Learning informative features for spatial histogram-based object detection | IEEE Conference Publication | IEEE Xplore

Learning informative features for spatial histogram-based object detection


Abstract:

Feature extraction for object representation plays an important role in automatic object detection system. As the spatial histograms consist of marginal distribution of i...Show More

Abstract:

Feature extraction for object representation plays an important role in automatic object detection system. As the spatial histograms consist of marginal distribution of image over local patches, object texture and shape are simultaneously preserved by the spatial histogram representation. In this paper, we propose methods of learning informative features for spatial histogram-based object detection. We employ Fisher criterion to measure the discriminability of each spatial histogram feature and calculate features correlation using mutual information. In order to construct compact feature sets for efficient classification, we propose informative selection algorithm to select uncorrelated and discriminative spatial histogram features. The proposed approaches are tested on two different kinds of objects: car and video text. The experimental results show that the proposed approaches are efficient in object detection.
Date of Conference: 31 July 2005 - 04 August 2005
Date Added to IEEE Xplore: 27 December 2005
Print ISBN:0-7803-9048-2

ISSN Information:

Conference Location: Montreal, QC, Canada

Contact IEEE to Subscribe

References

References is not available for this document.