

Abstract—Any system which must learn to perform a large
number of behavioral features with limited information
handling resources will tend to be constrained within a set of
architectural bounds. Unless design for a system with human
like intelligence is performed within these bounds, the system
will require excessive resources, and learning will introduce
large numbers of undesirable side effects on prior learning. The
design process must be focused on finding adequate
compromises between the conflicting demands of resource
economy and ease of learning. A number of detailed constraints
on this design process are described.

I. INTRODUCTION
number of attempts have been made to place

theoretical limits on information processing systems.
Church [1] argued that there were families of problems that
could not be decided by any algorithm. Turing [2] defined a
conceptual machine and postulated that such a machine
could perform any process that could be performed by a
human being “working mechanically”. Bremermann [3]
argued that there was an upper limit to the information
processing capacity of a given element of physical matter
based on the number of energy levels within the mass of the
element.

Practical considerations also generate constraints on the
architecture of the most complex commercial electronic
systems [4, 5, 6]. It has more recently been argued [7] that a
range of practical considerations place theoretical bounds on
the form of information processing systems which are much
more severe and specific than constraints based on theories
of computation. These practical considerations are (a) the
need to perform a large number of behavioral features with
relatively limited physical resources for information
recording, information processing and internal information
communication; (b) the need to add and modify features
without side effects on other features; (c) the need to protect
the many different meanings of information generated by
one part of the system and utilized for different purposes by
each of a number of other parts of the system; (b) the need to
maintain the association between results obtained by
different parts of the system from a set of system inputs
arriving at the same time (i.e. maintain synchronicity); (e)
the need to limit the volume of information required to
specify the system construction process; (f) the need to limit
the complexity of the system construction process; and (g)

L. Andrew Coward is with the Department of Computer Science at the

Australian National University (phone: +61 0431 529 197; fax: +61 2 6125
0010; e-mail: andrew.coward@ anu.edu.au).

the need to recover from construction errors and subsequent
physical failures or damage. As these needs become more
severe, systems will be more and more tightly constrained
within the theoretical bounds.

Two of the most significant of these practical
considerations are the need to perform large numbers of
behavioral features with limited information handling
resources, and the need to change features without
undesirable side effects on other features. These two
considerations frequently conflict, and any system with a
high ratio of features to available resources experiences very
strong constraints on its architectural form, driven by the
requirement to find an adequate compromise between
resource requirements and modifiability.

One architectural constraint is that resources must be
organized into a modular hierarchy defined in such a way
that each module performs a group of similar system
processes, and information exchange between modules is
minimized as far as possible consistent with the need to limit
use of resources. Such modules do not correspond with
behavioral features, the relationship between modules and
features can be very complex. This complexity results in the
major differences between system architecture descriptions
and user manual descriptions of the same system.

Other architectural constraints result from the need to
maintain the often very complex behavioral meanings of
information exchanges between modules when feature
changes require changes to modules.

It is plausible that there will be natural selection
advantages for brains which can perform more features with
fewer resources, and [7] has therefore argued that the
mammal brain is organized into a modular hierarchy of
physiological resources in such a way that information
exchange between modules is minimized as far as possible.

Information exchanges between modules in complex
commercial electronic systems have unambiguous
behavioral meanings. In other words, they can be interpreted
as commands or instructions. This type of meaning is
resource efficient but creates immense practical difficulties
if features must be learned rather than defined under external
intellectual control [7]. Learning is only practical if such
information exchange meanings are partially ambiguous, in
other words they can only be interpreted as
recommendations. Support of partially ambiguous meanings
is more resource intensive, but makes learning without
severe interference with prior learning feasible.

If a system must support unambiguous information
exchange meanings, it will be constrained into the familiar

Constraints on the Design Process for Systems with Human Level
Intelligence

L. Andrew Coward

A

von Neumann form including the separation between
memory and processing. If a system must support
meaningful but partially ambiguous meanings, it will be
constrained into a qualitatively different form which has
some strong resemblances with the mammal brain [8].

Given a complex pattern of information exchange, it
would be difficult to mix unambiguous and ambiguous
information exchanges within the same architecture. The
presence of ambiguous information would tend to make all
information ambiguous. However, a system utilizing
ambiguous information can be emulated on an underlying
system using unambiguous information using pseudorandom
processes at some points [7].

A system to perform a given set of features could be
implemented in an immense number of different ways even
within the same physical information handling technologies.
If the ratio of features to total available resources is high,
there are still many different ways in which the system could
be implemented, but there will be some general architectural
similarities between the different implementations reflecting
the architectural constraint. If features are defined under
external intellectual control, these similarities will include a
modular hierarchy with minimized information exchange,
and the von Neumann form to maintain contexts for
unambiguous information exchanges. If features must be
learned, the similarities will include a modular hierarchy
with minimized information exchange, but qualitatively
different constraints to maintain adequate contexts for
partially ambiguous information exchanges.

The implication for the design of systems with human like
learning and intelligence is that there may be many ways to
build systems to implement particular aspects of human
intelligence, but a system to implement a wide range of
human capabilities will tend to be architecturally
constrained. Attempts to design such systems are more likely
to succeed if design proceeds within these architectural
constraints.

II. THE IMPACT OF RESOURCE CONSTRAINTS ON
ARCHITECTURE

If the information handling resources available to a
system are limited, similar processes must be collected into
groups which can be performed by a small set of resources
customized to efficiently perform processes of the similar
type. These small sets of resources are called modules. The
definition of “similar” is only that all the processes can be
performed efficiently on the same resources.

System processes can in general be regarded as condition
detections [9]. Resource economy arises because a module
detects a portfolio of similar conditions, and outputs from
the module indicate detection of different subsets of its
portfolio.

There could be a somewhat smaller degree of similarity
between the processes performed by several different
modules, in which case there could be some degree of
resource sharing between those modules. A group of

modules sharing a proportion of their resources forms an
intermediate level module. Higher level modules will be
defined by a yet lower (but still significant) degree of
resource sharing between intermediate modules and so on.

The resultant modular hierarchy is thus driven by the need
to economize on resources. Its form will be defined by the
types of system processes which are “similar” given the
available implementation technology.

Similar information processes from the point of view of
resource sharing may be required by many different
behavioral features, and any one such feature will require
many different types of information process. As a result
there will be little correspondence between behavioral
features as defined by an outside observer and modules
defined to minimize the requirement for physical
information handling resources. This lack of correspondence
is the reason for the very complex relationship between
system architectures and user manuals in commercial
electronic systems [8].

However, the lack of correspondence is driven only by
resource constraints, and if the constraints can be relaxed in
some cases then more correspondence may exist. For
example, in the personal computer, there are completely
separate software applications for user defined features like
word processing, graphics processing, web access etc. One
resource penalty of this approach is that if the same
information is required by multiple applications, such as a
diagram shared between the three applications, the
information will in general be duplicated in different format
for each application. All of a wide range of similar editing
features must be separately implemented in each application.

In any system with human like intelligence it will be a
requirement to select, record and organize a vast amount of
information derived from experience. Resource constraints
will in general mean that this requirement will be met in
such a way that the same information store can be accessed
in support of many different cognitive processes [10]. In the
mammal brain it has therefore proved difficult to identify
physical structures corresponding with cognitive features.
However, for a critical process some specialized assignment
of resources may be justified because improved learning and
performance for a particular feature is worth the extra
resources. A possible example is human face recognition,
since physical damage to one part of the brain impairs face
recognition but leaves object recognition intact [11] and
different damage results in impaired object recognition but
leaves face recognition intact [12]. However, the separation
of resources is not complete, since certain specialist object
recognition skills appear to use some face recognition
resources [13].

The detailed organization of resources into modules is
thus the best achievable compromise between some
conflicting pressures including resource economy and
feature performance.

III. THE IMPACT OF MODIFIABILITY
Organization of resources into a resource economy driven

modular hierarchy presents a major problem for feature
modification. The problem is that the implementation of a
feature change will require changes to one or more modules,
but such changes risk introducing undesirable side effects on
other features that utilize the same modules. Furthermore, if
a module receives information from a changed module, there
is the risk of undesirable side effects on features utilizing
that target module, and on features utilizing modules that
receive information from that target module and so on. The
result could be an exponentially increasing wave of side
effects propagating out from the directly changed modules.

To reduce the degree of secondary side effects, modular
hierarchies must be defined in such a way that the overall
level of information exchange between modules is
minimized as far as possible. However, such minimization
tends to conflict with the need to economize on resources,
because reducing exchanges will often mean that the same
information must be independently generated within
multiple modules. The modular hierarchy is therefore the
best achievable compromise between resource limitation and
minimized information exchange.

The process for design of complex commercial systems
involves separation of system operations into groups, then
rearranging the groups somewhat to minimize information
exchange [7]. In the mammal cortex there is evidence of a
similar pressure to minimize information exchange. Such
information exchange will be carried by physical
connectivity. In the cortex there is a hierarchy of
physiological structures including columns and areas in
which a primary means of identifying the structures is
greater internal connectivity relative to external [14, 15, 16,
17]. [7] has argued that one role of REM sleep is to
minimize the degree of information exchange increase
between cortex modules participating in learning.

Minimization of information exchange reduces but does
not eliminate the side effect problem. In the case of complex
electronic systems, feature changes require a process that
investigates the impact of possible changes on other features
by design analysis and testing, and finds a set of module
changes which implement the desired feature change with
minimal side effects. This process requires strong
intellectual control from outside the system itself using
knowledge of the internal workings of the system, and is not
feasible for a system which must learn such changes. The
difficulty for a learning system is that such a system must
typically wait until a feature is invoked to discover the
effects of earlier changes in support of other features, while
external intellectual control can consider the effects of
changes on the full spectrum of features before the change is
implemented.

A further factor which makes the learning of large
numbers of behavioral features difficult within the
architectures used for very complex electronic systems is the
meaning of information exchanges between modules in such

systems. Such exchanges can be viewed in two
complementary ways [7]. One meaning is that an exchange
indicates the detection of a condition within the information
available to the source module. The other is that an exchange
limits the range of currently appropriate system behaviors.
Of the range of behaviors influenced by the target module,
an exchange excludes a subset. Because many modules may
be recipients of the same condition detection, that detection
may have multiple different behavioral meanings in different
targets.

In the case of commercial electronic systems, all
behavioral meanings are unambiguous. In other words, there
is 100% confidence in the behavioral guidance provided by a
condition detection, and information exchanges can
therefore be interpreted as commands or instructions. For
example, a software instruction may have the format if: x = a
[do: ….]. In other words, if a condition is detected (x = a)
then the system is commanded to perform a process.

Unambiguous information exchange is resource efficient,
but creates extreme difficulties for learning. Consider, for
example, trial and error learning. Such learning requires an
experimental change to behavior, modified by consequence
feedback. An experimental change must be implemented by
changes to one or more modules, which will in general result
in changes to the conditions detected by those modules.

If a condition is changed, the module output indicating the
detection of that condition will no longer be generated under
exactly the same circumstances. However, that output will
continue to be interpreted as a behavioral command
appropriate in response to the original condition by any
module targets. Secondary and tertiary etc. targets will also
be affected. Consequence feedback only corrects for recently
performed behaviors, and such consequence feedback could
itself introduce additional changes which will be interpreted
as changes to commands.

Trial and error learning on one behavior will therefore
result in a large number of changes to unambiguous
commands affecting other behaviors. Such changes can only
be addressed the next time each behavior is invoked, and any
correction will introduce yet more command side effects.
The probability of such a process converging on a consistent
set of high integrity behaviors is very low.

The alternative is that information exchanges could be
meaningful but partially ambiguous. With this alternative,
the behavioral interpretation of a condition detection is a
recommendation. In general, many more conditions will
need to be detected to create enough recommendation
strengths to support high integrity behaviors, and this
alternative will be much more resource intensive.

However, partially ambiguous information exchanges
have a considerable advantage for learning, An accepted
behavior B1 at some point in time will be supported by
detection of many different conditions with recommendation
weights (among others) in favor of B1. Slight changes to
some of the conditions supporting B1 in order to implement
learning of another behavior B2 may not be sufficient to

change the predominant recommendation weight in favor of
B1 next time it is appropriate., and at that time consequence
feedback can readjust recommendation weights. There is
therefore the possibility of convergence on a consistent set
of high integrity behaviors through trial and error learning.
The critical problem is the definition of “slight”.

Note that an alternative would be completely separate
resources for each different behavior, or at least much less
sharing. If available resources make this option feasible,
then of course the architectural constraints do not apply.

IV. THE IMPACT OF SYNCHRONICITY
In general, a system will at each point in time need to

select a subset of its current inputs, and detect conditions
only within that subset. The detected conditions will indicate
the appropriate behavior in response to the subset of inputs.
Such subsets might correspond with different objects within
the total perceived visual environment. This selection
process is the system attention function.

The practical synchronicity issue is the need to maintain
the association between results obtained by different
modules from a set of system inputs arriving at the same
time, i.e. from the one current attention object.

There are in principle two approaches to maintaining
synchronicity: global and local [7]. In the global approach,
the set of system inputs at one point in time are all recorded
in a memory. Modules then take information on the
synchronous set of inputs from the memory and detect
conditions within that set, placing a record of their condition
detections in the memory. Because some modules detect
conditions which contain conditions detected by other
modules, there is a specific sequence in which module
condition detection must occur. This approach is thus
essentially the von Neumann architecture, with a separate
memory and sequential processing.

The alternative approach is local synchronicity
management. In this approach, modules must be arranged in
layers. A set of system inputs arrive at the first layer at the
same time. The layer detects conditions and communicates
condition detections to the next layer of modules. The next
layer detects conditions that are combinations of the
conditions detected by the first layer, and communicates
those condition detections to the next layer and so on.

A disadvantage of the layered approach is that exact
synchronicity would require every module in a layer to take
exactly the same time to perform condition detection, and
every communication between layers to also take exactly the
same time. Any differences in processing time would
introduce synchronization errors. If all information
exchanges between modules were unambiguous commands,
such synchronization errors could not be tolerated.
Commercial electronic systems therefore universally employ
the global synchronization approach with the associated von
Neumann architecture.

However, if information exchanges are partially
ambiguous, some degree of synchronicity errors can be

tolerated. Hence a system utilizing such exchanges could
avoid the high cost and complexity of a separate memory
system and rely on a layered approach to synchronicity. In
this approach, condition detection devices and modules will
be arranged in a sequence of layers, with the majority of
condition definition connectivity being from one layer to the
next.

A further architectural constraint results from conflict
between resource conservation and synchronicity. This
conflict arises if it is necessary to detect conditions
simultaneously within attention objects at different times,
but resource constraints mean that all the conditions must be
detected in the same modules. Such simultaneous detection
would be required if it was sometimes necessary to detect
conditions containing information derived for a number of
different objects in a controlled fashion, in order to
determine an appropriate behavior in response to the group
of objects. The implication is that it must be possible for
multiple populations of conditions to be detected and
communicated within the same physical group of condition
defining devices, without interaction between the
information derived from the different objects, then to
combine some of these conditions into more complex
conditions.

As discussed in [18], one possible mechanism to support
attention and separate populations of condition detections in
the same physical group of devices resembles apparent
cortex physiological activity. In this mechanism, the outputs
from a device are sequences of identical voltage spikes. The
rate at which spikes are generated indicates the proportion of
its programmed conditions that the device is currently
detecting. If a device integrates its spike inputs over an
integration window, then placing a frequency modulation on
spike times with the interval between peaks being larger than
the integration window increases the response to modulated
inputs relative to unmodulated inputs. Placing such a
modulation on a subset of inputs (e.g. all the inputs from
within one closed boundary in the visual field) means that
only the subset will contribute to condition detections.
Placing the same frequency but different phases of
modulation on different objects means that independent
populations of conditions will be detected in response to the
different objects, provided that the phase difference is larger
than the integration window. The number of independent
populations that can be supported is roughly the ratio of the
modulation interval to the integration window, which in the
cortex corresponds with ~ four objects that can be retained in
working memory [8, 18].

V. ARCHITECTURAL IMPLICATION OF CHANGE
MANAGEMENT DURING LEARNING

The key problem in managing change is to find a
compromise which allows change without requiring
excessive resources. The key parameter for achieving this
compromise is the degree of allowed change. If the allowed
degree of change is too small, excessive resources will be

required because a module supporting one feature will not be
able to change enough to be useful to any other features. If
the degree is too large, changes to support one feature will
result in unmanageable side effects on other features.

Degree of change can be understood in terms of the
portfolio of information conditions detected by a module. If
conditions within a module are changed, the circumstances
in which some module outputs will be generated will also
change. Each such output has many different behavioral
meanings in the modules that are targeted by the output. The
requirement is therefore to preserve all the meanings to an
adequate degree.

If conditions within a portfolio can be changed by
consequence feedback in response to individual behaviors,
very large changes could occur which left little relationship
between the conditions before and after the change. As the
number of features supported by each module increases, it
becomes increasingly probable that such changes will result
in an unmanageable proliferation of side effects.

Hence as the ratio of features to resources increases, it
will become less feasible to allow consequence feedback to
act directly on modules. However, consequence feedback is
needed to guide the recommendation weights in favor of
different behaviors that are assigned to conditions. The result
will be a separation between the modular hierarchy that
defines and detects conditions (called clustering because it
clusters similar conditions into modules) and a separate
subsystem which uses consequence feedback to assign
recommendation weights in favor of different behaviors.
This subsystem is called competition because it manages the
competition between alternative behavioral
recommendations.

Because competition receives consequence feedback,
information exchanges within competition cannot sustain
behaviorally complex meanings. Competition will therefore
be organized into components corresponding with different
behaviors, and groups of components corresponding with
different types of behavior. An input to a component from
clustering can only be interpreted as a recommendation in
favor of or against the behavior corresponding with the
component, and an input from another component can only
be interpreted as a recommendation against the behavior.

This separation between clustering and competition is a
fundamental architectural separation which will appear in
any system in which large numbers of behavioral features
must be learned and the ratio of behavioral features to
resources is high [7].

VI. CHANGE ALGORITHMS
If consequence feedback cannot affect the definitions of

conditions, the question is how can module changes be
managed. One extreme would be that portfolios be fixed a
priori. In this case only limited learning is possible (i.e. only
by changes to recommendation strengths).

A somewhat higher degree of change would be if

portfolios could be expanded by adding similar conditions.
In this case a module will always produce an output if it has
produced an output in identical circumstances in the past,
but will also produce the same output under similar but
slightly different circumstances. It can be demonstrated that
this degree of change permits continuous learning of
significant numbers of different features with limited side
effects on features learned earlier [19].

Gradually expanding portfolios require careful
management of when and in which module such expansion
can occur, and the circumstances in which a new portfolio
can be initiated. This management is needed to ensure that
resource requirements are not excessive and that an adequate
degree of behavioral meaning is preserved. The only
information available to guide this process is condition
detection within the modular hierarchy, and the management
requirement results in devices which can record gradually
increasing portfolios being arranged in layers, columns and
areas, with connectivity detecting the overall level of activity
in specific groups of devices being used to determine
whether portfolios will be expanded in other specific groups
of devices [7, 8].

Higher degrees of change, for example with conditions
that rarely occur being eliminated from a portfolio, could be
possible depending on the compromise required between
resources and preservation of earlier behavioral meanings,
but in all cases the system must address how to manage
change to achieve that compromise.

VII. INDIRECT ACTIVATION OF INFORMATION
Modules in clustering generate outputs (indicating

condition detections) to competition. Every such output is
interpreted as a range of recommendations in favor of
different behaviors, each recommendation having a
different weight. Competition determines and implements
the most strongly recommended behavior, and adjusts
recently accepted weights using consequence feedback
following the accepted behavior.

In the discussion so far, it has been implicitly assumed
that all the conditions contributing recommendation strength
are present within current system inputs. However, there are
other conditions which under some circumstances may
contribute possibly relevant recommendations.

For example, modules that are currently not detecting
conditions, but that have often detected conditions at the
same time in the past as modules that are currently detecting
conditions, may have relevant recommendation strengths.
Similarly, inactive modules that recorded conditions in the
past at the same time as currently active modules, and
inactive modules that have recently detected conditions, may
have relevant strengths.

Indirect activation of such inactive modules may under
some circumstances add important recommendations to the
recommendations available from conditions actually present
in current system inputs. However, to prevent the system
being swamped by the activation of marginally relevant

information, indirect activations must be behavioral
recommendations that compete with, for example, direct
behaviors. Thus, a module output will have recommendation
strengths in favor of direct behaviors, and also strengths in
favor of indirect activation of other modules on the basis of
past correlated activity.

Such indirect activations expand in a controlled fashion
the volume of information available to influence behavior
selection.

VIII. DESIGN PROCESS SYSTEMS WITH HUMAN LIKE
INTELLIGENCE

The vital need to find an adequate compromise between
resource requirements and modifiability has a number of
interrelated implications for any design process aimed at
implementing a system with human like intelligence.

Firstly, the initial architectural design must focus on
module separations on the basis of resource economy, not on
the basis of different types of cognitive process. Secondly, a
process must be designed to ensure the minimization of
information exchange increases during learning. Thirdly,
device learning algorithms must be specified so that the
meanings of device outputs are adequately preserved during
learning. Fourthly, architectural structures which manage the
ongoing compromises between resource requirements and
preservation of past learning must be defined.

Only when a system architecture has been established on
this basis can the ways in which cognitive processes like
memory can be supported by operations in and between
modules be defined in detail. This definition will of course
result in adjustments to the overall architecture.

This implementation approach has been successfully
utilized for a number of moderately complex prototype
learning systems. One system has demonstrated the
capability to learn with manageable interference between
earlier and later learning [19]. A second system [7] has
demonstrated the ability to learn to associate appropriate
behaviors with emulated visual inputs or sequences of such
inputs, and to activate visual images in response to
appropriate emulated verbal inputs. A third system [18] has
demonstrated an attention and working memory capability.

A. Implementation Principles

As discussed earlier, it is possible to emulate a system
using partially ambiguous information exchanges on a
system which itself uses ambiguous exchanges. Some
random element in the information processes must be
present. Implementation can therefore be emulated on a
regular computing system.

Within the clustering modular hierarchy at the most
detailed level, there must be devices which can define and
subsequently detect conditions within their inputs, in such a
way that there is a strong tendency for any condition to be
detected if it has been detected earlier.

Since there will in general be limited a priori information
on the identity of behaviorally useful conditions, there will

be a random element in the selection of such conditions.
This random element (provided by some pseudorandom
number generator) makes it possible to emulate a
recommendation architecture system on a regular computer.
Devices can be emulated by software rather than by physical
creation of connectivity.

B. Architectural Design

There must be a primary separation between a modular
hierarchy of condition definition and detection (clustering),
and a component hierarchy of behaviors (competition).
Complex behavioral management processes will all occur
within the modular hierarchy.

The modules within the modular hierarchy must be
defined on the basis of resource economy. There is a
tendency in many design approaches to define modules that
correspond with externally observable cognitive processes
like “working memory”, “procedural memory”, “global
workspace” etc. (see for example [20]). This approach is
analogous with attempting to implement a commercial
system with user manual definitions of modules. It is
possible in principle, but resource requirements will in
general be unmanageable.

The appropriate approach is to define different types of
similar operations given the physical implementation
technology, and to define modules on the basis of these
operations. The most natural module definition, particularly
if connectivity is a limited resource, is a collection of similar
conditions. Module outputs will then indicate the detection
of a subset of the conditions programmed on the module.
Such outputs may provide some discrimination between
different such subsets, but resource limitations will in
general mean that such discrimination will not be provided
between every programmed condition. The key requirement
is that different combinations of module outputs be able to
discriminate between circumstances with behaviorally
different implications.

This discrimination capability can be managed. For
example, if there are a number of occasions during which a
specific group of modules generate outputs, these outputs are
followed by a specific behavior, but the reward following
that behavior is sometimes positive and sometimes negative,
the implication is that the group of modules do not
discriminate adequately between similar circumstances with
behaviorally different implications. The requirement is to
generate additional modules or module outputs in these
circumstances. The new outputs will provide additional
discrimination without interfering with the multiple other
behaviors influenced to some degree by the modules in the
group.

Substantial resources are required to manage when and
where conditions will be added to a module. This
management cannot simply be passive, but must actively
determine the condition recording requirement for each
module in response to every input state on the basis of the
degree of condition detection in other modules.

Competition must be organized into a component
hierarchy. Detailed components will correspond with
individual system behaviors, higher level components will
correspond with groups or sequences of such behaviors.
Reward information available within competition means that
information exchanges cannot have complex behavioral
meanings. An input to a component from clustering can be a
recommendation in favor or against the corresponding
behavior; an input from another component can only be a
recommendation against the recipient component behavior.
In general the most appropriate current behavior will be
determined by a process of competitive resolution
determining the strongest recommendation weights. The first
step is between components corresponding with general
types of behavior, then between subcomponents of the
component corresponding with the most strongly
recommended general type to determine a more specific type
within the general type, and so on.

C. Reward Systems

Reward systems must manage the adjustment of
recommendation strengths in favor of recently accepted
behaviors on the basis of rewards following those behaviors.

The conditions under which rewards will occur need to be
specified a priori, but some evolution of those conditions
could take place through experience.

A priori specification could include predefined conditions
which if detected result in decreases (or increases) to
recently accepted recommendation strengths. Such
conditions can be regarded as indicating pain (or pleasure).

Another a priori specification could be to reward recently
accepted recommendation strengths if the conditions
detected after the behavior with attention focused on self
were similar to conditions detected before the behavior in an
external object (i.e. rewarding imitation). Repeating recently
heard sounds would be encouraged by this capability and
could improve the effectiveness of early learning [8].

D. Learning Process

The process of learning a behavior can be viewed as
dividing up the space of input states into relatively
independent similarity components corresponding with
modules detecting different groups of conditions. These
components are in some ways analogous with independent
components [21]. The differences are that they can be
continuously evolved by a tightly managed process, and
their degree of statistical independence is not explicitly
managed.

Components are defined corresponding with “atomic”
behaviors, and corresponding with random (or biased
random) sequences of such behaviors. Random (or biased
random) connectivity weights are established between
modules and components corresponding with behaviors, and
connectivity with negative weights between components.

Thus in response to an input state, initial behavior will be

relatively random (depending on initial connectivity bias).
Reward (positive or negative) adjusts input weights into the
component corresponding with the recently selected
behavior. Consistent negative rewards to a behavioral
sequence component result in reprogramming for a different
sequence.

The combination of initial connectivity bias and use of
imitation to generate rewards can result in bootstrapping of
complex cognitive behaviors over reasonable periods of
experience [8].

E. Device Algorithms

Within competition, device learning algorithms will
involve weight adjustments to individual inputs on the basis
of reward signals, resembling typical artificial neural
network algorithms. However, the condition recording
devices within clustering require algorithms which cause the
device to respond to a gradually increasing volume of their
available input similarity space. Conditions will in general
be added to a device but not removed, although a viable
algorithm could allow removal of a condition if it did not
occur again within some period of time [8]. Various
algorithms of this type are possible [7, 8].

Because connectivity resources are not unlimited,
provisional conditions will need to be defined within
modules in advance of experience. New conditions will the
active subset of a provisional condition within a module
when condition recording is required in that module.

Furthermore, device algorithms must support the ability
to focus processing on subsets of system inputs (i.e. an
attention capability) and to process independent populations
of condition detections within the same physical resources
(i.e. working memory). Algorithms with this capability have
been described in [8, 18].

F. Detailed Physical Arrangements

Condition recording devices must be arranged in layers to
support synchronicity management, with a modular
hierarchy of columns, arrays and areas overlaid on the
layers. Connectivity between modules must be defined to
manage both detection of conditions and decisions on when
and where new conditions will be recorded. There are many
different ways in which these arrangements and connectivity
could be implemented, depending on the tradeoffs made for
the specific system [8].

G. Initial Configuration

A priori information on the identity of useful conditions is
limited. However, there are some sources of such
information. One source could be design (or for biological
systems genetic) information that certain types of
information were useful for discriminating between certain
types of behaviors.

Such information can be utilized by biasing the initial
connectivity within clustering and between clustering and
competition. Thus a priori knowledge of the complexity of

conditions most appropriate for discriminating between
certain types of behaviorally different circumstances can be
used to bias the number of inputs to provisional conditions
to some modules in clustering, and to bias the creation of
connectivity from those modules in favor of components
corresponding with the behaviors.

H. Minimization of Information Exchange

Provisional conditions for a module are defined as random
combinations of inputs from other modules. However,
completely random selection would result in a high level of
information exchange between modules. There is some
additional information which can be used to reduce this
degree of information exchange. This additional information
is past experience. With the assumption that past experience,
and especially recent experience, is some guide to the
probable form of experience in the immediate future, past
experience can be used to bias the definition of provisional
conditions. If two modules have often detected conditions at
the same time in the past, a provisional condition in one
module incorporating outputs from the other module is
somewhat more likely to be useful than if the two modules
have never previously been active at the same time. Biasing
provisional conditions in favor of inputs which have often
been active in the past at the same time as their targets will
therefore improve the probability of a useful regular
condition. The bias configures resources in such a way that
they are more likely to be useful for recording information
during future experiences, it has no effect on past memories.
[22] has argued that sleep, including REM sleep, plays this
role in the mammal brain. Simulations indicate that such a
process reduces the connectivity resources required to
support learning by about 20% [23].

IX. CONCLUSION
Design of systems to implement human like intelligence

will require the capability to learn large numbers of
behavioral features with relatively limited information
handling resources. The need to be able to learn without
excessive loss of earlier learning forces both architectural
compromises and a specific type of approach to design. The
feasibility of designing systems within these constraints has
been established, and a range of detailed practical constraints
on the design process established.

REFERENCES

[1] Church, A. “An Unsolvable Problem of Elementary Number Theory”,
American Journal of Mathematics 58, 1936, pp. 345-363.

[2] Turing, A.M. “On computable numbers, with an application to the
Entscheidungsproblem”, Proceedings of the London Mathematical
Society Series 2(42), 1936, 230-265

[3] Bremermann, H. J. “Optimization through Evolution and
Recombination”. In M. C. Yovits, G. T. Jacobi and G. D. Goldstein
(eds), Self-Organizing Systems – 1962, 93 – 106.

[4] R. Kamel, “Effect of modularity on system evolution”, IEEE
Software, January 1987, pp. 48-54.

[5] D. Garlan, R. Allen and J. Ockerbloom, “Architectural mismatch or
why it’e hard to build systems out of existing parts”, IEEE Computer
Society 17th International Conference on Software Engineering, 1995.
New York: ACM.

[6] G. Chastek and L. Brownsword, “A case study in structural
modeling”, Carnegie Mellon University Technical Report CMU/SEI-
96-TR-035, 1996. Available:
http://www.sei.cmu.edu/pub/documents/96.reports/pdf/tr035.96.pdf

[7] L. A. Coward, “The Recommendation Architecture: lessons from the
design of large scale electronic systems for cognitive science”, Journal
of Cognitive Systems Research 2(2), 2001, pp. 111-156.

[8] L. A. Coward, A System Architecture Approach to the Brain: from
Neurons to Consciousness”. New York: Nova Science Publishers,
2005.

[9] L. A. Coward, “The Recommendation Architecture Model for Human
Cognition”, Brain Inspired Cognitive Systems 2004, L. S. Smith, A.
Hussain and I. Aleksander, (editors), University of Stirling: Stirling.

[10] L. A. Coward and T. D. Gedeon A model for representation of
concepts in the brain. Proceedings of the 2005 International and
Interdisciplinary Conference on Adaptive Knowledge Representation
and Reasoning. Espoo, Finland.

[11] F. Neuner and S. R. Schweinberger, “Neuropsychological
impairments in the recognition of faces, voices and personal names.
Brain and Cognition, 44 (2000), pp. 342-366.

[12] M. Farah, “Patterns of co-occurrences among associative agnosias:
Implications for visual object representation. Cog. Neuropsych., 8,
1991, pp. 1-19.

[13] I. Gauthier, P. Skudlarski, J. C. Gore and A. W. Anderson, “Expertise
for cars and birds recruits brain areas involved in face recognition.
Nat. Neurosci., 3(2) 2000, pp 191-197.

[14] F. Crick and C. Asanuma, “Certain aspects of the anatomy and
physiology of the cerebral cortex”, in “Parallel Distributed
Processing vol. 2” MIT Press, 1986.

[15] K. Tanaka, “Neuronal mechanisms of object recognition”, Science
262, 1993, pp. 685-688.

[16] D. C. Van Essen and C. H. Andersen, “Information processing
strategies and pathways in the primate visual system”, in An
Introduction to Neural and Electronic Networks, Academic Press,
1995.

[17] E. M. Calloway, “Local circuits in the primary visual cortex of the
macaque monkey”, Annual Reviews of Neuroscience 21, 1998, pp.
47-74.

[18] L. A. Coward, “Simulation of a Proposed Binding Model“, Brain
Inspired Cognitive Systems 2004, L. S. Smith, A. Hussain and I.
Aleksander, (editors), University of Stirling: Stirling

[19] L. A. Coward, T. D. Gedeon and U. Ratanayake, Managing
Interference between Prior and Later Learning. Lecture Notes in
Computer Science 3316, 2004, pp 458 - 464.

[20] S. Franklin, B. J. Baars, U. Ramamurthy, and M. Ventura, “The role
of consciousness in memory”, Brains, Minds and Media [Online],
2005. Available: http://www.brains-minds-media.org/archive/150

[21] A. Hyvärinen, J. Karhunen and E. Oja, Independent Component
Analysis. (1999). New York: Wiley.

[22] L. A. Coward, “Pattern Thinking”. 1990. New York: Praeger.
[23] L. A. Coward, A Functional Architecture Approach to Neural

Systems. International Journal of Systems Research and Information
Systems, 9, (2000) 69 - 120.

