
 
 

 

  

Abstract—Any system which must learn to perform a large 
number of behavioral features with limited information 
handling resources will tend to be constrained within a set of 
architectural bounds. Unless design for a system with human 
like intelligence is performed within these bounds, the system 
will require excessive resources, and learning will introduce 
large numbers of undesirable side effects on prior learning. The 
design process must be focused on finding adequate 
compromises between the conflicting demands of resource 
economy and ease of learning. A number of detailed constraints 
on this design process are described. 

I. INTRODUCTION 
number of attempts have been made to place 

theoretical limits on information processing systems. 
Church [1] argued that there were families of problems that 
could not be decided by any algorithm. Turing [2] defined a 
conceptual machine and postulated that such a machine 
could perform any process that could be performed by a 
human being “working mechanically”. Bremermann [3] 
argued that there was an upper limit to the information 
processing capacity of a given element of physical matter 
based on the number of energy levels within the mass of the 
element.  

Practical considerations also generate constraints on the 
architecture of the most complex commercial electronic 
systems [4, 5, 6]. It has more recently been argued [7] that a 
range of practical considerations place theoretical bounds on 
the form of information processing systems which are much 
more severe and specific than constraints based on theories 
of computation. These practical considerations are (a) the 
need to perform a large number of behavioral features with 
relatively limited physical resources for information 
recording, information processing and internal information 
communication; (b) the need to add and modify features 
without side effects on other features; (c) the need to protect 
the many different meanings of information generated by 
one part of the system and utilized for different purposes by 
each of a number of other parts of the system; (b) the need to 
maintain the association between results obtained by 
different parts of the system from a set of system inputs 
arriving at the same time (i.e. maintain synchronicity); (e) 
the need to limit the volume of information required to 
specify the system construction process; (f) the need to limit 
the complexity of the system construction process; and (g) 
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the need to recover from construction errors and subsequent 
physical failures or damage. As these needs become more 
severe, systems will be more and more tightly constrained 
within the theoretical bounds. 

Two of the most significant of these practical 
considerations are the need to perform large numbers of 
behavioral features with limited information handling 
resources, and the need to change features without 
undesirable side effects on other features. These two 
considerations frequently conflict, and any system with a 
high ratio of features to available resources experiences very 
strong constraints on its architectural form, driven by the 
requirement to find an adequate compromise between 
resource requirements and modifiability. 

One architectural constraint is that resources must be 
organized into a modular hierarchy defined in such a way 
that each module performs a group of similar system 
processes, and information exchange between modules is 
minimized as far as possible consistent with the need to limit 
use of resources. Such modules do not correspond with 
behavioral features, the relationship between modules and 
features can be very complex. This complexity results in the 
major differences between system architecture descriptions 
and user manual descriptions of the same system. 

Other architectural constraints result from the need to 
maintain the often very complex behavioral meanings of 
information exchanges between modules when feature 
changes require changes to modules. 

It is plausible that there will be natural selection 
advantages for brains which can perform more features with 
fewer resources, and [7] has therefore argued that the 
mammal brain is organized into a modular hierarchy of 
physiological resources in such a way that information 
exchange between modules is minimized as far as possible. 

Information exchanges between modules in complex 
commercial electronic systems have unambiguous 
behavioral meanings. In other words, they can be interpreted 
as commands or instructions. This type of meaning is 
resource efficient but creates immense practical difficulties 
if features must be learned rather than defined under external 
intellectual control [7]. Learning is only practical if such 
information exchange meanings are partially ambiguous, in 
other words they can only be interpreted as 
recommendations. Support of partially ambiguous meanings 
is more resource intensive, but makes learning without 
severe interference with prior learning feasible. 

If a system must support unambiguous information 
exchange meanings, it will be constrained into the familiar 
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von Neumann form including the separation between 
memory and processing. If a system must support 
meaningful but partially ambiguous meanings, it will be 
constrained into a qualitatively different form which has 
some strong resemblances with the mammal brain [8]. 

Given a complex pattern of information exchange, it 
would be difficult to mix unambiguous and ambiguous 
information exchanges within the same architecture. The 
presence of ambiguous information would tend to make all 
information ambiguous. However, a system utilizing 
ambiguous information can be emulated on an underlying 
system using unambiguous information using pseudorandom 
processes at some points [7]. 

A system to perform a given set of features could be 
implemented in an immense number of different ways even 
within the same physical information handling technologies. 
If the ratio of features to total available resources is high, 
there are still many different ways in which the system could 
be implemented, but there will be some general architectural 
similarities between the different implementations reflecting 
the architectural constraint. If features are defined under 
external intellectual control, these similarities will include a 
modular hierarchy with minimized information exchange, 
and the von Neumann form to maintain contexts for 
unambiguous information exchanges. If features must be 
learned, the similarities will include a modular hierarchy 
with minimized information exchange, but qualitatively 
different constraints to maintain adequate contexts for 
partially ambiguous information exchanges.  

The implication for the design of systems with human like 
learning and intelligence is that there may be many ways to 
build systems to implement particular aspects of human 
intelligence, but a system to implement a wide range of 
human capabilities will tend to be architecturally 
constrained. Attempts to design such systems are more likely 
to succeed if design proceeds within these architectural 
constraints. 

II. THE IMPACT OF RESOURCE CONSTRAINTS ON 
ARCHITECTURE 

If the information handling resources available to a 
system are limited, similar processes must be collected into 
groups which can be performed by a small set of resources 
customized to efficiently perform processes of the similar 
type. These small sets of resources are called modules. The 
definition of “similar” is only that all the processes can be 
performed efficiently on the same resources. 

System processes can in general be regarded as condition 
detections [9]. Resource economy arises because a module 
detects a portfolio of similar conditions, and outputs from 
the module indicate detection of different subsets of its 
portfolio. 

There could be a somewhat smaller degree of similarity 
between the processes performed by several different 
modules, in which case there could be some degree of 
resource sharing between those modules. A group of 

modules sharing a proportion of their resources forms an 
intermediate level module. Higher level modules will be 
defined by a yet lower (but still significant) degree of 
resource sharing between intermediate modules and so on. 

The resultant modular hierarchy is thus driven by the need 
to economize on resources. Its form will be defined by the 
types of system processes which are “similar” given the 
available implementation technology. 

Similar information processes from the point of view of 
resource sharing may be required by many different 
behavioral features, and any one such feature will require 
many different types of information process. As a result 
there will be little correspondence between behavioral 
features as defined by an outside observer and modules 
defined to minimize the requirement for physical 
information handling resources. This lack of correspondence 
is the reason for the very complex relationship between 
system architectures and user manuals in commercial 
electronic systems [8].  

However, the lack of correspondence is driven only by 
resource constraints, and if the constraints can be relaxed in 
some cases then more correspondence may exist. For 
example, in the personal computer, there are completely 
separate software applications for user defined features like 
word processing, graphics processing, web access etc. One 
resource penalty of this approach is that if the same 
information is required by multiple applications, such as a 
diagram shared between the three applications, the 
information will in general be duplicated in different format 
for each application. All of a wide range of similar editing 
features must be separately implemented in each application. 

In any system with human like intelligence it will be a 
requirement to select, record and organize a vast amount of 
information derived from experience. Resource constraints 
will in general mean that this requirement will be met in 
such a way that the same information store can be accessed 
in support of many different cognitive processes [10]. In the 
mammal brain it has therefore proved difficult to identify 
physical structures corresponding with cognitive features. 
However, for a critical process some specialized assignment 
of resources may be justified because improved learning and 
performance for a particular feature is worth the extra 
resources. A possible example is human face recognition, 
since physical damage to one part of the brain impairs face 
recognition but leaves object recognition intact [11] and 
different damage results in impaired object recognition but 
leaves face recognition intact [12]. However, the separation 
of resources is not complete, since certain specialist object 
recognition skills appear to use some face recognition 
resources [13]. 

The detailed organization of resources into modules is 
thus the best achievable compromise between some 
conflicting pressures including resource economy and 
feature performance. 



 
 

 

III. THE IMPACT OF MODIFIABILITY 
Organization of resources into a resource economy driven 

modular hierarchy presents a major problem for feature 
modification. The problem is that the implementation of a 
feature change will require changes to one or more modules, 
but such changes risk introducing undesirable side effects on 
other features that utilize the same modules. Furthermore, if 
a module receives information from a changed module, there 
is the risk of undesirable side effects on features utilizing 
that target module, and on features utilizing modules that 
receive information from that target module and so on. The 
result could be an exponentially increasing wave of side 
effects propagating out from the directly changed modules. 

To reduce the degree of secondary side effects, modular 
hierarchies must be defined in such a way that the overall 
level of information exchange between modules is 
minimized as far as possible. However, such minimization 
tends to conflict with the need to economize on resources, 
because reducing exchanges will often mean that the same 
information must be independently generated within 
multiple modules. The modular hierarchy is therefore the 
best achievable compromise between resource limitation and 
minimized information exchange. 

The process for design of complex commercial systems 
involves separation of system operations into groups, then 
rearranging the groups somewhat to minimize information 
exchange [7]. In the mammal cortex there is evidence of a 
similar pressure to minimize information exchange. Such 
information exchange will be carried by physical 
connectivity. In the cortex there is a hierarchy of 
physiological structures including columns and areas in 
which a primary means of identifying the structures is 
greater internal connectivity relative to external [14, 15, 16, 
17]. [7] has argued that one role of REM sleep is to 
minimize the degree of information exchange increase 
between cortex modules participating in learning. 

Minimization of information exchange reduces but does 
not eliminate the side effect problem. In the case of complex 
electronic systems, feature changes require a process that 
investigates the impact of possible changes on other features 
by design analysis and testing, and finds a set of module 
changes which implement the desired feature change with 
minimal side effects. This process requires strong 
intellectual control from outside the system itself using 
knowledge of the internal workings of the system, and is not 
feasible for a system which must learn such changes. The 
difficulty for a learning system is that such a system must 
typically wait until a feature is invoked to discover the 
effects of earlier changes in support of other features, while 
external intellectual control can consider the effects of 
changes on the full spectrum of features before the change is 
implemented. 

A further factor which makes the learning of large 
numbers of behavioral features difficult within the 
architectures used for very complex electronic systems is the 
meaning of information exchanges between modules in such 

systems. Such exchanges can be viewed in two 
complementary ways [7]. One meaning is that an exchange 
indicates the detection of a condition within the information 
available to the source module. The other is that an exchange 
limits the range of currently appropriate system behaviors. 
Of the range of behaviors influenced by the target module, 
an exchange excludes a subset. Because many modules may 
be recipients of the same condition detection, that detection 
may have multiple different behavioral meanings in different 
targets. 

In the case of commercial electronic systems, all 
behavioral meanings are unambiguous. In other words, there 
is 100% confidence in the behavioral guidance provided by a 
condition detection, and information exchanges can 
therefore be interpreted as commands or instructions. For 
example, a software instruction may have the format if: x = a 
[do: ….]. In other words, if a condition is detected (x = a) 
then the system is commanded to perform a process. 

Unambiguous information exchange is resource efficient, 
but creates extreme difficulties for learning. Consider, for 
example, trial and error learning. Such learning requires an 
experimental change to behavior, modified by consequence 
feedback. An experimental change must be implemented by 
changes to one or more modules, which will in general result 
in changes to the conditions detected by those modules. 

If a condition is changed, the module output indicating the 
detection of that condition will no longer be generated under 
exactly the same circumstances. However, that output will 
continue to be interpreted as a behavioral command 
appropriate in response to the original condition by any 
module targets. Secondary and tertiary etc. targets will also 
be affected. Consequence feedback only corrects for recently 
performed behaviors, and such consequence feedback could 
itself introduce additional changes which will be interpreted 
as changes to commands. 

Trial and error learning on one behavior will therefore 
result in a large number of changes to unambiguous 
commands affecting other behaviors. Such changes can only 
be addressed the next time each behavior is invoked, and any 
correction will introduce yet more command side effects. 
The probability of such a process converging on a consistent 
set of high integrity behaviors is very low. 

The alternative is that information exchanges could be 
meaningful but partially ambiguous. With this alternative, 
the behavioral interpretation of a condition detection is a 
recommendation. In general, many more conditions will 
need to be detected to create enough recommendation 
strengths to support high integrity behaviors, and this 
alternative will be much more resource intensive. 

However, partially ambiguous information exchanges 
have a considerable advantage for learning, An accepted 
behavior B1 at some point in time will be supported by 
detection of many different conditions with recommendation 
weights (among others) in favor of B1. Slight changes to 
some of the conditions supporting B1 in order to implement 
learning of another behavior B2 may not be sufficient to 



 
 

 

change the predominant recommendation weight in favor of 
B1 next time it is appropriate., and at that time consequence 
feedback can readjust recommendation weights. There is 
therefore the possibility of convergence on a consistent set 
of high integrity behaviors through trial and error learning. 
The critical problem is the definition of “slight”. 

Note that an alternative would be completely separate 
resources for each different behavior, or at least much less 
sharing. If available resources make this option feasible, 
then of course the architectural constraints do not apply. 

IV. THE IMPACT OF SYNCHRONICITY 
In general, a system will at each point in time need to 

select a subset of its current inputs, and detect conditions 
only within that subset. The detected conditions will indicate 
the appropriate behavior in response to the subset of inputs. 
Such subsets might correspond with different objects within 
the total perceived visual environment. This selection 
process is the system attention function. 

The practical synchronicity issue is the need to maintain 
the association between results obtained by different 
modules from a set of system inputs arriving at the same 
time, i.e. from the one current attention object.  

There are in principle two approaches to maintaining 
synchronicity: global and local [7]. In the global approach, 
the set of system inputs at one point in time are all recorded 
in a memory. Modules then take information on the 
synchronous set of inputs from the memory and detect 
conditions within that set, placing a record of their condition 
detections in the memory. Because some modules detect 
conditions which contain conditions detected by other 
modules, there is a specific sequence in which module 
condition detection must occur. This approach is thus 
essentially the von Neumann architecture, with a separate 
memory and sequential processing. 

The alternative approach is local synchronicity 
management. In this approach, modules must be arranged in 
layers. A set of system inputs arrive at the first layer at the 
same time. The layer detects conditions and communicates 
condition detections to the next layer of modules. The next 
layer detects conditions that are combinations of the 
conditions detected by the first layer, and communicates 
those condition detections to the next layer and so on. 

A disadvantage of the layered approach is that exact 
synchronicity would require every module in a layer to take 
exactly the same time to perform condition detection, and 
every communication between layers to also take exactly the 
same time. Any differences in processing time would 
introduce synchronization errors. If all information 
exchanges between modules were unambiguous commands, 
such synchronization errors could not be tolerated. 
Commercial electronic systems therefore universally employ 
the global synchronization approach with the associated von 
Neumann architecture. 

However, if information exchanges are partially 
ambiguous, some degree of synchronicity errors can be 

tolerated. Hence a system utilizing such exchanges could 
avoid the high cost and complexity of a separate memory 
system and rely on a layered approach to synchronicity. In 
this approach, condition detection devices and modules will 
be arranged in a sequence of layers, with the majority of 
condition definition connectivity being from one layer to the 
next. 

A further architectural constraint results from conflict 
between resource conservation and synchronicity. This 
conflict arises if it is necessary to detect conditions 
simultaneously within attention objects at different times, 
but resource constraints mean that all the conditions must be 
detected in the same modules. Such simultaneous detection 
would be required if it was sometimes necessary to detect 
conditions containing information derived for a number of 
different objects in a controlled fashion, in order to 
determine an appropriate behavior in response to the group 
of objects. The implication is that it must be possible for 
multiple populations of conditions to be detected and 
communicated within the same physical group of condition 
defining devices, without interaction between the 
information derived from the different objects, then to 
combine some of these conditions into more complex 
conditions. 

As discussed in [18], one possible mechanism to support 
attention and separate populations of condition detections in 
the same physical group of devices resembles apparent 
cortex physiological activity. In this mechanism, the outputs 
from a device are sequences of identical voltage spikes. The 
rate at which spikes are generated indicates the proportion of 
its programmed conditions that the device is currently 
detecting. If a device integrates its spike inputs over an 
integration window, then placing a frequency modulation on 
spike times with the interval between peaks being larger than 
the integration window increases the response to modulated 
inputs relative to unmodulated inputs. Placing such a 
modulation on a subset of inputs (e.g. all the inputs from 
within one closed boundary in the visual field) means that 
only the subset will contribute to condition detections. 
Placing the same frequency but different phases of 
modulation on different objects means that independent 
populations of conditions will be detected in response to the 
different objects, provided that the phase difference is larger 
than the integration window. The number of independent 
populations that can be supported is roughly the ratio of the 
modulation interval to the integration window, which in the 
cortex corresponds with ~ four objects that can be retained in 
working memory [8, 18]. 

V. ARCHITECTURAL IMPLICATION OF CHANGE 
MANAGEMENT DURING LEARNING 

The key problem in managing change is to find a 
compromise which allows change without requiring 
excessive resources. The key parameter for achieving this 
compromise is the degree of allowed change. If the allowed 
degree of change is too small, excessive resources will be 



 
 

 

required because a module supporting one feature will not be 
able to change enough to be useful to any other features. If 
the degree is too large, changes to support one feature will 
result in unmanageable side effects on other features. 

Degree of change can be understood in terms of the 
portfolio of information conditions detected by a module. If  
conditions within a module are changed, the circumstances 
in which some module outputs will be generated will also 
change. Each such output has many different behavioral 
meanings in the modules that are targeted by the output. The 
requirement is therefore to preserve all the meanings to an 
adequate degree. 

If conditions within a portfolio can be changed by 
consequence feedback in response to individual behaviors, 
very large changes could occur which left little relationship 
between the conditions before and after the change. As the 
number of features supported by each module increases, it 
becomes increasingly probable that such changes will result 
in an unmanageable proliferation of side effects. 

Hence as the ratio of features to resources increases, it 
will become less feasible to allow consequence feedback to 
act directly on modules. However, consequence feedback is 
needed to guide the recommendation weights in favor of 
different behaviors that are assigned to conditions. The result 
will be a separation between the modular hierarchy that 
defines and detects conditions (called clustering because it 
clusters similar conditions into modules) and a separate 
subsystem which uses consequence feedback to assign 
recommendation weights in favor of different behaviors. 
This subsystem is called competition because it manages the 
competition between alternative behavioral 
recommendations. 

Because competition receives consequence feedback, 
information exchanges within competition cannot sustain 
behaviorally complex meanings. Competition will therefore 
be organized into components corresponding with different 
behaviors, and groups of components corresponding with 
different types of behavior. An input to a component from 
clustering can only be interpreted as a recommendation in 
favor of or against the behavior corresponding with the 
component, and an input from another component can only 
be interpreted as a recommendation against the behavior. 

This separation between clustering and competition is a 
fundamental architectural separation which will appear in 
any system in which large numbers of behavioral features 
must be learned and the ratio of behavioral features to 
resources is high [7]. 

 

VI. CHANGE ALGORITHMS  
If consequence feedback cannot affect the definitions of 

conditions, the question is how can module changes be 
managed. One extreme would be that portfolios be fixed a 
priori. In this case only limited learning is possible (i.e. only 
by changes to recommendation strengths). 

A somewhat higher degree of change would be if 

portfolios could be expanded by adding similar conditions. 
In this case a module will always produce an output if it has 
produced an output in identical circumstances in the past, 
but will also produce the same output under similar but 
slightly different circumstances. It can be demonstrated that 
this degree of change permits continuous learning of 
significant numbers of different features with limited side 
effects on features learned earlier [19]. 

Gradually expanding portfolios require careful 
management of when and in which module such expansion 
can occur, and the circumstances in which a new portfolio 
can be initiated. This management is needed to ensure that 
resource requirements are not excessive and that an adequate 
degree of behavioral meaning is preserved. The only 
information available to guide this process is condition 
detection within the modular hierarchy, and the management 
requirement results in devices which can record gradually 
increasing portfolios being arranged in layers, columns and 
areas, with connectivity detecting the overall level of activity 
in specific groups of devices being used to determine 
whether portfolios will be expanded in other specific groups 
of devices [7, 8]. 

Higher degrees of change, for example with conditions 
that rarely occur being eliminated from a portfolio, could be 
possible depending on the compromise required between 
resources and preservation of earlier behavioral meanings, 
but in all cases the system must address how to manage 
change to achieve that compromise. 

VII. INDIRECT ACTIVATION OF INFORMATION 
Modules in clustering generate outputs (indicating 

condition detections) to competition. Every such output is 
interpreted as a range of recommendations in favor of 
different behaviors, each  recommendation having a 
different weight. Competition determines and implements 
the most strongly recommended behavior, and adjusts 
recently accepted weights using consequence feedback 
following the accepted behavior. 

In the discussion so far, it has been implicitly assumed 
that all the conditions contributing recommendation strength 
are present within current system inputs. However, there are 
other conditions which under some circumstances may 
contribute possibly relevant recommendations.  

For example, modules that are currently not detecting 
conditions, but that have often detected conditions at the 
same time in the past as modules that are currently detecting 
conditions, may have relevant recommendation strengths. 
Similarly, inactive modules that recorded conditions in the 
past at the same time as currently active modules, and 
inactive modules that have recently detected conditions, may 
have relevant strengths. 

Indirect activation of such inactive modules may under 
some circumstances add important recommendations to the 
recommendations available from conditions actually present 
in current system inputs. However, to prevent the system 
being swamped by the activation of marginally relevant 



 
 

 

information, indirect activations must be behavioral 
recommendations that compete with, for example, direct 
behaviors. Thus, a module output will have recommendation 
strengths in favor of direct behaviors, and also strengths in 
favor of indirect activation of other modules on the basis of 
past correlated activity. 

Such indirect activations  expand in a controlled fashion 
the volume of information available to influence behavior 
selection. 

VIII. DESIGN PROCESS SYSTEMS WITH HUMAN LIKE 
INTELLIGENCE 

The vital need to find an adequate compromise between 
resource requirements and modifiability has a number of 
interrelated implications for any design process aimed at 
implementing a system with human like intelligence. 

Firstly, the initial architectural design must focus on 
module separations on the basis of resource economy, not on 
the basis of different types of cognitive process. Secondly, a 
process must be designed to ensure the minimization of 
information exchange increases during learning. Thirdly, 
device learning algorithms must be specified so that the 
meanings of device outputs are adequately preserved during 
learning. Fourthly, architectural structures which manage the 
ongoing compromises between resource requirements and 
preservation of past learning must be defined. 

Only when a system architecture has been established on 
this basis can the ways in which cognitive processes like 
memory can be supported by operations in and between 
modules be defined in detail. This definition will of course 
result in adjustments to the overall architecture. 

This implementation approach has been successfully 
utilized for a number of moderately complex prototype 
learning systems. One system has demonstrated the 
capability to learn with manageable interference between 
earlier and later learning [19]. A second system [7] has 
demonstrated the ability to learn to associate appropriate 
behaviors with emulated visual inputs or sequences of such 
inputs, and to activate visual images in response to 
appropriate emulated verbal inputs. A third system [18] has 
demonstrated an attention and working memory capability. 

 
A. Implementation Principles 

As discussed earlier, it is possible to emulate a system 
using partially ambiguous information exchanges on a 
system which itself uses ambiguous exchanges. Some 
random element in the information processes must be 
present. Implementation can therefore be emulated on a 
regular computing system. 

Within the clustering modular hierarchy at the most 
detailed level, there must be devices which can define and 
subsequently detect conditions within their inputs, in such a 
way that there is a strong tendency for any condition to be 
detected if it has been detected earlier. 

Since there will in general be limited a priori information 
on the identity of behaviorally useful conditions, there will 

be a random element in the selection of such conditions. 
This random element (provided by some pseudorandom 
number generator) makes it possible to emulate a 
recommendation architecture system on a regular computer. 
Devices can be emulated by software rather than by physical 
creation of connectivity. 

 
B.  Architectural Design 

There must be a primary separation between a modular 
hierarchy of condition definition and detection (clustering), 
and a component hierarchy of behaviors (competition). 
Complex behavioral management processes will all occur 
within the modular hierarchy.  

The modules within the modular hierarchy must be 
defined on the basis of resource economy. There is a 
tendency in many design approaches to define modules that 
correspond with externally observable cognitive processes 
like “working memory”, “procedural memory”, “global 
workspace” etc. (see for example [20]). This approach is 
analogous with attempting to implement a commercial 
system with user manual definitions of modules. It is 
possible in principle, but resource requirements will in 
general be unmanageable.  

The appropriate approach is to define different types of 
similar operations given the physical implementation 
technology, and to define modules on the basis of these 
operations. The most natural module definition, particularly 
if connectivity is a limited resource, is a collection of similar 
conditions. Module outputs will then indicate the detection 
of a subset of the conditions programmed on the module. 
Such outputs may provide some discrimination between 
different such subsets, but resource limitations will in 
general mean that such discrimination will not be provided 
between every programmed condition. The key requirement 
is that different combinations of module outputs be able to 
discriminate between circumstances with behaviorally 
different implications.  

This discrimination capability can be managed. For 
example, if there are a number of occasions during which a 
specific group of modules generate outputs, these outputs are 
followed by a specific behavior, but the reward following 
that behavior is sometimes positive and sometimes negative, 
the implication is that the group of modules do not 
discriminate adequately between similar circumstances with 
behaviorally different implications. The requirement is to 
generate additional modules or module outputs in these 
circumstances. The new outputs will provide additional 
discrimination without interfering with the multiple other 
behaviors influenced to some degree by the modules in the 
group. 

Substantial resources are required to manage when and 
where conditions will be added to a module. This 
management cannot simply be passive, but must actively 
determine the condition recording requirement for each 
module in response to every input state on the basis of the 
degree of condition detection in other modules. 



 
 

 

Competition must be organized into a component 
hierarchy. Detailed components will correspond with 
individual system behaviors, higher level components will 
correspond with groups or sequences of such behaviors. 
Reward information available within competition means that 
information exchanges cannot have complex behavioral 
meanings. An input to a component from clustering can be a 
recommendation in favor or against the corresponding 
behavior; an input from another component can only be a 
recommendation against the recipient component behavior. 
In general the most appropriate current behavior will be 
determined by a process of competitive resolution 
determining the strongest recommendation weights. The first 
step is between components corresponding with general 
types of behavior, then between subcomponents of the 
component corresponding with the most strongly 
recommended general type to determine a more specific type 
within the general type, and so on. 

 
C. Reward Systems 

Reward systems must manage the adjustment of 
recommendation strengths in favor of recently accepted 
behaviors on the basis of rewards following those behaviors. 

The conditions under which rewards will occur need to be 
specified a priori, but some evolution of those conditions 
could take place through experience. 

A priori specification could include predefined conditions 
which if detected result in decreases (or increases) to 
recently accepted recommendation strengths. Such 
conditions can be regarded as indicating pain (or pleasure). 

Another a priori specification could be to reward recently 
accepted recommendation strengths if the conditions 
detected after the behavior with attention focused on self 
were similar to conditions detected before the behavior in an 
external object (i.e. rewarding imitation). Repeating recently 
heard sounds would be encouraged by this capability and 
could improve the effectiveness of early learning [8]. 

 
D. Learning Process 

The process of learning a behavior can be viewed as 
dividing up the space of input states into relatively 
independent similarity components corresponding with 
modules detecting different groups of conditions. These 
components are in some ways analogous with independent 
components [21]. The differences are that they can be 
continuously evolved by a tightly managed process, and 
their degree of statistical independence is not explicitly 
managed. 

Components are defined corresponding with “atomic” 
behaviors, and corresponding with random (or biased 
random) sequences of such behaviors. Random (or biased 
random) connectivity weights are established between 
modules and components corresponding with behaviors, and 
connectivity with negative weights between components. 

Thus in response to an input state, initial behavior will be 

relatively random (depending on initial connectivity bias). 
Reward (positive or negative) adjusts input weights into the 
component corresponding with the recently selected 
behavior. Consistent negative rewards to a behavioral 
sequence component result in reprogramming for a different 
sequence. 

The combination of initial connectivity bias and use of 
imitation to generate rewards can result in bootstrapping of 
complex cognitive behaviors over reasonable periods of 
experience [8]. 

  
E. Device Algorithms 

Within competition, device learning algorithms will 
involve weight adjustments to individual inputs on the basis 
of reward signals, resembling typical artificial neural 
network algorithms. However, the condition recording 
devices within clustering require algorithms which cause the 
device to respond to a gradually increasing volume of their 
available input similarity space. Conditions will in general 
be added to a device but not removed, although a viable 
algorithm could allow removal of a condition if it did not 
occur again within some period of time [8]. Various 
algorithms of this type are possible [7, 8]. 

Because connectivity resources are not unlimited, 
provisional conditions will need to be defined within 
modules in advance of experience. New conditions will the 
active subset of a provisional condition within a module 
when condition recording is required in that module. 

Furthermore, device algorithms must support the ability 
to focus processing on subsets of system inputs (i.e. an 
attention capability) and to process independent populations 
of condition detections within the same physical resources 
(i.e. working memory). Algorithms with this capability have 
been described in [8, 18]. 

 
F. Detailed Physical Arrangements 

Condition recording devices must be arranged in layers to 
support synchronicity management, with a modular 
hierarchy of columns, arrays and areas overlaid on the 
layers. Connectivity between modules must be defined to 
manage both detection of conditions and decisions on when 
and where new conditions will be recorded. There are many 
different ways in which these arrangements and connectivity 
could be implemented, depending on the tradeoffs made for 
the specific system [8]. 

 
G. Initial Configuration 

A priori information on the identity of useful conditions is 
limited. However, there are some sources of such 
information. One source could be design (or for biological 
systems genetic) information that certain types of 
information were useful for discriminating between certain 
types of behaviors. 

Such information can be utilized by biasing the initial 
connectivity within clustering and between clustering and 
competition. Thus a priori knowledge of the complexity of 



 
 

 

conditions most appropriate for discriminating between 
certain types of behaviorally different circumstances can be 
used to bias the number of inputs to provisional conditions 
to some modules in clustering, and to bias the creation of 
connectivity from those modules in favor of components 
corresponding with the behaviors. 
 
H. Minimization of Information Exchange 

Provisional conditions for a module are defined as random 
combinations of inputs from other modules. However, 
completely random selection would result in a high level of 
information exchange between modules. There is some 
additional information which can be used to reduce this 
degree of information exchange. This additional information 
is past experience. With the assumption that past experience, 
and especially recent experience, is some guide to the 
probable form of experience in the immediate future, past 
experience can be used to bias the definition of provisional 
conditions. If two modules have often detected conditions at 
the same time in the past, a provisional condition in one 
module incorporating outputs from the other module is 
somewhat more likely to be useful than if the two modules 
have never previously been active at the same time. Biasing 
provisional conditions in favor of inputs which have often 
been active in the past at the same time as their targets will 
therefore improve the probability of a useful regular 
condition. The bias configures resources in such a way that 
they are more likely to be useful for recording information 
during future experiences, it has no effect on past memories. 
[22] has argued that sleep, including REM sleep, plays this 
role in the mammal brain. Simulations indicate that such a 
process reduces the connectivity resources required to 
support learning by about 20% [23]. 

 

IX. CONCLUSION 
Design of systems to implement human like intelligence 

will require the capability to learn large numbers of 
behavioral features with relatively limited information 
handling resources. The need to be able to learn without 
excessive loss of earlier learning forces both architectural 
compromises and a specific type of approach to design. The 
feasibility of designing systems within these constraints has 
been established, and a range of detailed practical constraints 
on the design process established. 
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