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Abstract 

The class of piecewise linear homeomorphisms (PLH) provides a convenient functional representation 
for many applications wherein an approximation to data is required that is invertible in closed form. 
In this paper we introduce the graph intersection (GI) algorithm for ”learning” piecewise linear scalar 
functions in two settings we term ”approximation” (where an ”oracle” outputs accurate functional values 
in response to input queries) and ”estimation” (where only a fixed discrete data base of input-output pairs 
is available). We provide a local convergence result for the approximation version of the GI algorithm as 
well as a study of its numerical performance (compared to truncated Taylor series approximation and to 
Neural Nets) in the estimation setting. We conclude that PLH i) offers nearly the accuracy of a Neural 
Net while ii) requiring, via our GI algorithm, the far shorter (several orders of magnitude less) training 
time typical of Taylor series approximants and iii) preserving desired invariant properties unlike any 
other presently popular basis family. 

1 Introduction 
The last decade has witnessed vigorous activity in the function approximation literature driven by a 
renewed interest in machine learning for engineering applications [l]. In our view, some of the most com- 
pelling questions in this field arise in the effort to determine the capabilities of nonlinear-in-parameters 
(NLIP) function families - e.g., the “neural nets” [2, 31 - relative to the classical properties of linear- 
in-parameters (LIP) bases [4]. Despite this significant level of activity, there remains a continuing con- 
troversy concerning the relative merits of one over another approximant in specific engineering settings. 
More recently, the class of “non-parametric” approximation methods has received increasing attention 
[5, 61 (from our point of view, it seems more natural to think of these as strongly NLIP representations) 
with the great advantage of widening the choice of approximant albeit threatening, perhaps, still more 
confusion as to the relative benefits of the various function families. 

In this paper, we target the wide range of applications settings wherein it is known a priori that the 
function to be learned preserves certain invariants. As far as we are aware, the first mention of this idea 
in the machine learning literature occurs in a paper by Abu-Mostafa [7] wherein it is proposed to add 
“hints” describing a priori known features of the function being approximated, including, as a possible 
instance, specific invariance properties. Of course, there is the much longer tradition in the AI literature 
of what might be termed “invariant recall” that Abu-Mostafa attributes originally to Minsky and Papert 
[8]. In this paradigm, the problem of pattern recognition is cast as the computational effort to identify 
an archetype that presents itself in any particular instance as some “deformed” set of features. Namely, 
one assumes that the sensed data arises from the action upon the archetype of some unknown member 
of a known group of transformations. The pattern recognition task is to “factor out” the particularizing 
transform so as to reveal that “true” exemplar of the “concept.” In contrast, as befits the learning 
paradigm, we are concerned here with the problem of identifying (via closest approximation) a specific 
member of the group of continuous and continuously invertible transformations of a Euclidean space, 
assuming from the start that the archetype - in this setting, the identity map - has already been 
specified. 

Interest in these invariance properties was originally motivated by the approximation of color space 
transformations for color printing [9]. Many additional potential applications exist such as robot nav- 
igation [lo, 111, robot task description [12], machine tool calibration I131 and automobile fuel control 
settings [14], among others. More application specific motivation for this line of work is given in (151. 
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We re-introduce the class of piecewise linear homeomorphisms (PLH) as a non-parametric (strongly 
NLIP) family of approximants that preserves the relevant invariant. PLH has the advantage of being 
invertible in closed form, whereas most NLIP approximations can only be inverted numerically. We offer 
a numerical comparison in the context of scalar endomorphisms (invertible maps of a real interval into 
itself) comparing the performance of two commonly used approximants - the truncated Taylor series 
(TT), an LIP family; and the Neural Nets (NN), an NLIP family - with PLH. We conclude that PLH 
offers nearly the accuracy of NN while enjoying the invariance property that both T T  and NN lack. 
We propose the Graph Intersection (GI) algorithm, a new fitting technique for PLH functions, and offer 
numerical evidence suggesting that it significantly accelerates the training time for PLH functions. 

1.1 Background Literature 
Piecewise linear approximations fall into a larger class of approximation schemes sometimes referred to 
as locally parametric (LP), in which the approximation is given over a partition of the domain. Adjusting 
a parameter changes the approximation over some limited number of partitions cells, i.e. there is a local, 
rather than global, change in the approximation. Lookup tables with an accompanying interpolation 
scheme are a simple form of nonparametric approximation. Locally parametric approximation leads 
naturally to nonparametric methods, where the quality of the approximation is improved by adjusting 
the number of cells in the partition, as well as the local parameters. 

Atkeson et al. [16] use “locally linear experts,” a locally parametric approximation scheme with 
a cover rather than a partition. The piecewise (possibly discontinuous) polynomial literature most 
directly affects the present work, though it works with the case where the underlying function is known 
in closed form, whereas we want to find continuous approximations by examining a limited data set. 
Barrow et a1.[17] present generalized convexity conditions which guarantee the existence of a unique best 
approximant from the space of linear B-splines. Kioustelidis [18, 191 presents necessary conditions for 
an optimal piecewise polynomial approximation, as well as an algorithm for computing good piecewise 
polynomial approximations. Gayle and Wolfe [20] apply a modified version of the Kioustelidis algorithm 
and constructively re-establish the uniqueness results of Barrow, et al. under the same generalized 
convexity conditions, for piecewise polynomial approximations. 

2 Graph Intersection Algorithm 
2.1 Notation 
Let A[c,d] c L2[c,d] be the vector space of affine functions on the interval [ c , d ]  c W. Let Q = 
{QlrQ2, ..., Qn} be a collection of n closed intervals, sequentially ordered, intersecting only at each 
successive neighbor’s endpoints, whose union is the interval Z = [a,  b] C W. In an abuse of notation, 
let A(&) be the space of n cell piecewise affine, possibly discontinuous, functions. For f E A(&) 

Notice that for a given partition Q, A(&) is a closed subspace of L2. Let CA(&) C A(&) be the linear 
subspace formed by all continuous n cell piecewise affine functions over Q. 

The set (not a linear subspace) of n cell continuous piecewise affine functions over the domain Z := 
[a, b] c W can be parameterized by a set of n + 1 points in the graph space3 E 

with a = qo < ql < . . . < qn-l < qn = b. (go and qn are fixed, so they are not parameters in the most 
narrow sense.) We call pi = ( q i , T i )  a vertex of the function and we refer to q as the domain partition 
vector, since q implies an n cell partition on the domain. We refer to T as simply the codomain vector, 
since thus far we do not require that it induce a partition on the codomain. We call the collection of 

‘Although this function class seems not to have been studied within the machine learning community, the usage “re- 
introduce” is intended to acknowledge the long and distinguished history of PLH in the spline literature and the more general 
world of pure mathematics. 

21n the sequel, we will speak, colloquially, of such a set of subintervals as defining a partition of 2, even though it is actually 
the one dimensional simplicial complex of vertices and open subintervals that defines a formal partition. 

3The graph space of a function f : U + V is B = U x V. The graph of f is the set { ( G ,  f ( ~ ) ) l z  E U) c Q. 

260 



domain partition cells Q = (91, Q 2 , .  . . , Qn} ,  where Qi = [qi-l ,q;].  The line E ;  which connects vertices 
pi-1 and pi is given by, 

ri - r;-1 where a; = ___ k(z) = a; (. - q i - 1 )  + Ti-1 = a; (z - 4;)  + T i  
qi - 4;-1 

The continuous piecewise function fp defined by P is 

fp(z) = l i (z)  when z E Q; 

2.2 Algorithm 
The graph intersection algorithm is motivated by a real world problem where a data set - a finite 
collection of input-output pairs - must be used to find a good n cell piecewise linear approximation to 
some hypothesized underlying function. We will refer to this setting as the estimation version of the G.I. 
algorithm. 

Alternatively, the underlying function could be provided directly to the algorithm, rather than through 
data. We refer to this setting as the approximation version of the algorithm. Intuitively, the approxima- 
tion version arises from the estimation setting supplied with an unbounded amount of data distributed 
uniformly across the domain. In [15] we provide a local convergence result for the approximation version 
of G.I. when the underlying function lies within the approximant’s parameter space. i.e. the underlying 
function is also an n cell piecewise linear function. 

We first state the Graph Intersection Algorithm on a conceptual level. The following sections will 
provide details for the estimation version along with numerical studies and for the approximation version 
with analtical results. The algorithm is initialized with Po, the parameterization of any valid n cell 
piecewise linear function, as from Eqn. 1. (Iteration number will be denoted by a superscript, e.g. after 
the j t h  iteration, the approximation is parameterized by Pj.) 

Graph Intersection Algorithm 
1. Partition data according to P3 

2. Compute the best affine map, mi, in each cell Q;. 

3. F o r i = l ,  ..., n - 1 ,  
if mi, m;+l are not parallel, 
else gi = p i  

4. For i = 1, ..., n - 1,  
if g; meets the Acceptance Condition, then pi” = g; 
else choose d3+’ using a “Special Rule” 

then let gi E E be their unique intersection point 
(k) 

5. j t j + 1. Goto step 1 

In the estimation version, the GI algorithm is given a set of N input-output pairs, 2 = {dj}:=,. The 
data is sorted according to the partition, and the best linear map of Step 2 is the least squares linear 
fit to the data in the respective partition cell. In some circumstances, the best fit lines of neighboring 
cells have the same slope, precluding any intersection point (in the case of parallel lines) or yielding a 
continuum of intersection points (in the case of coincident lines). An equally important, but less obvious 
problem occurs when neighboring cells have best fit lines which are nearly parallel. This may cause 
the resulting intersection point to be far away from the previous vertex, potentially even outside of the 
domain of approximation, destroying the ordering of the partition vector q. In this case the new knot 
point must be picked in another manner, hence the Acceptance Condition and “Special Rules.” For a 
detailed treatment of these conditions and rules see [15]. 

2.3 Numerical Results for the G.I. Estimation Problem 
We studied the approximation of homeomorphisms of the interval [0,1] into itself from noiseless data 
using piecewise linear approximants (PL) as well as neural networks(”) and taylor polynomials(TP) 
representing‘truncated Taylor series. These techniques are representative of LP, NLIP, and LIP approxi- 
mations, respectively. Each approximation was given the same number of parameters. For example, the 
data shown here is for 16 parameters, corresponding to a NN with 5 neurons, a degree 15 TP and a PL 
approximant with 9 segments (the endpoints are fixed). All code was implemented in MATLAB. T P  
solves the standard linear least squares problem in closed form to find the coefficients. The NN has a 
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single hidden layer with hyperbolic tangent neurons and trains using Levenberg-Marquardt descent on 
the squared error. Results for two different forms of PL training are shown. The first (constr PL) uses 
MATLAB’S constrained optimization algorithm directly on the squared error. The Graph Intersection 
(GIPL) algorithm is the second method for computing PL approximations. 
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Figure 1: Mean and  s tandard deviation bars  for the  Log Mean Squared Error on  the  six function families. 

Table 1: Mean computational cost (in megaflops) of t he  approximation techniques on the  six families. 

T P  NN PLcon P L G I  
tans ig l  0.187 10.2 1.89 0.168 
tans ig2 0.187 9.38 1.68 0.240 
D l f  unl 0.187 9.71 1.93 0.185 
I -  ~ 

pl f  un2 0.187 9.74 2.12 0.538 
rndply 0.187 10.7 1.02 0.157 
d i f f e q  0.187 9.71 2.06 0.195 

The choice of homeomorphisms, functions which are invertible, continuous, and have a continuous 
inverse, is motivated by the proposed applications, where a “change of coordinates” is learned between 
an a priori topological model with invariant properties and the world as represented by data. A change of 
coordinates is, of course, an invertible map. Six families of homeomorphisms were chosen for study. Fam- 
ilies tansigl  and tansig2 are invertible superpositions of hyperbolic tangents, and families plfunl and 
plfun2 are invertible piecewise linear. Families tans ig l  and plfunl  lie within the representational power 
of the neural network and the piecewise linear approximant, respectively, whereas the approximations 
are “underparameterized” on tansig2 and pl f  un2. The fifth family is high degree polynomials (mdply). 
These functions are generated by taking the composition of seven invertible quadratic functions. The 
last family is time one maps from differential equations (diffeq) .  Recall that the time one map of a 
differential equation with unique solutions is not only a homeomorphism but also a diffeomorphism. One 
hundred functions were randomly sampled from each of the six families. 

Figure 1 summarizes the approximation error for the study. As expected, NN outperforms the other 
three techniques on the class tans ig l ,  where the functions lie with the parameter space of the NN. 
Similarly both PL techniques outperform the other two techniques on plfunl ,  where the functions lie 
within the parameter space of PL. GI PL consistently produces better results than constr PL. On most 
families the PL techniques perform better than the other two techniques. An exception is the rndply 
family, on which NN did notably better than PL, but otherwise PL is competitive in terms of error, and 
also has the benefit of being closed form invertible. 

Table 1 shows training cost in terms of floating point operations (flops) for the algorithms on the 
various function families. By far the highest computational cost belongs to NN, which is almost two 
orders of magnitude more intensive than TP. Note that constr PL is also computationally expensive. GI 
PL is close to T P  in computational cost and is on some families actually uses less flops than TP, which 
is a linear-in-parameters approximation. 

Overall, on these classes of homeomorphisms studied, GI PL is competitive in terms of squared error 
with both T P  and NN. It  is surprisingly computationally efficient. Moreover it is possible to  easily check 
the invertiblity of the resulting function, as well as invert it in closed form. 
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2.4 Analytical Results for the G.I. Approximation Problem 
In the approximation version, the Graph Intersection algorithm is supplied with a complete function in 
closed form, which is to be approximated by a piecewise linear function. In this case, the “best affine 
map” for a partition cell Qi in step 2 of the algorithm is the best L2 affine approximation o f f  over that 
cell. This is a linear projection, and may be thought of as the infinite data limit of the least squares map 
in the estimation version. 

We have established a local convergence result for the approximation version of the graph intersection 
algorithm. Consider the case where the underlying function we wish to approximate, call it f; : Z -+ W, 
lies within the parameter space of the approximant. That is, f; E Cd(Q*), where Q‘ is an n cell 
partition of the interval Z. Thus the function f$ may be parameterized as described in $2.1. Parameters 
of the underlying function f; will be denoted by a superscript * in order to distinguish them from the 
parameters of the approximation. 

Given an underlying piecewise affine function f;, if the domain values of the vertices of the approx- 
imation fp start close enough to the domain values of the vertices of the underlying function f;, then 
application of the graph intersection algorithm causes the approximation to converge to the underlying 
function. Stated more formally: 

Theorem 1 Let f; E CA(&*), where Q’ is an  n cell partition of Z. There exists E O  > 0 such that if the 
G.I. algorithm is initialized with an  n cell approximant such that 114’ - q* l lm < E O ,  then iteration of the 
algorithm satisfies 

A detailed treatment of the approximation version of the G.I. algorithm with a proof of the theorem is 
in [15]. 

3 Conclusion 
The use of piecewise linear approximations is motivated by applications wherein certain invariants, cap- 
tured by model functions between model spaces are to be preserved by a “learned’ change of coordinates 
- a piecewise linear homeomorphism. A scalar piecewise linear function is trivially in PLH when its 
defining domain and codomain subintervals are arranged in an ”ordered” partition, in which case it’s 
closed form inverse function is computed by simply interchanging the domain and codomain partitions. 
Missing, heretofore, from the view of engineering applications, has been an efficient algorithm for com- 
puting PL approximations from finite sampled data sets. 

This paper has introduced a PL function training method that compares favorably respecting both 
accuracy and speed with popular linear- and nonlinear-in-parameters function approximation techniques, 
as summarized in Figure 1 and Table 1 of Section 3. The Graph Intersection Algorithm exploits the struc- 
ture of piecewise linear maps to provide a training method that approaches (and apparently, sometimes 
surpasses) the computational simplicity of linear in parameters representations (TP in Figure 1) yet 
retains the approximation power of PL trained by traditional constrained hill climbing methods (constr 
PL in Figure 1) which, in turn, approaches (and, apparently, sometimes surpasses) the neural nets (NN 
in Figure 1) in approximation accuracy. The paper concludes with a local convergence proof for the 
approximation version of the new algorithm. 

While the present work has focused on scalar maps, it is clear that many interesting applications, 
settings present the need for a multidimensional extension of these ideas. We are currently exploring 
the performance of a version of GI generalized to higher dimensions [9]. Preliminary indications are 
sufficiently favorable that a more concerted effort to understand the convergence properties of GI style 
algorithms would now seem to be in order. For example, the proof offered here presumes that the 
underlying function to be learned is piecewise linear with the same number of cells - evidently not a 
requirement for good performance. Similarly, the effect of varied ”Special Rules” and the best choice of 
high dimensional generalization remain to be illuminated by analysis. 
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