
 
 

 

  

Abstract—The measure of similarity normally utilized in 
statistical signal processing is based on second order moments. 
In this paper, we reveal the probabilistic meaning of 
correntropy as a new localized similarity measure based on 
information theoretic learning (ITL) and kernel methods. As 
such it has vastly different properties when compared with 
Mean Square Error (MSE) that can be very useful in nonlinear, 
non-Gaussian signal processing. Two examples are presented to 
illustrate the technique. 

 

I. INTRODUCTION 

T the Computational NeuroEngineering Laboratory at the 
University of Florida has extended the concept of mean 
square error adaptation to include descriptors of entropy and 
divergence so useful in Information Theory [1]. Information 
Theoretic Learning (ITL) preserves the nonparametric nature 
of MSE, i.e. the cost function is still directly estimated from 
data with a Parzen kernel estimator [2], but extracts more 
information from the data structure for the adaptation 
process, and yields therefore solutions that are more accurate 
than MSE for non-Gaussian processes [3]-[5].  

The fundamental definition of autocorrelation for random 
processes was also generalized to auto-correntropy function 
[6], which measures similarity across lags as the 
autocorrelation, but when averaged across lags, it yields the 
entropy of the random variable, hence its name. Therefore 
correntropy contains higher order moments of the PDF but it 
is much simpler to estimate directly from samples and 
bypasses the need for conventional moment expansions. 
However, this definition only applies to a single random 
variable (at different lags) and so it can not be generally 
applied outside the realm of scalar random processes. This 
paper extends auto-correntropy to cross-correntropy, the 
function needed to handle the general case of two arbitrary 
random variables, and provides an intuitive viewpoint to help 
us apply correntropy judiciously to kernel methods and 
nonlinear, non-Gaussian signal processing. 

We show that correntropy is directly related to the 
probability of how similar two random variables are in a 
neighborhood of the joint space controlled by the kernel 
bandwidth, i.e. the kernel bandwidth acts as a zoom lens, 
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controlling the observation window in which similarity is 
assessed. 

The organization of the paper is as follows. After a brief 
review of information theoretical learning and kernel 
methods, the definition and its probabilistic meaning of 
correntropy are presented in section III. Then in section IV, 
two examples are presented to corroborate our understanding 
and to inspire readers with possibly numerous applications in 
their research fields. Finally, section V summarizes the main 
conclusions.  

II. INFORMATION THEORETICAL LEARNING AND KERNEL 
METHODS 

Information Theoretic Learning is a framework to 
non-parametrically adapt systems based on entropy and 
divergence [1]. Renyi’s α -order entropy of a random 
variable X is defined by  
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Estimating the PDF with Parzen estimators for the samples 
{ , 1,2,... }ix i N=  drawn from the PDF, we obtain the 
estimator 
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where ( )k xσ  is the Gaussian kernel 
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N is the number of the samples and σ  the kernel size. This 
subscript is usually suppressed unless required for clarity. For 
α  = 2 (quadratic entropy), we obtain a nonparametric 
estimator of quadratic entropy as  
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IP(X) is called information potential (IP). The PDF 
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estimated with Parzen kernels can be thought as defining an 
information potential field over the space of the samples [5]. 
It is therefore interesting to use the information potential to 
define similarity measures in this space, which do not possess 
the limitation of the conventional moments. Towards this 
goal we recently proposed a new similarity measure for 
random processes called auto-correntropy [6]. 

Let { , }tX t T∈  be a stochastic process with T being an 
index set. The nonlinear transformation induced by the kernel 
mapping Φ  maps the data into the feature space [8], where 
the auto-correntropy function 1 2( , )XV t t  is defined from 

T T×  into R+  given by 
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where ( )k ⋅  is the Gaussian kernel, and without loss of 
generality, it will be the only one considered in this paper. 

The auto-correntropy estimates the second order moments 
of the data transformed by the eigen-function of the Gaussian 
kernel. It shares with the autocorrelation function the fact that 
it quantifies similarities among pairs of lags, so it is capable 
of quantifying the time structure of the random process. 
However, it supersedes the conventional autocorrelation 
function because this similarity is not limited to second order 
moments. In fact for the Gaussian kernel all even moments of 
the random variable contribute to the estimation of similarity 
due to the nonlinearity provided by the kernel [6]. We have 
further shown that auto-correntropy is a symmetric, 
positive-definite function and therefore defines a new 
reproducing kernel Hilbert space (RKHS) [9]. Based on 
auto-correntropy it is possible to derive an analytical solution 
of the optimal linear combiner in this space [7]. 

III. THE PROBABILISTIC MEANING OF CORRENTROPY  
In this paper a more general form of correntropy is defined 

between two arbitrary random variables X  and Y  given by 
 

( , ) [ ( ), ( ) ] [ ( )].V X Y E X Y E k X Y= < Φ Φ > = −  (7) 

 
when 

1t
X X=  and 

2t
Y X= , this definition reduces to (6). 

This new function is called cross-correntropy or simply 
correntropy. As can be seen correntropy is a straight 
extension of auto-correntropy, but now two random variables 
are involved, so it is important to understand under what 
conditions this is a reasonable measure of similarity between 
X and Y. The nonlinearity introduced by the kernels has 
important implications in assessing the higher order moments 
of the joint PDF, but the Gaussian kernels also restricts the 
analysis to a local region of the joint space. Therefore, we 
need to conduct a systematic analysis.  

In practice, the joint PDF is unknown and only finite 

number of data samples available {( , ), 1,2,..., }i ix y i N= to 
estimate it 
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We show now that correntropy is actually the integral of 

the joint PDF of the data along the line x y=   
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Strict equality holds when the kernel size σ  tends to zero. 

From the definition (7), 
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The Gaussian kernel function ( )k x y−  is exactly a ridge 
function along the x y=  line. Indeed the Gaussian kernel has 
high values only when i ix y≈ , with an exponential fall off 
when y is dissimilar from x. When the kernel size σ  
approaches 0, it becomes a delta function ( )x yΔ −  and (10) 
turns out to be  
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Generally, we use data samples to estimate correntropy 

instead of using the expected value. 
Assume the data samples {( , ) 1, 2,..., }i ix y i N=  are 

available to estimate the correntropy by (8). 
On the other hand, with these data, the Parzen method can 

be used to estimate the Joint PDF , ( , )X Yf x y  as 
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When the kernel size tends to zero and the product Nσ  to 

infinity according to the conditions of Parzen method, strict 
equality holds for (12). Integrating (12) along line x y=  
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The final term is exactly the estimation of correntropy with 
the kernel size 2σ . Fig.1 shows diagrammatically that 
correntropy provides the probability density of the event 
p(X=Y). This understanding is interesting, because we started 
with an extension of cross correlation, but indeed we are able 
to quantify the probability of two events being equal. So 
correntropy is unable to assess similarity well in the entire 
join space, but for X=Y gives us an estimate of probability 
density!  
 

In practical applications, the joint PDF is unknown and we 
only have finite number of data to estimate correntropy. 
Finite number of data also constrains the kernel size from 
being too small, since small kernel size may lead to 
meaningless estimation. Assume the kernel size used in 
correntropy is σ  which is relatively small compared with the 
variance of the data distribution. Therefore, a rectangle 
approximation with bandwidth / 2π σ  can be used in (10) 
in the place of Gaussian kernel and we will have a more 
precise approximation of correntropy as 
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Since correntropy evaluates directly from data the 

probability (| | 1.25 )P Y X σ− <  for a given kernel size σ , it 
can be used as a localized similarity measure for supervised 
applications where the mean square error (MSE) criterion as 
been traditionally utilized. Indeed when we compare the 
output of an adaptive system with the desired response for a 
training set, we are ultimately asking: what is the probability 
that the two measurements are equal? Therefore, we propose 
correntropy as a new cost function for adaptive system 
training, with the advantage that it is a local criterion of 
similarity and it should be very useful for cases when the 
measurement noise is non-zero mean, non-Gaussian, with 
large outliers. 

IV. APPLICATIONS 

A. Optimal Receiver 
In a digital communication system, let X and Y be 

respectively the transmitted signal and the received signal 
corrupted by the additive channel noise N. 

 
Y X N= +  (15) 

 
Suppose X s=  which is either -1 or +1 with equal 

probably. The noise PDF is ( )Nf n . Therefore, the PDF of Y  
is 
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With the observation available, we want to recover s . 

Under the MSE criterion, we choose ŝ  such that it minimizes 
the following cost function. 
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This criterion searches for a location in the noise PDF such 
that the variance is minimized. In fact, under the MSE 
criterion, the best estimation of s  is 
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{ , 1,2,..., }iy i M=  and { , 1,2,..., }in i M=  are the sample 
version of the observed signal and noise. This estimation is 
obviously biased if the noise PDF has non-zero mean.  

 
Fig. 1.  Correntropy as the integral in the joint space along x=y line. 



 
 

 

Under the correntropy criterion, we choose ŝ  such that it 
maximizes the following cost function 
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And based on our understanding 
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Therefore, this receiver can always find the best solution if 

and only if the noise PDF has its global maximum at the 
origin. Let the noise PDF be (Fig. 2) 
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We can show that the correntropy method is more robust 

than MSE, which was also observed in [6]. In the MSE case, 
the criterion becomes 
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In the correntropy case, the criterion is 
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We run the simulation for 107 times in the case of M = 10 

and 20. The kernel size is 0.1. We simply control the SNR by 

scaling the noise drawn from (21).  In Fig. 3, we can see the 
ability of correntropy to reject irrelevant noise. In other 
words, correntropy has the ability of being insensitive to the 
noise peak in the PDF tail, and effectively handle the effect of 
the peak at the origin of the PDF, which may be crucial in 
many kinds of detection applications. 

B. Function Approximation 
In the second example, we consider the general model of 

function approximation. 
 

( )Y f X N= +  (24) 

f  is the unknown function, N  is the noise process and Y is 
the observation. A universal function approximator ( ; )g x w   
is used to discover this function and alleviate the effect of 
noise as much as possible. 

Let the noise probability density function be (Fig. 4) 
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In MSE, the best solution is found by 
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whereas with the correntropy criterion, the optimal solution is 
found by 
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We use polynomial functions for ( )f x  and ( )g x  of the 
same order (n=3). The coefficient of ( )f x  is arbitrarily 
chosen as [0.17425 1.6096 1.3687 1.3559] .  

Fig. 2.  Noise PDF for example 2. The noise distribution is symmetric 
but has outliers. 
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Under the MSE criterion, we set the learning rate 0.001 and 
train the system for 500 epochs (long enough to make sure it 
reaches its global solution). In the experiment of maximizing 
correntropy, we first train the system with MSE criterion 
during the first 200 epochs, pushing the coefficients close to 
the global solution (this is equivalent to kernel size annealing) 
and switch the criterion to maximize the correntropy during 
the next 300 epochs. The learning rate is set to 0.003 and the 
kernel size is chosen the same as the noise variance 0.1.  

We run 50 Monte Carlo simulations with 50 different 
initial conditions. The estimated coefficient for MSE is 
[0.50465 1.6592 1.4503 1.4355]  and for correntropy is 
[0.14304 1.5995 1.2877 1.4337]  on average. The ensemble 
learning curves are shown in Fig.5. 

The intrinsic error power between ( )f x  and ( )g x  for 
correntropy method is 0.0053 while for traditional MSE 
method is 0.1318 on average. When MSE criterion is used, 

( )g x  is shifted somewhat by the non-zero-mean noise due to 
the global property of MSE (Fig.6). Now we understand the 
importance of correntropy and its local property. In other 
words, correntropy has the ability of being insensitive to the 
noise peak in the PDF tail, and effectively handle the effect of 
the peak at the origin of the PDF in regression. In this sense it 
implements an ε-norm penalty function in regression. 

V. CONCLUSION 
In this paper, we extend the correlation function for two 

variables to a new function called correntropy. We proved 
mathematically that correntropy measures the probability 
density that two events are equal. This can be done directly 
from the data with the Gaussian kernel. We further explain 
the probabilistic meaning of correntropy and its localized 
property and the effect of kernel size on this localness.  

Based on this understanding, the advantage of using 
correntropy as a cost function to train adaptive systems in 
non-Gaussian signal processing is also showed 
experimentally. The correntropy algorithm is applicable in 
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Fig. 6.  Regression results with criteria of MSE and correntropy 

respectively. The observation Y is corrupted with positive impulsive 
noise; the regression result from MSE (dotted line) is shown shifted 
above the desired curve; the result from correntropy (dashed line) 

matches the desired quite well. 



 
 

 

any noisy conditions provided the global maximum of the 
noise PDF is at the origin. It outperforms MSE in regression 
for the case of impulsive noise since correntropy is inherently 
insensitive to outliers. Further theoretical work is needed to 
fully understand the properties of correntropy, but the 
preliminary results in applications are very promising.  

We believe that this is the first step to fully understand the 
correntropy kernel as proposed in [6]. 
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