N

N
N

HAL

open science

A bounded exploration approach to constructive

algorithms for recurrent neural networks

Romuald Boné, Michel Crucianu, Gilles Verley, Jean-Pierre Asselin de

Beauville

» To cite this version:

Romuald Boné, Michel Crucianu, Gilles Verley, Jean-Pierre Asselin de Beauville. A bounded explo-
ration approach to constructive algorithms for recurrent neural networks. Neural Networks, IEEE -

INNS - ENNS International Joint Conference on, 2000. hal-01527874

HAL Id: hal-01527874
https://hal.science/hal-01527874
Submitted on 25 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License


https://hal.science/hal-01527874
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

rFa EFiFAREENER %S SJAgFaNFs 45 5 ;xgﬁi} €8 o B85 A~ '
Namral ofworize
NEUFAa: NOTWOrks

Romuald Boné, Michel Crucianu, Gilles Verley, Jean-Pierre Asselin de Beauville

) 1.aboratoire d’ Informatique

Fcole &’ Ingénieurs en Informatique pour I’ Industrie
64 avenue Jean Portalis, 37200 Tours, France
{bone. crucianu, verley, asselin}(@univ-tours.fr

Abstract: When long-term dependencies are present in a time series, the appr oximation capabilities of recurrent

neural networks are difficult to exploit by gradient descent algorithms. It is easier for such algor ithms to find good

solutions if one includes connections with time delays in the recurrent networks. One can choose the locations and
g

delays for these connections by the heuristic presented here. As shown on two benchmark problems, this heuristic
produces very good results while keeping the total number of connections in the recurrent netw vork to a mininnum.
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Time series prediction has importani applications in various domains: medicine, ecology, meteorology.

indusirial control. rﬂmr ce. etc The most common approach to building a nred.cuon maodel is to consider a fixed

number of the past values of one or several time series (i.e. a time window of fixed size) and look for a function

which pmw’deq the next value of the target series. In univariate regression, for instance, one is usually searching for
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p being the size of the time window. Such a model is called Nonlinear AutoRegressive (NAR).

Multilayer perceptrons (MLP, [1]. i2]) can easily implement nonlinear functions / : one is simplv using a
network having an input laver of size p, enough neurons with sigmoidal activation functions in the hidden laver,
and a single output neuron which is usually tinear. Universal approximation results for feed-forward neural networks
131, 14] show that very generau NAR can then be obtained. Also. it is easy fo take info account past activation values
of the hidden neurons by including new time windows for them,

Finite impulse response (FIR) conmections put forward in |51 and 16] are an alternative method for defining
time windows. A FIR connection is composed of a set of simple connections, encompassing a whole range of
delays. Everv component connection has ifs own weight. Replacing the simple connections of an MLP by FiR
c:mmecnnnq modifcea Comnﬁmte nnﬂmear autnreareﬁ,_,,, e models which gne bettPr results on several I'PfPTQIH‘B

in ccmtm‘. aa in ix- Ako variable ‘e}ect on meﬂndq can heh in redncmg the m:mher of

cmmecﬁ(mq z‘delaw) between the input and the hidden laver 19§, 110} We can also mention a new method, inspired
by back-propagation, which was pmp@ser: in {11} for learning the number of delays associated to the existing
connections of an MLP.

However, the use of MLPs for time series prediction has inherent limitations,

t hit since one cannot find an

appropriate finite NAR model for every dvnamical system. Even when such a model exists, it mav have a very large
number of parameters and behave pootly on new data. Recurrent neural networks (RNN) possess an implicit mlema!
memory and do no longer need time windows in order to take into account the past values of the time series. RNNs
prove fo be significantly more powerful than feed-forward networks, as shown in 112}, 1131 or |14}, Unfortunately,
the gradient descent algm‘ﬁhmq which are commonly used for training RNNs |11, {151 have several weaknesses, the
most important one hemg the difficulty of dealing with long-term dependencies in the time series |16}

Adding connections with time delavs to the RNN ofien allows gradieni descent alg(mihmq to find better
solutions in these cases [17]. [18L 119]. Indeed. by acting as a shorfcuf between two dﬂ!ant moments, such a
connection has a linear long-range conmhimon with henehcml effects on the expression of the gradient of the error,
But in the absence of prior knowledge concerning the problem fo solve. how can one choose the locations and the
delavs associated to these new connections? By systematically replacing simple conmections by FIR connections one

obfains again oversized networks which are slow to frain and have poor generahmhﬁn ahilities. Various




s further increases the

Constructive annmache&: for adapting the architecture of a neural network are usually more economical. An
algorithm for the addition of time-delaved connections to recurrent networks should start with a simple, ordinary
RNN and progressively add new connections according o some heuristic. Various factors can guide the choice of a
heuristic, such as the prior knowledge related to the problem, the features of the learning algorithm, or the
computational overhead. The time series we are inferested in are characterized bv medium or long-term
dependencies. we prefer heuristics which are relatively general with respect io the detailed computation performed
by the learning algorithm, and we require a low computation cost.

The heuristic we retained is a breadth-first search which can be summarized as follows: we explore all the
alternatives for the location and the delay associated to a new connection by adding that connection and performing
a few iterations of the learning alfzom' m; we keep the conmnection which produces the largest increase in
performance during these learning sieps. If the RNN we start with does not account well for the medium or long-
term dependencies in the data, and these dependencies are not foo complex, then by adding the appropriate
conmection we are likely to obtain right away a significanily lower error.

We can now give a more detailed outline of the constructive method we developed. In the experi 'm“ﬂq we
performed we emploved Back-Propagation Through Time (BPTT. 111) as a learning algorithm, Learning by BPTT
ends when error increases on a stop set, different from the learning set. At that moment we explore all fhe ahemame
RNN obtained from the previous one by adding a single connection: the weight of this connection is initialized fo O
and we leave the other weights in the RNN unchanged; we verform a limited number of learning steps using BPTT;
we retam the C(mnectmn which nmduceq the largest decreaqe n ermr on the ston set dm*mg theqe 1eammg Gtens

Ccnneotmn - the Whaie process is rexterated We oan the recu}rng mnqmacnve a;gormn Ew!nraaorv Back-
Propagation Through Time (EBPTT). The algorithm eventually ends when the error on the stop set no longer
decreases upon addition of a new connection, or a bound on the number of new connections is reached.

Several new parameters are required for this constructive algorithm: the maximal value for the delavs of the
new connections, the maximal number of new connections and the number of BPTT steps performed for each
candidate connection during the exploratory stage. in choosing the value of the first parameter one should use prior
knowledge related to the problem, if such information is not available we can rely on simpie, linear measures such
as qeh‘ or cmeq-comalatmnc fo find 2 hmmd for the long-term dependenmes Note ihat thig mraﬂ‘eter 19 not the same

add p—1 connecfions with delays between 1 and p—1.

Computational cost governs the choice of the other two parameters. However, the experiments we present
in the following show that the contribution of the new connections diminishes quickly as their number increases.

o P
rne C{‘;iﬁ!ﬂﬁ"iﬁ' ﬂf ine si.‘:ifiﬂﬁﬁ@i’i S[x’jﬁﬁ may seei giiite high, OV 1, since for each candidate Cﬁﬂiﬁ@Cﬂuh we cdrry
g 1 o \ 'k J

The exr)enmenfq nreqemed nex’f concem umv;mate regreqqmn bui bBP"‘*T 1% ohvmnqlv not hmn‘ed to such
problems. Moreover, since the hmmqﬁr dneq nof use any gradient information, we believe that it can be applied in

03, n’z! We give

nrl'\’ - inliy ha
L J}K ;ui_xﬁg 5 vy

IR7, - + roa ~
We psr”sﬂﬁm 2‘) eap‘*ﬁmﬁms for ever 21”"'}1{6‘.3‘,{3. byr

here the best resuits we obtained for the two benchimarks and compare these resulis fo several ublished ones.
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'In the following we employ the normalized mean squared error (NMSE) which is defined, for a time series
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where ¥ is the prediction given by the RNN and X, o are the mean value and variance estimated from the
available data.
3.1. Sumnspots dataset

i

pseudo-period of 10 o 11 years. Several models were evaluated for one siep ahead predictions 1201, 1211, including
feed-forward 1221 and recurrent |23 | neural networks. The training set corresponds to the period 1700-1920 and two
test sets were defined, 1921-1955 (test1) and 1956-1979 (test2). Test2 is considered to be more difficult because it

Table 1 compares the results obtained by various models applied fo this benchmark. For every model we
give the number of parameters and the NMSE. The Threshold AutoRegressive (TAR, |20]) model emplovs a
threshold to switch between two autoregressive models. The MLP has a time window of size 12 in the mput layer
and starts with 8 hidden neurons |221; a pruning algorithm reduces the number of hidden neurons to 3. The IiR MLP
in 1231 contains local feedbacks and delays and is obtained by an evolutionary algorithm. The Dynamical Recurrent
Neural Networks (DRNN) are RNN having FIR connections {24]. DRNN1 has 2 hidden neurons fully connected by

FIR connections of order 5, and DRNN2 has 5 hidden neurons fully connected by FIR connections of order 2. The

order of these connections was found after several trials.

/7—\ H - El ~
{5 ) Model Parameters | Leaming | Testl | Test2
AR Carbon Copy - 0.289 | 0.427 | 0.966
72N g - S| e e
/ iy TAR 18 0.097 0.097 | 0.230
b (RS e - = mS iy et
V| MLF 43 0.082 0.086 1 0.350
ol ) o
P . S ST IR MLP 23 0.101 10097 | 0436
: 2 31 i oy 5
FN A e s Ty DRNNI 20 0103 0.001 273
i N = DRNN2 45 0.111 | 0.093 | 0.246
Sy W RNN wiih BPTT 0.064_| 0.084 | 0.300
pe T = ~ T
(, "\) RNN with EBPTT 23 0.0 0.227
1
NS
N
Figure 1 The recurrent architectre emploved. ‘Table 1: NMSH obiained by various models on the sunspots time series.

We set to 20 the maximal value for the delays of the new connections, to 4 the maximal number of new
connections and to 20 the number of BPTT steps performed for each candidate connection during the exploratory

stage. We can notice the improvement upon BPTT (without the constructive stage). Moreover, the results produced
with EBPTT are significantly better than those obtained by the other models, both for test and test2.

Testl Test2
0.110 $.318
.089 0,253

0.082 0.246
(0.080 0.229
0.078 0.227

‘Table 2: Evolution of the NMSE for the best RNN upon addition of new connections.
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Figure 2: 'The evolution of the error for a single RNN. Figure 3: The predictions obtained with KBPT'T on the
Kvery arrow corresponds to the addition of one connection. sunspots test sets.
The number of parameters is also very low. The best results (see also Figure 3) were obtained for RNNs

having only 3 neurons in the hidden layer. During our experimen
connections, with most of the delavs between 3 and 10. The contribution of the new conmnections diminishes quickly
as their number increases, as shown in Figure 2 and Table 2.

3.2. Mackeyv-Glass dataset

it 1 5
cxhibits then a chaotic behas for

SeEfdERFiab. SR EECEY 2NJE.

h A N=00 far O =
.,\l-j %, S LT

(as in |7]). We use the first 500 values for the learning set and the next 100 values for the test set.
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VFigure 4: The Mackey-(ilass time series for 7=17 .

Table 3 compares the NMSE obtained on the test set by several models applied o this benchmark (see {61,
125], 1261 for the first 3 models). The FIR MLP 6] has 15 neurons in the hidden layer; the FIR connections between
the inputs and the hidden neurons have an order of 8, and those between the hidden neurons and the outpui an order
of 2 (for a total of 196 parameters), In [27] a RNN having 5 neurons in a fully connected hidden layer is emploved.
The feed-forward network in |11] has a single input, 20 neurons in the hidden layer and one output neuron ; all the
connections have delays, and the values of the delays are obtained by an algorithm which reminds back-propa gation,

The DRNN 24|, 128] have FIR connections of order 4 between the inpui and the hidden layer, FIR connections of

E——— e ———
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connections and to 20 the number of BPTT steps performed for each candidate connection during the exploratory
stage. EBPTT gives the best results for the Mackey-Glass dataset with 7 =17 . These results were obtained for RNN
having 6 neurons in the hidden layer and 10 time-delayed connections, for a total of 65 parameters. During our
expetiments we noticed that EBPTT added 875 connections on the average, and their delays were distributed
around the following values: 9, 20, 34. As for the sunspots data, only the first new connections produce a significant
reduction of the NMSE (Figure 5),

i mention that we performed similar experiments for 7 =30 (MG30) and the EBPTT algorithm

LAl .

We set to 34 the maximal value for the delays of the new connections, to 10 the maximal number of new
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‘Table 3: Results obtaimed by various Figure 5: NMSE as a function of the number of connections
models on the MG17 time series. added, for the best RNN found by EBP1'T.

Adding time-delaved connections to recurrent neural networks helps gradient descent algorithms in learning

ependencies. We onted here for a constructive

medinm or long-term dey proach. !
time-delaved connectic Iy adds a few such connections. We defined a heuristic for choosing the

location and the (single) delay associated to a time-delayed connection. The heuristic is neither limited to regression
problems, nor to recurrent networks. Note that this heuristic can be readily adapted fo second order gradient-based
algorithms,

The experimental results we obtained on two benchmark problems show that by
number of time-delayed connections one is able fo produce networks having comparatively few parameters and

iding onlv a small

A is very low. This implies that the constructive part of the algorithm has only a minor impact on the
global computational cost.
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