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Abstract— Adaptive filtering is normally utilized to estimate
system states or outputs from continuous valued observations,
and it is of limited use when the observations are discrete events.
Recently a Bayesian approach to reconstruct the state from
the discrete point observations has been proposed. However, it
assumes the posterior density of the state given the observations
is Gaussian distributed, which is in general restrictive. We
propose a Monte Carlo sequential estimation methodology to
estimate directly the posterior density. Sample observations are
generated at each time to recursively evaluate the posterior
density more accurately. The state estimation is obtained
easily by collapse, i.e. by smoothing the posterior density with
Gaussian kernels to estimate its mean. The algorithm is tested
in a simulated neural spike train decoding experiment and re-
constructs better the velocity when compared with point process
adaptive filtering algorithm with the Gaussian assumption.

I. INTRODUCTION

In sequential state estimation, the system state changes
over time with a sequence of noisy measurements of con-
tinuous observations made on the system. The state vector
that contains all the relevant information is used to describe
the system through a time-series modeling. There are two
models required to analyze and infer the state of a dynamical
system: the system model, which describes the evolution
of the state with time, and the continuous observation
measurement model, which relates the noisy measurements
to the state. The probabilistic state space formulation and
the updating of information are rooted on the Bayesian
approach of incorporating information from measurements.
A recursive algorithm is used to construct the posterior
probability density function of the state for each time based
on all available information, which embodies all available
statistical information and in principle the solution to the
estimation problem. There are two stages to adapt the filter:
prediction and updating. The first stage uses the system
model to predict the posterior probability density of the state
given the observation from one measurement to the next;
the second stage revises the predicted posterior probability
density based on the latest measurement of the observation.
The Kalman filter is such an analytical solution that embodies
the above conceptual filtering under the assumption that the
time-series was generated by a linear system and the posterior
density of the state given the observation at every step is
Gaussian, hence only parameterized by mean and covariance.

Sequential state estimation normally is applied to contin-
uous value observations, and cannot be directly applied to
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discrete point processes. A relevant example of a discrete
point process is neural activity in motor cortex, with the
goal of decoding, i.e. reconstructing the animal movement
from the spiking activity. The observation becomes the
discrete spike train, where only the time instance of the spike
event matters but not the amplitude of the spike. A point
process adaptive filtering algorithm was recently proposed by
Brown et al. [1]. In their approach, the discrete observation
of the neural firing spike was utilized to probabilistically
reconstruct the position of a freely running rat in space, taken
as the state. This approach also embodies the conceptual
Bayesian filtering algorithm: predicting the posterior density
by a linear state update equation and revising it with the next
observation measurement. However, the method assumes that
the posterior density of the state vector given the discrete
observation is always Gaussian distributed, which may not
be the case. We develop a probabilistic filtering algorithm to
reconstruct the state from the discrete observation (spiking
event) by generating a sequential set of samples to estimate
the distribution of the state posterior density without the
Gaussian assumption. The posterior density is recursively
propagated and revised by the coming spike observation
over time. The state at each time is determined by the
maximum likelihood estimation or the expectation of the
posterior density inferred by a collapsing of the mixture of
Gaussian kernels when estimating the posterior density. The
algorithm will be described in the next section, followed in
Section III by the illustration of the algorithm performance
in a simulated neuron decoding example and the comparison
to the probabilistic velocity reconstruction with Gaussian
assumption on posterior density.

II. ADAPTIVE ALGORITHMS FOR POINT PROCESSES

In this section, we review the design of adaptive filters for
point processes under the Gaussian assumption, and then in-
troduce our method, a Monte Carlo sequential estimation, to
probabilistically reconstruct the state from discrete (spiking)
observation events.

A. Adaptive Filtering for Point Processes with Gaussian
Assumption

One can model a point process using a Bayesian approach
to estimate the system state by evaluating the posterior
density of the state given the discrete observation [2]. This
framework provides a nonlinear time-series probabilistic
model between the state and the spiking event [3].

Given an observation interval (0,77, the number N(¢) of
events (e.g. spikes) can be modeled as a stochastic inho-



mogeneous Poisson process characterized by its conditional
intensity function A(¢|x(t), 6(¢), H(t)), i.e. the instantaneous
rate of events, defined as

A(tlx(t),6(t), H(1))
Pr(N(t + At) — N(t) = 1[x(), 0(t), H(t))
At

= lim
At—0
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where x(t) is the system state, 6(t) is the parameter of
the adaptive filter, and H(¢) is the history of all the states,
parameters and the discrete observations up to time ¢. The
relationship between the single parameter Poisson process A,
the state x(t), and the parameter 6(¢) is a nonlinear model
represented by

A(tlx(t),0(t)) = f(x(t),0(t)) ()
Using the nonlinear function f(-), assumed to be known
or specified according to the application. Let us consider
hereafter the parameter 6(t) as part of the state vector x(t).
Given a binary observation event A Ny over the time interval
(ti—1,tx], the posterior density of the whole state vector x(t)
at time ¢ can be represented by Bayes’ rule as

P(ANL|xk, Hy)p(xy [Hy)

X, |ANg, Hy) =
P(xk| AN, H) p(ANL|Hy)
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where p(ANy|xi, Hy) is the probability of observing spikes
in the interval (t;_1, tx], considering the Poisson process

Pr(ANk|xk, Hk)
= (A(t|xk, H) At) 2N exp(=A(tr[xx, Hr)At) - (4)

and p(xy|Hy) is the one-step prediction density given by the
Chapman-Kolmogorov equation as

p(xk[Hg)

= /p(xk|xk—17 Hy)p(xk—1|ANk—1, Hi—1)dxr—1  (5)
where the state x; evolves according to the linear relation

Xp = FieXp—1 + . (6)
Fj, establishes the dependence on the previous state and 7
is zero-mean white noise with covariance (. Substituting
equations (4) and (5) in (3) the posterior density of the
state p(xx|ANk, Hy) can be recursively estimated from the
previous one based on all the spike observations. Assuming
the posterior density given by (3) and the noise term 7y in
the state evolution equation (6) are Gaussian distributed, the
Chapman-Kolmogorov equation (5) becomes a convolution
of two Gaussian curves, from which the estimation of the
state at each time has a close form expression below (see

Brown et al. [1] for the derivation details).
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The may reason the Gaussian assumption was used in the
first place is because it allows to solve analytically (5) and
therefore, for a closed form solution of (3) as (7).

Although the above set of equations may seem daunting
they can be interpreted quite easily. First, (7a) establishes
a prediction for the state based on the previous. Then, (7b)
and (7c) are used in (7d) to correct or refine the previous
estimate, after which the recurrent process is repeated.

B. Monte Carlo Sequential Estimation for Point Processes

The Gaussian assumption applied to the posterior dis-
tribution in the algorithm just described may not be true
in general. Therefore, for the discrete observations case, a
non-parametric approach is developed here which poses no
constraints on the form of the posterior density.

Suppose at time instant k the previous system state is
xj—1. Recall that because the parameter § was embedded in
the state, all we need is the estimation of the state from the
conditional intensity function (1), since the nonlinear relation
f(-) is assumed known. Random state samples are generated
using Monte Carlo simulations [4] in the neighborhood of
the previous state according to (6). Then, weighted Parzen
windowing [5] was used with a Gaussian kernel to estimate
the posterior density. Due to the linearity of the integral in
the Chapman-Kolmogorov equation and the weighted sum of
Gaussians centered at the samples we are still able to evaluate
directly from samples the integral. The process is recursively
repeated for each time instant propagating the estimate of the
posterior density, and the state itself, based on the discrete
events over time. Notice that due to the recursive approach
the algorithm not only depend on the previous observation,
but also depend on the whole path of the spike observation
events. _ N

Let {x{,,w}}, ", denote a Random Measure [6] in the

posterior density p(xo.x|N1:x), where x{, ,,i =1,--- , Ng is
the set of all state samples up to time k with associated
normalized weights {wj,,¢ = 1,---,Ng}, and Ng is the

number of samples generated at each time index. Then,
the posterior density at time k£ can be approximated by a
weighted convolution of the samples with a Gaussian kernel
as

Ns
P(Xo:k| N1ik) & > wh - k(X0 — Xy, 0) @)
i=1
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where Ni.; is the spike observation events up to time k
modeled by an inhomogeneous Poisson Process in Section
II-A, and k(x — X, 0) is the Gaussian kernel in term of x
with mean X and covariance o. By generating samples from
a proposed density g(xo.x|N1:x) according to the principle
of Importance Sampling [7] [8], which usually assumes
dependence on x;_; and Nj only, the weights can be
derived by Bayes’ rule and Markov Chain property (see
Arulampalam et al. [6] for details on a similar derivation,
for the continuous case).
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Usually the importance density g(x}|x}_;, ANy) is cho-
sen to be the prior density p(x{|x} _,), requiring the genera-
tion of new samples from p(x%|x: ;) by (6) as a prediction
stage.

After the algorithm is applied for a few iterations, a
phenomenon called degeneracy may rise, where all but one
sample has negligible weight [8], which implies that a
large computational effort is taken to update the samples
that almost have no contribution to estimate the posterior
density. When a significant degeneracy appears, resampling
is applied to eliminate the samples with small weight and
to concentrate on samples with large weights. In our Monte
Carlo sequential estimation of the point process, Sequential
Importance Resampling [9] is applied at every time index,
so that the samples are i.i.d. and uniform distributed with
weights w! | = NLS The weights then change proportion-
ally given by

wy, X p(ANg|x},) (10)
where p(AN|x}) is defined by equation (4) in Section II.
Using (6), (10) and the resampling step, the posterior density
of the state x;, given the whole path of the observed events
up to time ¢; can be approximated as

Ns
P(Xk|Niik) = > p(ANk[x,) - k(xx —x}) (1)

i=1
Equation (11) shows that the posterior density of the
current state given the observation is modified by the lat-
est probabilistic measurement of the observing spike event
p(ANg|x}), which is the updating stage in adaptive filtering.
Without a close form of the state estimation, we measure
the posterior density of the state given the observed spike
event p(xy|N1.;) every time and apply two methods to get
the state estimation X;,. One is Maximum Likelihood Estima-
tion (MLE), which picks out the sample x}* with maximum
posterior density. The other is to use the expectation of the
posterior density as the state estimation. As we smooth the
posterior density by convolving with a Gaussian kernel, we

can easily obtain the expectation X;, and its error covariance
Vi by collapse [10]:

Ns
X = Zp(ANMx;C) X5 (12)
e | =1 | |
Vi =Y p(ANk[x}) - (0 + (x), — %x) (X3 — %k)T)  (13)
=1

From (12) and (13), we can see that without complex
computation we can easily estimate the next state. Hence,
the expectation by collapse is simple and elegant.

III. SIMULATION OF MONTE CARLO SEQUENTIAL
ESTIMATION ON NEURAL SPIKE TRAIN DECODING

Neurons dynamically change their responses to specific
input stimuli patterns through learning which has been mod-
eled with the help of receptive fields. Neural decoding can be
used to analyze receptive field plasticity and understand how
the neurons learn and adapt by modeling the tuning function
of neuronal responses. In the rat hippocampus, for example,
information about the spatial movement can be extracted
from neural decoding, i.e. from the activity of simultaneously
recorded noisy place cells [11] [12] representing the spike-
observed events.

In a conceptually simplified motor cortical neural model
[13], the one-dimensional velocity can also be reconstructed
from the neuron spiking events by Monte Carlo sequential
estimation algorithm as described in Section II. This al-
gorithm can provide a probabilistic approach to infer the
most probable velocity as one of the components of the
state. This decoding simulation updates the state estimation
simultaneously and applies this estimation to reconstruct
the signal, which assumes the interdependence between the
encoding and decoding so that the accuracy of the receptive
field estimation and the accuracy of the signal reconstruction
are reliable on each other. Notice that dealing with a point
process measure is a more restrictive problem than when
spike counts are used. Actually, the latter situation can be
considered directly under the general framework provided
by particle filtering [14].

Here, one neuron is simulated as a motor cell and the
stimulus as one-dimensional velocity. The tuning function of
the receptive field model between the velocity and the firing
rate is

A(tr) = exp(p + Bror) (14)

where exp(u) is the background firing rate without any
movement and Jj, is the modulation in firing rate due to the
velocity vg. In practice, the function is unknown. Therefore,
an educated guess needs to be made; typically based on
evidence collected experimentally.

The velocity was generated as a random walk with a noise
variance 2.5 X 107° at each 1ms time step. The background-
firing rate exp() and the modulation parameter (3, are set to
be 1 and 3 respectively for the whole simulation time, 200s.
A neuron spike is drawn as a Bernoulli random variable with
probability A\(¢;)At within each 1ms time window [15].
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Fig. 1. Velocity reconstruction by the different algorithms.

TABLE 1
COMPARISON RESULTS OF ALL ALGORITHMS WITH DIFFERENT Q.

Reconstruction error (MSE)

Adaptive filtering | Sequential Estimation
diag(Qp) of Point Process MLE Collapse
[2Xx107°1x1077] 0.04801 0.1199 0.04522
[2x107°1x 1079 0.1081 0.1082 0.0489
[1x107°1x1079] 0.1076 0.1013 0.0588

To implement the Monte Carlo Sequential estimation of
the point process, we regard both modulation parameter S
and velocity vy as the state xx = [vx B%]T. The new
samples are generated according to the linear state evolution
(6), where Fj, = diag[l 1] and Q) were chosen according
to the indications given before. The kernel size used in (8)
to estimate MLE of the posterior density was the average
interval space of the dynamic range of the samples generated
at each time index. The MSE between the desired trajectory
and the model output is shown in Table I, for different
runs of the covariance matrices of the state generation,
Q- Results for both algorithms described in Section II are
compared. In general, if Q) is too large, the continuity
constraint of the whole sequential sample generate has little
effect. If it is too small, this constraint may become too
restrictive and the reconstructed velocity may get stuck in the
same position while the real one moves away by a distance
much larger than Q. The 100 samples of velocity v and
modulation parameter 3 were initially drawn from uniform
and Gaussian distributions, respectively .

With a Monte Carlo running, the state estimation for each
time U0y is drawn by Maximum Likelihood Estimation and
the expectation by collapse. The best velocity reconstruction,
shown in the first row of Table I, by both methods is shown
in Fig. 1 when Q) = diag[2.5 x 1075 1 x 10~7]. We have
limited the time shown for display clarity.

From Fig. 1 and Table I, we can see that, compared with
the desired velocity (dash-dotted line), the best velocity re-
construction was achieved by the sequential estimation with
the collapse algorithm (solid black line), is more sensitive
than the one by adaptive filtering involving the Gaussian
assumption (solid gray line). This is because the method
estimates the real posterior density more accurately since
no assumptions are made. The reconstruction by sequential
estimation with MLE (dashed line) is always very noisy,
which is because the sample that the algorithm picks was
generated with noisy information. The Monte Carlo sequen-
tial estimation on point processes shows a good capability
to estimate the state from the discrete spiking events of
observation.

IV. CONCLUSIONS

Point process adaptive filtering is a two- step Bayesian
approach based on the Chapman-Kolmogorov equation to
estimate parameters from discrete observed events. However,
with the Gaussian assumption of posterior density of the
state given the observation, it may not give the most accurate
state reconstruction because of the less accurate evaluation
of posterior density. We present in this paper a Monte Carlo
sequential estimation to modify the amplitude of the observed
discrete events by the probabilistic measurement - posterior



density. A sequence of samples is generated to estimate
the posterior density more accurately. Through sequential
estimation and weighted Parzen windowing, we avoid the
numerical computation of the integral in the C-K equation.
Due to the smoothing of the posterior density with the
Gaussian kernel from Parzen windowing, we use collapse
to easily get the expectation of the posterior density, which
leads to a better result of state estimate than noisy Max-
imum Likelihood Estimation. The Monte Carlo estimation
shows better capability to probabilistically estimate the state
because the better approximation of the posterior density than
the point process adaptive filtering algorithm with Gaussian
assumption.
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