
 
 

 

  

Abstract—With the development of technology and financial 
engineering tools, oil markets are more competitive and volatile 
than ever before. This places the accurate and reliable 
measurement of market risks in the crucial position for both 
investment decision and hedging strategy designs. This paper 
tackles the measurement of risks from a Value at Risk (VaR) 
perspective. Since traditional ARMA-GARCH approach 
doesn’t suffice, this paper proposes ex-ante based approach for 
hybrid algorithm design and further applies this methodology 
with a wavelet approach to VaR estimates. Empirical studies of 
the proposed Wavelet Decomposed Value at Risk (WDVaR) 
have been conducted on two major oil markets (I.e. WTI & 
Brent). Experiment results suggest that the performance of 
WDVaR improves upon ARMA-GARCH model at higher 
confidence levels. Meanwhile, WDVaR offer considerable 
flexibility during modeling process. WDVaR can be tailored to 
specific market characteristics and its performance can be 
further improved with more careful parameter tuning.  

I. INTRODUCTION 
HE crude oil is one of the most important industry inputs 
and remains the major sources of world’s energy 

consumption. The price paths of crude oil and its volatilities 
affect different market movements (E.g. various commodities 
markets, etc) and the economic status as a whole[1], [2]. Oil 
markets have long been the most volatile ones since shocks 
and the associated risks of losses could prevail in the market 
due to low inventory level hindered by extremely high 
storage costs. As the role of market forces increase 
continuously with the shifts of market from more managed 
market agreement to the more flexible market based 
environment, market is getting more volatile and vulnerable 
to unexpected extreme events[2]. Thus proper measurement 
and management of market risks are increasingly valued by 
investors to protect themselves against adverse market 
movements.  

This paper investigates the risk measurement issue in oil 
markets. The measurement of risks in oil markets are 
complicated processes since oil prices receive joint influences 
from numerous risk factors. To name just a few, these may 
include  economic aspects, weather changes, political aspects, 
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military, natural disasters, market sentiments and 
speculations, etc[3], [4], [5]. If these factors and their 
interrelationships can be identified and quantified, large scale 
econometric models can be built to understand and track risk 
exposure levels. However, in practice this approach is 
generally very costly and infeasible except for rare 
circumstances. Another approach would resolve to the 
reduced form model such as time series analysis for help. 
With reduced form model, information is extracted from the 
past data and used to guide the future forecasting. This 
approach is less costly and more suitable when specific 
information relating the underlying risk factors and their 
interactions are not available[5]. The methodology used in 
this paper follows the reduced form approach.  

Value at Risk (VaR), as the latest development in the risk 
management field, is adopted in this paper to quantify and 
measure market risks. VaR is a single, summarizing statistic 
number that measures the magnitude of downside risk under 
normal market conditions over certain investment horizon at 
given confidence levels[6]. The reliability and accuracy of 
VaR estimates are of particular interests to investors since 
they would affect their capital adequacy and profit level. On 
the other hand, oil markets, among various commodity 
markets, attract significant research efforts in recent years due 
to the following reasons: Firstly data have been made 
publicly available at sufficiently high frequency and long 
time period. This makes possible the development and testing 
of VaR estimates under statistical framework[7], [8]. 
Secondly, price series in oil markets exhibit much higher 
level of volatility than other commodities and stock markets. 
The considerable risks and unique characteristics of the 
market demand the development of new risk management 
tools[7], [8]. Thirdly despite the proliferation of volatility 
analysis and forecasting of oil prices, the open literature is 
surprisingly scarce in the development of appropriate risk 
measurement for the market. There have been few attempts to 
uncover the stylized features of oil markets, not to mention 
the estimation issue that lies at the heart of VaR 
implementation [3], [4], [9], [10], [11].  

To estimate VaR at reliable and accurate level, various 
methods have been tried over years. They can be broadly 
categorized into parametric and non-parametric approaches. 
Non-parametric approaches give investors little insights and 
controls over underlying risk factors evolutions. Parametric 
approaches are ex-post in nature. They fit model into data 
with the hope that the data are mostly dominated by the 
expected data features and the model should be able to pick 
them up. Since this rarely holds in practice, their 
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performances usually deteriorates rapidly once they are 
outside their original problem domain[12], [13], [14], [15], 
[16].  

Therefore, this paper introduces ex ante approach for 
hybrid algorithm design to offer deeper insights and more 
flexibility during modeling process. As an application, the 
wavelet analysis is introduced into hybrid based approach for 
VaR estimates. Empirical studies based on the proposed 
WDVaR algorithm & more traditional ARMA-GARCH 
approach is conducted in both WTI and Brent oil markets. 
Experiment results are backtested and compared using 
Kupiec backtesting procedures to evaluate their accuracy and 
reliability[17]. Incorporating the flexibility of ex ante hybrid 
algorithm and details analysis in time scale domain offered by 
wavelet analysis, WDVaR is found to improve the reliability 
of VaR estimates and offer greater flexibility than traditional 
ARMA-GARCH approach.  

The organization of the paper develops as follows: the 
second section reviews the relevant literature in VaR and 
wavelet theory. This section also identifies and reviews the 
relevant wavelet applications in economics and finance field. 
The third section proposes the ex-ante approach for hybrid 
algorithm design. WDVaR is proposed as a specific 
application of wavelet analysis to VaR estimates. The 
empirical studies in two major oil markets are conducted. The 
performance of the proposed model and the more traditional 
ARMA-GARCH based model are evaluated and compared. 
And the fifth section concludes.  

II. LITERATURE REVIEW 

A. Value at Risk (VaR) 
As defined mathematically in (1), VaR provides the 

statistical measurement of the maximum losses (risks) VaRr  
over a certain investment horizon t under normal market 
conditions and the given the confidence level [6].  

{ (0) ( ) } 1VaRp t r clΠ − Π ≤ − = −                      (1) 

Where ( )Π • is the value of the portfolio at time t. t is the 
holding period and cl is the confidence level. 

Based on the way information is extracted from historical 
data, the estimation of VaR has been tackled from three 
different approaches over years. Namely: parametric, 
non-parametric and semi parametric. 

Parametric approaches try to fit data into presupposed 
distribution and derive tractable analytic forms. These 
include popular econometric tools such as ARMA and 
GARCH models, etc. They provide deeper insights into risk 
evolutions and are generally computationally more 
convenient during implementation. However, their 
performances are highly variable and sensitive to data 
samples because it usually imposes strict assumptions during 
modeling processes[18]. Non-parametric approaches make 
no assumptions as to the underlying risk distributions and 
analytic forms. These include techniques such as historical 

simulation, bootstrap methods, kernel methods, Monte Carlo 
simulation methods, principal component analysis (PCA), 
and factor analysis, etc. They are flexible in picking up 
unknown data features. However, non-parametric approaches 
itself offer little insights and control over the underlying risk 
evolution, and thus, are inferior to parametric approaches 
when sufficient statistical justification is needed for model’s 
implementation[18], [19], [20], [21], [22]. Recently 
semi-parametric approaches emerge as the attempts to 
balance between two extremes. These include emerging tools 
such as extreme value theory (EVT), Fourier transformation, 
wavelet transformation, fuzzy logic etc. Current results from 
empirical studies are quite mixed[20], [23], [24]. 

In this paper, traditional hybrid algorithm based on 
ARMA-GARCH model serves as the benchmark model[25], 
[26]. The usual ARMA(r, m)-GARCH(p,q) takes the form as 
in (2): 

0
1 1
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1 1
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 Among various parametric models available, hybrid 
ARMA model with GARCH error correction is widely 
accepted in both academic and industries since it’s easy to 
understand and implement in practice. But its performance is 
constrained by its sequential linear filtering process as 
described before. 

The appropriate lag order for the model is determined by 
information criteria with the visual aid of autocorrelation and 
partial autocorrelation functions. There are numerous 
information criteria available such as Akaike’s information 
criterion (AIC), Schwarz’s Bayesian information criterion 
(BIC), and the Hannan-Quinn information criterion (HQIC), 
etc[27], [28], [29]. This paper adopts commonly accepted 
AIC and BIC to test whether allowing dynamic order 
selection would bring significant performance improvement. 
The AIC and BIC are specified as in (3):  

   (  )
2 2( ) ln( )

2( ) ln( ) ln

Minimize AIC or BIC

AIC
T T

or BIC T
T T

γ

γ

−⎧ = +⎪⎪
⎨ −⎪ = +
⎪⎩

                          (3) 

Where  is the maximum likelihood estimates. T is the 
number of parameters.   

Backtesting procedures are standard framework to evaluate 
and compare the VaR estimation performance of various 
approaches. It essentially verifies whether the projected 
maximum losses are in line with actual losses. There are 
mainly two approaches to conduct backtesting procedures: 
hypothesis or forecasting based approaches[6]. Forecasting 
based approaches utilize the rewarding and losses function to 
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evaluate more accurately how the model has performed at 
each step. Although it’s very convenient when data size is 
small, it is not gaining its momentum since statistical 
confidence level is not given. Thus hypothesis based 
approaches are more desirable in practice. The null 
hypothesis for hypothesis based approaches is: the failure rate 
equals the theoretical losses, which implies that the estimates 
accuracy from the tested model is statistically significant and 
the model is acceptable under the given confidence level[30]. 
The testing steps are treated as a series of Bernoulli trials. 
And the failure rates should converge to the binomial 
distribution if the sample size is large enough and the model 
is acceptable under given confidence levels. The likelihood 
ratio test statistics takes the form as in (4).  

2 log[(1 ) ] 2log [1 ( )] ( )T N N T N N
uc

N NLR
T T

ρ ρ− −⎧ ⎫= − − + −⎨ ⎬
⎩ ⎭

          (4) 

Where ucLR  denotes the test statistics that has an 

asymptotic 2 (1)χ  distribution. T is the total number of 
observations used in test set. ρ  is the probability of an VaR 
exceedance occurrence. The critical value for test statistics is 
3.8415 at 95% confidence level. The model is only acceptable 
at 95% confidence level when test statistics is lower than the 
critical value.  

B. Wavelet Analysis 
Wavelets are families of functions that satisfy admissibility 

condition and defined as in (5) 

∫
∞

∞<=
0

)(
df

f
f

C
ϕ

ψ                                                   (5) 

Where )( fϕ  is the Fourier transform of wavelet )(tΨ in 
the frequency domain.  

Compared to sinusoids used in Fourier analysis to spot 
frequency domain features, wavelets have vanishing 
moments and exhibit the behavior of ‘small wave’ that has its 
energy concentrated in a short interval of time[31], [32]. 
There are different wavelets families available. These may 
include Haar wavelets, Daubechies wavelet, Minimum 
Bandwidth Discrete-Time Wavelets (MBDT) etc[31], [32], 
[33] Among them, Haar wavelets is the only symmetric 
compactly supported orthonormal wavelet [34]. Daubechies 
wavelet can be viewed as a generalized version of Haar 
wavelet[23]. Different wavelet families could accentuate 
different data characteristics in time scale domain and serve 
as a potential pattern recognition tool.  

Therefore, wavelet analysis uses different wavelets to 
decompose and capture specific data characteristics in time 
scale domain. In wavelet analysis, scaling filters are applied 
to capture low frequency component of the signal, which 
corresponds to trends in data. Meanwhile,  wavelet filter is 
applied at different scales to capture higher frequency 
components of the signal, which correspond to the short lived 
and transient behavior in data[35], [36]. The separation of 
data components that are unique in time scale domain could 
potential reveal the different risk factors in the market place. 

These decomposed parts may correspond to investors with 
particular investment horizon and strategies.  

Since wavelet transform is orthonormal, signals can be 
decomposed and reconstructed perfectly using wavelet 
analysis. Wavelet analysis can be used to perform multi 
resolution analysis on signals in time scale domain. The 
decomposition of the original return series )(tx  is conducted 
as in (6) to reveal interesting characteristics.  

∫
∞

∞−
= dtttxsuW su )()(),( ,ψ                                      (6) 

 Where )(1)(, s
ut

s
tsu

−
Ψ=ψ , u is the wavelet parameter 

translating the original wavelet function, s is the scale 
parameter dilating the original wavelet function. 

The reconstruction (or synthesis) of the original return 
series from decomposed wavelet coefficients is performed as 
in (7)  

∫ ∫
∞ ∞

∞−
Ψ

Ψ=
0 2, )(),(1)(

s
dsdutsuW

C
tx su                                     (7) 

C. Wavelet Applications in Economics and Finance 
The application of wavelet analysis in economic and 

financial data analysis is only recent phenomenon. Since 
wavelet analysis projects data signals into time scale domain 
for analysis, it can be treated as promising multi scale analysis, 
noise reduction and multi scale modeling tool.  

Firstly, if wavelet analysis is introduced as multi scale 
analysis framework, it can be utilized to reveal some 
interesting economic relationship and financial data behavior 
that are not visible in the traditional frequency domain [37], 
[38], [39], [40]. Secondly, the decomposition capability also 
evolves into efficient noise reduction tool. The so called 
wavelet shrinkage techniques can be used to clean up the 
distorted economic and financial data for further processing. 
This would result in higher level of model fit and forecasting 
accuracy, as confirmed by empirical studies conducted in 
both electricity and foreign exchange markets [41], [42]. 
Thirdly, the decomposition capability could also be directly 
integrated into the modeling process. The original data is 
decomposed before further modeling attempts are applied. 
The multi scale wavelet based approaches achieve 
performance improvement through finer process modeling at 
each individual scales. [43], [44], [45]. This is confirmed by 
results from empirical studies in both electricity and energy 
markets. However, in its current stage of development,  this 
approach is carried out on a largely arbitrary basis and lacks 
theoretical justification[46], [47], [48], [49].  

Compared to the scattered, but gradual progress 
researchers have made in the application of wavelet theory, 
there is surprisingly less relevant literature identified in the 
risk management field. To the best of our knowledge, only 
three attempts have been identified to apply wavelet analysis 
in risk measurement[50], [51], [52]. These works are mainly 
concerned with the decomposition of risks over different time 
horizons to investigate risk distributions. The proportion of 
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risks over the time horizons that correspond to investors’ 
investment strategies are supposed to be fixed. And the future 
estimated risk exposure level is adjusted by this fixed ratio to 
reflect the risks investors are interested in. However the key 
issue of how to estimate risk measurement at higher accuracy 
and reliability has been left intact for their approaches of 
applying wavelet theories in risk management.  

III. WAVELET DECOMPOSED VALUE AT RISK (WDVAR) 

A. WDVaR background 
According to the heterogeneous market hypothesis, risks 

reflect the joint influence from various risk factors evolving 
in different time horizons. Traditionally various models have 
been attempted to describe the complex risk evolution 
process. They aim to capture particular data characteristics. 
This results in the quick deterioration of model’s performance 
once they are outside the problem domain being investigated. 
Although a handful of statistical tests have been utilized to 
help in identifying the existence of particular data 
characteristics, these tests usually lack sufficient 
discriminatory power for noisy data and may not cover all the 
data features under investigation.  

Thus, hybrid and ensemble approaches have received 
considerable attentions recently. Hybrid algorithm linearly 
filters the data through different model mechanisms ranked 
by their significance. It’s simple to implement and easy to 
understand. But it fails to take into account the time varying 
nature of parameters. ARMA-GARCH is the dominant 
hybrid algorithm and serves as the benchmark model in this 
paper. Meanwhile, ensemble algorithm takes a different 
approach by firstly trying to fit different models to the data. 
And then the weight of their significances is nonlinearly 
determined using artificial intelligent models such as neural 
network, etc. It has achieved certain level of performance 
improvement, but  its performance is still theoretically 
constrained by how accurately each tried model is capable of 
capturing specific data features from noisy environment[53], 
[54], [55].  

More generally, previous approaches usually relied on the 
assumptions that individual model could fully extract the 
targeted data feature. This is less of an issue when these 
algorithms are tried in the environment where data features of 
interest are less distorted. But recent empirical studies have 
identified the rapid deterioration of their performance once 
they are outside their original problem domain. When data 
features of interest less dominant, the forecasting accuracy of 
each individual forecaster is challenged. The ex-post nature 
of previous approaches leave them prone to noises and errors 
in data, which made them unreliable in practice.  

Thus this paper takes a different ex-ante approach and 
introduces signal processing techniques as a promising 
direction for hybrid and ensemble algorithm design. This 
paper contributes to the existing literature by shifting the 
focus from ex-post filtering struggles to ex-ante 

decomposition and classification. The proposed ex-ante 
approach is semi parametric in nature. As is commonly found 
in various engineering disciplines such as image processing, 
the proposed ex-ante approach makes no assumptions about 
data distributions and patterns in the first place and use signal 
processing techniques to investigate the underlying risk 
compositions.  

B. WDVaR Framework 
When the data distribution can be characterized using the 

first and second moment, the VaR is estimated following (8) 
1|( ) t tVaR F a σ μ+= − −                                       (8) 

Where F (a) refers to the corresponding quantile (95th, 
97.5th or 99th) of the assumed distribution (The elliptical 
distribution is assumed in this paper due to large sample size 
involved). 1|t tσ +  refers to the forecast of conditional 

standard deviation at time t+1 given information at time t. μ  

refers to the forecast of sample mean. Outside the elliptical 
realm, the first and second may not be enough to characterize 
the data distribution. Thus more complex parametric VaR 
form is needed and is beyond the scope of this paper.  

Based on the multi resolution analysis principle, the 
original data returns can be decomposed into different time 
scales using wavelet analysis as in (9) 

1

( ) ( ) ( )J j

J

A D
j

f t f t f t
=

= + ∑                                        (9) 

Where f (t) is the original signal. ( )JA
f t  is the 

decomposed time series data by applying scaling function at 
scale j. ( )jD

f t  is the decomposed time series data by 
applying wavelet function at scale j. 

Since VaR estimates is additive in elliptical realm, given 
that wavelet analysis decorrelates the original data, the VaR 
estimated to cover portfolio losses is also expected to cover 
losses at each individual scales as in (10): 

1
J j

J

A D
j

VaR VaR VaR
=

= + ∑                                     (10) 

Expanding (10) into (11) 

1| , 1| ,
1

( ( ) ) ( ( ) )J jJ j

J

t t A t t DA D
j

VaR F a F aσ μ σ μ+ +

=

= − + − +∑  (11) 

Therefore, the estimation of WDVaR boils down to the 
estimation of conditional mean and conditional volatility 
[17]. 

The conditional mean is modeled as ARMA (r, m) (r and m 
is the lag order) process. This is given in (12) 
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The conditional volatility is modeled as a mixture of 
GARCH (1, 1) processes at each scale. This is also given in 
(13). 

                1| , 1| ,
1

J j

J

t t A t t D
j

σ σ σ+ +

=

= + ∑                                     (13) 

IV. PROCEDURE FOR PAPER SUBMISSION 

A. Data Set and Data Pre-processing 
West Texas Intermediate (WTI) and Brent (or 

Brent-Forties-Oseberg) crude oil spot prices are used in this 
study. These markets are considered the world marker crude 
oil markets. Most other crude oil prices are related to them. 
The data set includes 4741 observations. The covered period 
is: from 20th May, 1987 to 30th December, 2005 (for Brent 
crude oil) and from 27th March, 1987 to 30th December, 
2005 (for WTI crude oil) respectively. 60% of the data set (i.e. 
2845) serves as the training set, while the remaining 40% of 
the data set (i.e. 1896 observations) is used as the test set. One 
step ahead out of sample forecast is conducted to evaluate the 
accuracy and reliability of various models under investigation.  
During implementation, the training set is continuously 
expanded to include the newly available observation at each 
iteration, so that the arrival of new information is taken into 
consideration. A portfolio of one asset position worth $1 is 
assumed for each market. The original observations are log 
differenced (i.e. 1log( ) log( )t tx x −− ) for further processing and 
modeling attempts.  

B. Descriptive Statistics and Hypothesis Testing 
The oil markets are characterized by high volatility and the 

leptokurtic phenomenon (i.e. fat tail and high kurtosis, which 
signals high probability of extreme events occurrences), 
which makes adequate risk management and control 
necessary. This is confirmed by several stylized facts 
concluded from table I: 

Firstly, both markets are highly volatile. There are 
significant price fluctuations in the markets as suggested by 

positive standard deviations. The substantial difference 
between the minimum and maximum level also indicates 
considerable losses in both markets, as investors could face 

large gains as well as huge losses if risks are not properly 
measured and managed.  

Secondly, there is generally higher probability of losses in 
these markets as indicated by the negative skewnesses.  

Thirdly, risks also appear in the form that extreme events 
prevail in these markets as suggested by high excess kurtosis. 
It appears that excess kurtosis found in oil markets are much 
higher than those normally found in the stock markets. This 
implies a more risky environment, where the short lived and 
transient behavior could hit investors with surprises and 
causes huge losses if proper risk controls techniques are not 
in place. 

The nonlinear and volatile nature of the oil markets are 
further confirmed by formal statistical tests conducted. The 
rejection of Jarque-bera test of normality suggests that the 
returns deviate from normal distribution significantly and 
exhibit leptokurtic behaviors. The rejection of BDS 
(Brock-Dechert-Scheinkman) test of independence indicates 
the existence of non-linearity within the data [56]1.  

C. Forecast Performance Results 
1) ARMA-GARCH VaR 

Although dynamic order selection based on information 
criteria (E.g. AIC or BIC etc) is found to improve forecasting 
accuracy slightly as suggested by results in table II and III, the 
associated computational complexity increases exponentially. 
Thus in this paper ARMA(1,1) is chosen to model conditional 
mean and GARCH(1,1) is chosen to model conditional 
heteroskedasticity. The estimation for 
ARMA(1,1)-GARCH(1,1) hybrid model is based on 
rolling-window method (the window length is set to 2843 to 
cover the initial information set available). 

As suggested by experiment results, 
ARMA(1,1)-GARCH(1,1) performs rather well. It only fails 

 
1 The implementation of BDS (Brock, Dechert& Scheinkman (1986)) test for 
independence based on the correlation dimension follows L.Kanzler’s 
approach. http://www2.gol.com/users/kanzler/index.htm 

Fig. 1. Return Series for Crude Oil Markets 

TABLE I 
DESCRIPTIVE STATISTICS & STATISTICAL TESTS IN WTI & BRENT CRUDE 

OIL MARKETS 

Oil Markets WTI(West Texas 
Intermediate) Brent 

Mean -0.0001 -0.0001 
Maximum 0.1887 0.1733 
Minimum -0.4063 -0.3612 
Medium 0 0 
Standard 
Deviation 0.0240 0.0226 

Skewness -1.7343 -1.3071 
Kurtosis 37.9541 32.9762 

Jarque-bera 
Test (p 
value) 

0 0 

BDS Test 
(p value) 0 0 
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at 99% confidence level in WTI oil market and is accepted 
under all other circumstances. The performance of 
ARMA(1,1)-GARCH(1,1) gradually deteriorates under 
higher confidence levels for both markets. 
ARMA(1,1)-GARCH(1,1) provides much better coverage of 
risks under lower confidence level. This implies that 
ARMA(1,1)-GARCH(1,1) model may underestimate risk 
measurement and serve as a generally aggressive risk 
measures. Since dynamic lag order selection can’t improve 
performance much further, current linear hybrid approach for 
VaR estimates leaves little room for further performance 
improvement. Thus algorithms with greater flexibility are 
needed to describe the complicated underlying data 
generating processes. 

2) WDVaR (Haar, 2) 
Two new parameters are introduced during WDVaR 

estimates: wavelet family chosen and the decomposition level. 
Therefore the notion WDVaR(x, i) refers to the WDVaR 
algorithm that uses the chosen wavelet family x with the 
decomposition level i. In this section, Haar wavelet families 
are chosen and the decomposition level is set to 2. 
ARMA(1,1)-GARCH(1,1) model is chosen to model the 
conditional mean and conditional volatility at each scale. The 
estimation for ARMA(1,1)-GARCH(1,1) hybrid model is 
based on rolling-window method (the window length is set to 
2843 to cover the initial information set available) 

As confirmed by experiment results in table IV, wavelet 
based approach improves the reliability of VaR estimates at 
high confidence levels. WDVaR(Haar, 2) is accepted at 99% 
confidence level in WTI markets. The reliability of VaR 
estimates are also improved for both 99% and 97.5% 
confidence level as indicated by higher p value in both 
markets. Thus WDVaR(Haar, 2) is less aggressive than 
ARMA(1,1)-GARCH(1,1) approach and provides better 
coverage of market risks at higher confidence levels.  

This finding suggests that the time scale characteristic of 
risks in oil markets needs to be taken into consideration 
during modeling attempts to avoid underestimates. Single 
ARMA-GARCH model captures majority of risks, but may 
ignore substantial risks at finer details. Another implication 
would be that the nonlinear dependence or even chaos within 
data reflects the joint influences from various underlying 
processes. There may be multiple ARMA-GARCH processes 
with different lags evolving at individual scales. Proper 
mixing of ARMA-GARCH model could improve the model’s 
performance significantly. Thus the selection of appropriate 
decomposition techniques is crucial to the understanding and 
further modeling of the complex market behavior.  

Meanwhile, the performance of WDVaR at lower 
confidence level does deteriorate compared to the 
performance of ARMA-GARCH model. i.e. The p values are 
lower and WDVaR(Haar, 2) is rejected at 95% confidence 
levels in both markets. WDVaR(Haar, 2) seems to provide 
more conservative coverage of market risks. This is also 
confirmed by higher MSE (Mean Squared Errors) for 
WDVaR(Haar, 2). This finding indicates the subtleties in 
underlying risk compositions and the inadequacy of current 
models. However, with wavelet analysis introduced into risk 
management field, performance can be further improved by 
fine tuning parameters toward market characteristics. E.g. 
experiments based on WDVaR(Haar, 3) improves the 
reliability of VaR estimates at 99% confidence levels for both 
markets. The p value increased to 0.5109 for WTI oil markets 
and 0.645 for Brent oil markets.    

V. CONCLUSIONS 
This paper discusses the limitations of current hybrid and 

TABLE II 
EXPERIMENT RESULTS FOR ARMA-GARCH VAR IN OIL MARKETS 

WTI(West Texas 
Intermediate) Brent Oil 

Markets 
95.0% 97.5% 99% 95.0% 97.5% 99% 

ARMA-GA
RCH VaR 
Exceedance 

89 59 39 97 54 27 

MSE (Mean 
Square 
Errors) 

0.0027 0.0035 0.0047 0.0024 0.0031 0.0041

Kupiec Test 
Statistics  0.3810 2.7049 16.3907 0.0534 0.9027 3.0438

P Value 0.5371 0.1000 0.0001 0.8173 0.3421 0.0810
ARMA-GA
RCH Model 
Acceptance 

√ √ × √ √ √ 

 

TABLE III 
EXPERIMENT RESULTS FOR ARMA(1,1)-GARCH(1,1) VAR IN OIL MARKETS

WTI(West Texas 
Intermediate) Brent Oil 

Markets 
95.0% 97.5% 99% 95.0% 97.5% 99% 

ARMA(1,1
)-GARCH(
1,1) VaR 
Exceedance 

90 59 38 97 54 27 

MSE 
(Mean 
Square 
Errors) 

0.0027 0.0035 0.0047 0.0024 0.0031 0.0041 

Kupiec Test 
Statistics  0.2600 2.7049 14.9531 0.0534 0.9027 3.0438 

P Value 0.6101 0.1000 0.0001 0.8173 0.3421 0.0810 
ARMA(1,1
)-GARCH(
1,1) Model 
Acceptance 

√ √ × √ √ √ 

 

TABLE IV 
EXPERIMENT RESULTS FOR WDVAR(HAAR,2) IN OIL MARKETS 

WTI(West Texas 
Intermediate) Brent Oil 

Markets 
95.0% 97.5% 99% 95.0% 97.5% 99% 

WDVaR(H
aar, 2) 
Exceedance

68 46 25 76 43 24 

MSE (Mean 
Square 
Errors) 

0.0036 0.0047 0.0063 0.0034 0.0044 0.0057 

Kupiec Test 
Statistics  8,8092 0.0428 1.7667 4.1981 0.4322 1.2482 

P Value 0.0030 0.8361 0.1838 0.0405 0.5109 0.2639 
WDVaR(H
aar, 2) 
Model 
Acceptance 

× √ √ × √ √ 
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ensemble approaches for time series forecasting. Then based 
on heterogeneous hypothesis for market microstructure, this 
paper applies wavelet analysis to value at risk estimates in oil 
markets and improve the risk measurement reliability at 
higher confidence levels. The contribution of this paper is 
twofold: firstly this paper proposes the ex-ante approach for 
hybrid algorithm design in contrast to the common ex-post 
filtering approach. The proposed methodology is applied in 
risk measurement field and the wavelet decomposed Value at 
Risk algorithm (WDVaR) is proposed. WDVaR has 
demonstrated its capability to improve the reliability of VaR 
estimates at higher confidence levels in both WTI and Brent 
oil markets. In addition, WDVaR offers more insights and 
considerable flexibility during underlying risk factors 
decomposition and modeling processes. It could be tailored to 
specific market environment and accentuate market 
characteristics of interests (E.g. specific investment strategies 
of interests, different investment time horizon in the market, 
etc). Secondly, this research paves the way for more 
comprehensive data analysis at finer details. By tuning 
parameters tailored for specific market characteristics, 
WDVaR offers additional flexibility and more insights into 
the underlying risk composition and evolutions.  
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