Issues in designing automated minimal resource allocation neural networks | IEEE Conference Publication | IEEE Xplore

Issues in designing automated minimal resource allocation neural networks


Abstract:

Artificial neural networks (ANNs) have a long record of generally promising results in hydrology. The earlier applications were mainly based on the back propagation feedf...Show More

Abstract:

Artificial neural networks (ANNs) have a long record of generally promising results in hydrology. The earlier applications were mainly based on the back propagation feedforward method, which often used a lengthy trial-and-error method to determine the final network parameters. An attempt to overcome this shortcoming of the traditional applications is the minimal resource allocation network (MRAN). MRAN is online adaptive method which automatically configures the number of hidden nodes based on the input-output patterns presented to the network. Although MRAN demonstrated superior accuracy and more compact network, when compared with the traditional back propagation method, some additional questions need to be addressed. While the number of hidden nodes is estimated automatically, other user-defined parameters are selected arbitrarily, and adjusted through simulations. This research addresses determining the user-defined parameters prior to the model run. The research also compares MRAN results from two applications, and discusses a pathway towards designing a fully automated MRAN.
Date of Conference: 31 July 2005 - 04 August 2005
Date Added to IEEE Xplore: 27 December 2005
Print ISBN:0-7803-9048-2

ISSN Information:

Conference Location: Montreal, QC, Canada

Contact IEEE to Subscribe

References

References is not available for this document.