values. In this study we take h = [n/2] + 1.

In general to minimize the objective function given by (8) is difficult. Therefore, in [8, 9], the following
resampling algorithm is used.

1. Randomly select m + 1 input-output pairs from Zi and solve a set of linear equations y = a(x)tpi for
pi.

2. Using pi, for |Zi| training data, calculate the squared errors between the estimated outputs and training
outputs, and calculate and memorize the median.

3. Repeat 1 and 2 many times while keeping pi with the smallest median of squared errors.

Since in the above algorithm, pi is determined by solving a linear equation, pi may be specialized to the
selected input-output pairs and approximation performance may not be good when there are no outliers.
Thus we determine pi by the least-squares method using the subset of Zi as follows.



1. Randomly select an l(l > m+1)-element subset Z from Zi and determine pi by minimizing the squared
error

∑
(x,y)∈Z(y − a(x)tpi)2.

2. Using pi, for |Zi| training data, calculate the squared errors between the estimated outputs and the
training outputs, and calculate and memorize the median.

3. Repeat 1 and 2 many times while keeping pi with the smallest median of squared errors.

4 Performance Evaluation

4.1 Mackey-Glass Differential Equation

Using the Mackey-Glass differential equation we evaluate the proposed method, the conventional LMS, and
the LS. The equation generates time series data with a chaotic behavior and is given by

dx(t)
dt

=
0.2x(t − τ)

1 + x10(t − τ)
− 0.1x(t), (9)

where t and τ denote time and time delay. By integrating (9), we obtain the time series data {x(0), x(1), . . .}.
Using x prior to time t, we predict x after t. Setting τ = 17, and using four inputs x(t− 18), x(t− 12), x(t−
6), x(t), we estimate x(t + 6). The first 500 data from the time series data x(118), . . . , x(1117) were used
to generate fuzzy rules (namely, n = 500) and the remaining 500 data were used to test approximation
performance.

4.2 Including Outliers in the Data

We generated the following two training data sets that include outliers:

• Data set I : We randomly selected 15 values from the first 100 input-output pairs and 5 values from
the last 100 input-output variables and replaced them with 10.0.

• Data set II: We randomly selected 25 values from the first 100 input-output pairs and multiplied them
with 10.

For the conventional LMS, the LS, and the proposed method a constant covariance matrix with σ = 0.03
was used and R was set to 0.05. For the proposed method we set l = 20, namely four times the number of
input and output variables. We repeated resampling 1000 times for the proposed method and 3000 times
for the conventional LMS and we used the NRMSE (normalized root-mean-square error) and median for
measuring the performance.

Tables 1 and 2 show the results for data sets I and II, respectively. Both the proposed method and
the conventional LMS are superior to the LS in both cases, and the proposed method is better than the
conventional LMS in the medians of the squared errors for the training and test data.

Figure 1 (a) shows the predicted test data by the LS for the data set II. Because of the outliers, the
prediction is erroneous. Figure 1 (b) shows the predicted test data by the proposed method. The prediction
is not affected by outliers.

4.3 Without Outliers

With the same evaluation conditions, we evaluate approximation performance when there are no outliers in
the training data. Table 3 shows the results. The approximation performance by the proposed method is a



Table 1: Approximation performance for data set I

Method Training Data Test Data
NRMSE Median NRMSE Median

LS 0.903 0.00552 2.42 0.00590
LMS 1.00 0.00460 0.0624 0.00495
Proposed 1.00 0.00148 0.0665 0.00214

Table 2: Approximation performance for data set II

Methods Training Data Test Data
NRMSE Median NRMSE Median

LS 0.909 0.00525 1.91 0.00475
LMS 0.994 0.00478 0.0640 0.00475
Proposed 0.993 0.00195 0.0505 0.00233
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(a) The LS method (b) The proposed method

Figure 1: Comparison between the proposed method and the LS for the Mackey-Glass data

Table 3: Approximation performance without outliers

Method Training Data Test Data
NRMSE Median NRMSE Median

LS 0.0200 0.00174 0.0207 0.00164
LMS 0.0563 0.00393 0.0548 0.00429
Proposed 0.0338 0.00144 0.0322 0.00205



little worse than that of the LS in both NRMSE and the median of squared errors for the test data. However
approximation performance by the proposed method is superior to that of the conventional LMS.

For the data set I, the LS method took 11 seconds, the proposed method took 489 seconds and the
conventional LMS took 1016 seconds using SUN Ultra Sparc-IIi 335MHz. Both the proposed method and
the conventional LMS took more computation time than the LS because of resampling.

5 Conclusions

In this paper we proposed robust function approximation by extending the conventional least median of
squares method. Namely, to make approximation performance comparable with the LS when no outliers
exist, we combined the LS with resampling. We evaluated the proposed method for the time series data
generated by the Mackey-Glass differential equation and showed that approximation performance of our
method was better than that of the conventional LMS and robuster than that of the LS when outliers were
included and comparable when no outliers were present.
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