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Abstract —A predictive, multiple model control strategy is developed  by extension of  self-organizing map (SOM)
local dynamic modeling of nonlinear autonomous systems to a control framework. Multiple SOMs collectively
model the global response of  a nonautonomous system to a finite set of representative prototype controls.  Each
SOM provides a codebook representation of the dynamics corresponding to a prototype control.  Different dynamic
regimes are organized into topological neighborhoods where the adjacent entries in the codebook represent the
global minimization of a similarity metric. The SOM  is additionally employed to identify the local dynamical
regime, and consequently implements a switching scheme that selects the best available model for the applied
control.  SOM based linear models are used to predict the response to a larger family of control sequences which are
clustered on the representative prototypes.  The control sequence which corresponds to the prediction that best
satisfies the requirements on the system output is applied as the external driving signal.

I.  INTRODUCTION

Many modern approaches to the control of complex industrial process are quite naturally based on a model
which accurately describes the evolution  of the process as a function of  its current state and the application of
control inputs over a reasonable  interval into the future [1], [12] .  Multiple models of the process may provide a
convenient means of  providing this description under a wide variety of conditions [4], [5].   The use of multiple
models necessitates a means of switching among the available models to the one that best describes the current
operating environment.  In a multiple model predictive controller framework,  the control signals are generated  by
first switching to the model of the process that best matches the recently observed input-output behavior, then
determining  the best control signal by predicting what the  process will do, while either implicitly or explicitly
observing known constraints on the state of the system and  the control.  When  a finite number of models  are used
to cover a broad range of  system dynamics,  coverage of  the full dynamical space becomes an issue.

The Kohonen self-organizing map (SOM) [2], [3], is employed as the basis for dynamic modeling [9] and
extended here to a control framework, where the modeled system is nonautonomous.  The idea here is that the SOM,
trained with responses from the full operating range,  provides a basis for local dynamic models that fully cover  the
dynamical space corresponding to a representative or prototype control.   For our application, control of the Mach
number in a transonic wind tunnel, we were able to cluster the inputs onto a small set of prototypes. Local dynamic
models which are linear in the control are derived from the SOM, enabling computationally efficient prediction of
the system response to a larger set of pre-defined control inputs.  We exploit the  advantage of an  approximate local
model that is linear in the control input in contrast to an exact model which has a nonlinear dependence on the
control as established by Narendra  [8].

II. SELF-ORGANIZING MAP

The Kohonen self-organizing map (SOM) ,  was adopted as the neural architecture for the experiment.  The
SOM was chosen based on its ability to transform an incoming signal of arbitrary dimension into a lower
dimensional, discrete, topologically ordered map, one dimensional in this case.  The spatial location of the
processing elements (PEs), arranged in a one dimensional lattice, or linear array, corresponds to intrinsic features of
the input signal.

One of the most control-specific applications of the SOM reported in the literature is the visuomotor control
of a robot arm by Ritter, et al. [10].  In this application, the SOM is used as a look-up table, where the input pattern,
identified by the “winner”, specifies an SOM location associated with specified values of control parameters, which
were learned adaptively.  Some recent advances in this approach are elaborated in [11].

For our application, the SOM discretizes an n-dimensional space composed of  output sequences of the
system, y(k), y(k-1), … y(k-(n-1)), which are considered to be the responses of the system to a prototype control input
u(k-1), u(k-2), … u(k-m).  Thus, the prototype input is the control parameter associated with all the nodes in the
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lattice, which is here, one-dimensional corresponding to the single control input to the system, u.  In our application,
the linearization is done around the “winner”  to predict responses to candidate controls:

M A u u Mp c i c c= − +( ) . (1)

where Mc  is the winner, Ac , is the Jacobian, derived directly from the SOM, uc  is the control prototype

associated with the SOM and ui  is one of the candidate control sequences.  In our application we replace the slow

adjustment of control parameters by an external scheme, as in Ritter’s application, with the ability to switch, at
discrete intervals, among the discrete local linear models associated with each node in the SOM.  This highlights the
difference between a slowly adaptive control scheme, and our application, which is designed to switch rapidly to
accommodate abrupt changes in the system characteristics.

III.  CONTROL USING MULTIPLE MODELS AND SWITCHING

The multiple model structure with switching has been proposed by Narendra et al., [4], [6], [7],  when the
overall system is required to operate in multiple environments.  Sudden changes in parameter values, failures of
sensors or subsystems, and external disturbances taken to be the output of an unforced stable dynamical system, can
be considered as different environments a control system may be required to cope with.  In these cases, the need to
use multiple models arises naturally, since a different mathematical model may be needed to represent the behavior
of the plant in each of the environments.

A recent paper [8] introduces two classes of approximate non-linear input-output models which reduce the
computational complexity of designing a controller based on the fact that the approximate models are linear in the
control input.  This was essentially the approach taken in this experiment, where the converged SOM provides
multiple, approximate models of the input-output behavior of the plant for a given class of input.  These approximate
models were then used as the basis for linear predictions of the response to a set of control candidates to determine
the control input that minimized the error between the predicted output and the desired output.

IV. MODELING THE DYNAMICS

The goal of the research was to capture the underlying dynamics of a nonautonomous system from
observations of time-dependent, input-output data.  The motivation for this approach came from previous work by
Principe and Wang [9], using the self-organizing map as the infrastructure for local dynamic modeling of chaotic
time series.  Their work focused on modeling autonomous systems, that is systems where the state trajectory evolves
without an external, or exogenous input signal driving the trajectory from one region to another in the state space.
That work is adapted here to provide localized predictions of the system response, p steps ahead, to a predetermined
set of input or control sequences which will drive the system toward the desired region of operation.

The assumption is that the state of the underlying nonautonomous system can be described as a differential
equation of the form:
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x = (2)

where x( )t are the system states, u(t), the control signal, is an exogenous input to the system, and f is the vector

field that maps a Cartesian product of the state space, S, and the control space, C, S C xn× ⊂ ℜ ℜ , to a tangent

space T n⊂ ℜ .  If a closed-form solution for (2) exists, that is : Φ: S C S× → , then for a given initial condition

x(0) and u(t) specified for all t, Φ( ( ), ( ) )x 0 u t , represents a state-space trajectory of the system, or system flow.

An arbitrary, discrete non-linear dynamical system Σ, can be represented as:
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where { ( )},{ ( )}, { ( )}u k x k y kand are discrete-time sequences with

x k u k y k f h f h Cn n n n( ) , ( ) , ( ) , : , : , ,∈ℜ ∈ℜ ∈ℜ ℜ × ℜ → ℜ ℜ → ℜ ∈ ∞and .  Here f is a map from

the space of system states and input to the space of  system states  ℜ × ℜ → ℜn n , and h is a map from the space

of system states to the output ℜ → ℜn .
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Our goal here is to determine the system output y(k), over p steps into the future, in response to the
application of a set of candidate control sequences Uci

where :
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KcU (4)

is the ith candidate control sequence, and:
])()2()1([ pk
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is the predicted response from the ith candidate control sequence.

V. SOM-BASED PREDICTIVE CONTROL

From (3), consider the output of the nonlinear system Σ  :
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where f n is an n-times iterated composition of f .  Denoting the sequence y(k+1), …, y(k + n) by

Y kn ( ) and the sequence u(k), u(k+1), …, u(k + n - 1) as U kn ( ) , (6) can be expressed as :

Ψ[ ( ), ( )] ( )x k U k Y kn n= . (7)

For SOM-based predictive control, the main idea is that a set of maps can, collectively, be a global representation of
these n-times iterated compositions of f, where an SOM winner represents the localized response of the system to a
prototype control sequence, belonging to a larger set of control sequences, the candidate controls.  Thus, the
embedded state space is mapped into a neural field corresponding to a prototype control.

The second major idea is that predictors that are locally linear in the control can be constructed from the
SOM winners.  The construction of the locally linear predictors associated with the SOM winners is essentially a
linearization around the weights of the winner:

M U U Upi p p p p cx k x k= + ∇Φ −Φ [ ( ), ] [ ( ), ]
1

(8)

where U Up c−
1
 is the L1 norm of the difference between the prototype control, U p and the candidate

control, U c , and ∇Φ p is the Jacobian with respect to the control, extracted from the converged SOM weights.

Ideally, perhaps, there would be an individual SOM, Φ i , for each candidate control,

Uci i i i
u k u k u k pc c c= + + −[ ( ) ( ) ( ) ]1 1K , and predictions of the tunnel response,

Mpi i i i
y k y k y k pp p p= + + +[ ( ) ( ) ( ) ]1 2 K  would be made using the SOM winners:

M Up cii i x k= Φ [ ( ), ] . (9)

This would not have explored the concept of being able to extract a model that was locally linear in the
control from the SOM and would have required excessive amounts of training data that was not available, i.e. an
ensemble of responses for each candidate control over the entire operational range.

Thus the approach to modeling the tunnel dynamics evolved into a procedure consisting of two major
components.  First, the control input space was manually partitioned by the construction of significant prototype
control vectors assumed to be capable of producing the general features of the desired wind tunnel response.
Second, for each such partition of the control input space, a SOM was constructed from an ensemble of tunnel
dynamic responses, i.e. the resulting Mach number response, covering the operating range.  Each ensemble of Mach
number responses was extracted from over 20 hours of actual wind tunnel data, covering the entire operational range.
Collectively, the SOM(s) form an atlas of the global wind tunnel response due to  the prototype control inputs.

The assumption here is that having an atlas for the system response to a set of control input prototypes
provides a sufficiently complete modeling infrastructure, given the desired objective of predictively controlling the
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tunnel.  There is no need to provide an infrastructure capable of modeling the response to all possible 3 p control
sequences of length p, because it is assumed that the control inputs applied to the tunnel, at least in the PMMSC
mode of operation, will come from the known set of candidate controls, which are either the control prototypes
themselves, or close enough to the prototypes, by design, so as to predict the tunnel response by local models
constructed from the response embedded in the input neural field of the corresponding SOM.
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Figure 1.  Experimental Framework with PMMSC

A. Experimental Framework

The experimental framework that evolved was essentially a predictive control scheme that used multiple
models of the plant with switching.  The controller switches between multiple, SOM-based models which,
collectively, describe the global input-output behavior of the tunnel.  The tunnel response to a set of candidate
controls is predicted p steps ahead, using the currently selected model.  The overall system, which will be referred to
in the sequel as the PMMSC, for Predictive Multiple Model Switching Controller, is shown in Figure 1.  It is
composed of the following major functions:

1. The recent control input, u k u k u k m( ), ( ),..., ( )− − −1 2 , is clustered on a set of prototype control

inputs which will choose one of the Kohonen self-organizing maps (SOM)
2. The selected SOM identifies the local dynamics of the tunnel based on the past n + 1  Mach number

measurements, M = − −M k M k M k n( ), ( ),..., ( )1 , and chooses a winning processing element

(PE)
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3. A linear predictor associated with each PE predicts the Mach number response p steps into the future
for each of the candidate controls

4. The predicted effectiveness of the candidate control inputs is evaluated over the last ( )p l−  steps of

the p steps-ahead predictions
5. The control input that provides the best response with respect to the Mach number set point is chosen

as the next control, u(k).

The local model associated with the winning PE captures the dynamical regime of the wind tunnel.  The
controller still must decide what is the most appropriate control input to meet the set point specification.  The
controller sends candidate input sequences for p-step ahead prediction to the predictor of the winning node.  The
controller evaluates the relative effectiveness of the candidate control inputs in reducing the error between the
predicted Mach number sequence, MP , and desired Mach number, MSP .  This is accomplished by a suitable

metric, the Euclidean norm over the error, M MP SP−     where

MP = + + + + +M k l M k l M k p( ), ( ),..., ( )1 2  and MSP   is a ( )p l−  length constant vector of MSP .

Finally, the control input that provides the smallest error is sent to the wind tunnel fan control.

B. Experimental Results

Derived metrics to quantify the comparisons between the existing gain scheduled control, an expert
operator, and the PMMSC are the time out of tolerance and the L1 norm of the control input, u.  The time out of
tolerance is cumulative sum of time that the measured Mach number deviates beyond the required tolerance of
0.003, and the L1 norm is the sum of the absolute value of the input commands over interval of interest.

Existing  controller Expert Operator PMMSC % Reduction
Auto / manual

Out  of tolerance 329 s 310 s 266 s 19.1 / 16.5
L1 norm [u] 424.2 466.2 374.3 11.7 /  19.7

Table 1.  Comparison for controlling to several different set points over a 28 minute interval
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Figure 2.  Comparison of Control Densities during set point changes

An additional metric on the control, the control density, ξ , was calculated by taking the sum of the absolute value

of the control over a 50 sample sliding window:

ξ ξ( ) [ ( )] ( )k u k u k i
i

i

= = −
=

=

∑
0

49

. (9)
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The differences in the control density for the three cases are illustrated in Figure 2.  The variation in the control
density is greatest for the expert operator and least for the existing controller.  The PMMSC falls between the two
cases in terms of variation of the control density, while requiring less overall control effort to provide less time out of
tolerance.

VI. CONCLUSION

Modeling and controlling systems with a wide range of dynamic characteristics is a rich problem with many
possible approaches.  In this research, the method of local linear modeling based on the self-organizing map has been
extended to a control framework as an approach to this problem.

The SOM based modeling method was employed to develop a set of models which, collectively, described
the system dynamic characteristics over the entire range of operation, but individually, represented the response of
the system in some restricted region of both the state and control spaces of the system.  The extension of the method
allowed us to predict the system response to a small, but effective set of inputs, using the model which best describes
the local dynamics.  The input corresponding to the prediction that best satisfied the requirements at the output was
then applied as the control.  The overall result was the development of a controller, the PMMSC, which predicted the
system response by switching to the best available model.

Two problems which naturally arise from this approach are: how to guarantee that the collection of models
adequately cover all the dynamic regimes of the system, and how to select the model which best describes the local
dynamical regime.  Our SOM based local linear modeling approach addresses both the problems with a
computationally efficient method.  The SOM guarantees that the repertoire of dynamics used for training are
represented by the collection of local models and serves to identify the local dynamic regime.  In a sense, the diverse
plant dynamics are captured in a compact table look-up of linear models.

The PMMSC was implemented on inexpensive computing hardware and used to control the wind tunnel to
within the strict research requirements.  The performance of the PMMSC was compared to both the existing
controller and expert human operators by several metrics.  The PMMSC provided improved performance with
decreased control effort over both the existing controller and expert human-in-the-loop control.
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