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Abstract

Supervised learning using artificial neural networks has numerous applications in various domains of science
and engineering. Efficient training mechanisms in a neural network play a vital role in deciding the network
architecture and the accuracy of the classifier. Most popular training algorithms tend to be greedy and hence
get stuck at the nearest local minimum of the error surface. To overcome this problem, some global methods
(like multiple restarts, genetic algorithms, simulated annealing etc.) for efficient training make use of stochastic
approaches in combination with local methods to obtain an effective set of training parameters. Due to the
stochastic nature and lack of effectivefine tuning capability, these algorithms often fail to obtain an optimal
set of training parameters. In this paper, a new method to improve the subspace parameter search capability
of training algorithms is proposed. This new method takes advantage of TRUST-TECH (TRansformation Under
STability-reTaining Equilibrium CHaracterization) to compute neighborhood local minimum of the error surface.
The proposed approach obtains multiple local optimal solutions surrounding the current local optimal solution in
a systematic manner. Empirical results on different machine learning datasets indicate that the proposed algorithm
outperforms current algorithms available in the literature.

Keywords - artificial neural networks, gradient descent, nonlinear dynamical systems, global optimization,
training, stability regions, local optimal solutions.

I. I NTRODUCTION

Artificial neural networks (ANN) were developed in analogy to the human brain for the purpose of
improving conventional learning capabilities. They are used for a wide variety of applications in diverse
areas such as function approximation, time-series prediction, medical diagnosis, character recognition, load
forecasting, speaker identification and risk management. These networks serve as excellent approximators
of nonlinear continuous functions [17]. However, using an artificial neural network to model a system
usually involves dealing with certain difficulties in achieving the best representation of the classification
problem.

The two challenging tasks in the process of learning using ANNs are network architecture selection
and optimal training. In deciding the architecture for the neural network (also known as Multi-Layer
Perceptron, MLP), a larger network will always provide better prediction accuracy for the data available.
However, such a large network that is too complicated and customized to some given problem will lose
its generalization capability for the unseen data [5]. Also, every additional neuron translates to increased
hardware cost. Hence, it is vital to develop algorithms that can exploit the potential of a given architecture
which can be achieved by obtaining the global minimum of the error on the training data. Hence, the
goal of optimal training of the network is to find a set of weights that achieves the global minimum MSE
[12]. Fig. 1 shows the architecture of a single hidden layer neural network withn input nodes,k hidden
nodes and1 output node. The network is trained to deliver the output value (Yi) of the theith sample at
the output node which will be compared to the actual target value (ti).

The main focus of this paper is to develop a robust training algorithm for obtaining the optimal set
of weights of an artificial neural network. Several training algorithms have been extensively studied in
the literature [12]. Backpropagation (BP) algorithm is a very robust deterministic local method that have
received significant attention. Though BP is comparatively cheaper in terms of time and easy to implement,
it can only attain local optimal solutions nearest to the starting conditions. These solutions, however, might
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Fig. 1. The Architecture of MLP with single hidden layer having k hidden nodes and the output layer having a single output node.
x1, x2, ..., xn is an n-dimensional input feature vector.wij are the weights andb1, b2, ..., bk are the biases for thesek nodes. The activation
function for the hidden nodes is sigmoidal and for the output node is linear.

(a) (b)

Fig. 2. Comparison between the two frameworks (a) Traditional approach and (b) TRUST-TECH based approach. The main difference is
the inclusion of the stability region based dynamical phase that can explore the neighborhood solutions.

not be the best ones available in the vicinity of the search space. On the contrary, some global methods
like multiple random starts, genetic algorithms and simulated annealing can identify promising regions of
the weight space, but are essentially stochastic in nature and computationally expensive. Expecting such
stochastic algorithms to fine-tune the training weights will be even more time consuming. Thus, there
is a necessity to efficiently search for good solutions in promising regions of the solution space, which
can be accomplished by the newly proposed TRUST-TECH based algorithm. In this paper, we introduce
a novel algorithm that will search the subspace in a systematic tier-by-tier manner. Fig. 2 compares the
traditional approach with our proposed approach. The main difference between the two approaches is the
dynamical phase, where an improved set of training weights are obtained by systematically exploring the
neighborhood local optimal solutions in a promising subspace.

The rest of this paper is organized as follows: Section II discusses the relevant background and the
problem formulation. Section III introduces various notations and discusses the details about training
neural networks. Section IV explains the details about the problem transformation and introduces the
proposed algorithm. Section V gives the necessary implementation details. Section VI then discusses the
results on standard benchmark datasets and finally, Section VII concludes our discussion along with some
future research directions.
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II. BACKGROUND

The performance of a network is usually gauged by measuring the mean square error (MSE) of its
outputs from the expected target values. The goal of optimal training is to find a set of parameters that
achieves the global minimum of the MSE [3], [25], [17]. For ann-dimensional dataset, the MSE overQ
samples in the training set is given by:

C(W ) =
1

Q

Q∑
i=1

[t(i)− y(X,W )]2 (1)

where t(i) is the target output for theith sample,X is the input vector andW is the weight vector.
The MSE as a function of the parameters will adopt a complex topology containing several local optimal
solutions. The network’s weights and thresholds must be set so as to minimize the prediction error made by
the network. Since it is not possible to analytically determine the global minimum of the error surface, the
neural network training is essentially an exploration of the error surface for an optimal set of parameters
that attains this globally optimal solution.

Training algorithms can be broadly classified into ‘local’ and ‘global’ methods. Local methods begin
at some initial points and deterministically move towards a local minimum. From an initial random
configuration of weights and thresholds, these local training methods incrementally(greedily) seek for
improved solution until they reach a local minimum. Typically, some form of the gradient information
at the current point on the error surface is calculated and used to make a downhill move. Eventually,
the algorithm stops at a low point, which usually is a local minimum. In the context of training neural
networks, this local minima problem is a well-studied research topic [9]. The most commonly used training
method in MLP is the backpropagation algorithm [24] which has been tested successfully for different
kinds of problems. Despite having many variant implementations, BP faces the problem of stopping at
local minimum instead of proceeding towards the global minimum [13], [25]. Modifications [16] to the
basic BP model have been suggested to help the algorithm escape from being trapped in a local minimum.
However, while these improved methods reduce the tendency to sink into local minimum by providing
some form of perturbations to the search direction, it does not train the network to converge to a global
minimum within a reasonable number of iterations [14], [26]. Based on the movement towards improved
solutions, local methods can be subdivided into two categories:

1) Line search methods: These algorithms select some descent direction (based on the gradient
information) and minimize the error function value along this particular direction. This process is
repeated until a local minimum is reached. Most popular choices for the descent directions are
Newton’s direction or conjugate direction. In the context of neural networks, apart from the obvious
steepest descent methods, other widely used line search algorithms are Newton’s method [2], the
BFGS method [20] and conjugate gradient methods [7], [18].

2) Trust region methods: Trust region methods are by far the fastest convergent methods compared
to the above mentioned line-search methods. The surface is assumed to be a simple model (like a
parabola) such that the minimum can be located directly if the model assumption is good which
usually happens when the initial guess is close to the local minimum. They require more storage
space compared to conjugate gradient methods [11] and hence are not optimal for large-scale
applications.

All these local methods discussed so far assume that they already have an initial guess to begin with.
Usually the quality of the final solution depends significantly on the initial set of parameters available.
Hence, in practice, none of these local methods are used alone. They are typically combined with stochastic
global methods which yield a promising set of parameters in the weight space. These global methods
explore the entire error surface and thus the chance of attaining a near-global optimal solution is high. More
advanced techniques like Genetic algorithms [5] and simulated annealing [1] are applied in combination
with standard BP inorder to allow for more promising solutions and avoid being stuck at local minimum
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Fig. 3. Block Diagram of the architecture of our method.

[22]. The use of various global optimization algorithms for finding an effective set of training parameters
is comprehensively given in [25]. Although these methods (asymptotically) guarantee convergence to
the global minimum, it usually exhibits very slow convergence even for simple learning tasks. Though
methods can explore the entire solution space effectively and obtain promising local optimal solutions, it
lacks fine-tuning capabilities to obtain a precise final solution and requires local methods like BP to be
employed. Other traditional methods like Monte Carlo method, Tabu search, ant colony optimization and
particle swarm optimization are also stochastic in nature and suffer from the same problems described
above.

From the above discussion, one can realize that there is a clear gap between global and local methods.
Typically, most of the successful practical algorithms are a combination of these global and local methods.
In other words, these two approaches do not communicate well between each other. Approaches that might
resemble our methodology are TRUST [6] and dynamic tunneling [23]. These methods attempt to move
out of the local minimum in a stochastic manner. The training algorithm proposed in this paper differs from
these two methods by deterministically escaping out of the local minimum and systematically exploring
multiple local minima on the error surface in a tier-by-tier manner in order to advance towards the global
minimum. This approach is based on the fundamental concepts of stability regions that were established in
[8], [15]. Fig. 3 shows the block diagram of the TRUST-TECH methodology. Basically, a global method
yields initial points in certain promising regions of the search space. These initial points are used to
search the neighborhood subspace in a systematic manner. TRUST-TECH relies on a robust, fast local
method to obtain a local optimal solution. It explores the parameter subspace in a tier-by-tier manner
by transforming the function into its corresponding dynamical system and exploring the neighboring
stability regions. Thus, it gives a set of promising local optimal solutions from which a global minimum
is selected. In this manner, TRUST-TECH can be treated as an effective interface between the global and
local methods, which enables the communication between these two methods. It also allows the flexibility
of choosing different global and local methods depending on their availability and performance for certain
specific classification tasks.

III. T RAINING NEURAL NETWORKS

Without loss of generality, we consider a feedforward neural network with one input layer, one hidden
layer and one output layer. Specifically, the output layer contains only one node that will yield all the
possible target values depending on its activation function. Table I gives the important notations used in
the rest of the paper.

Let k be the number of hidden nodes in the hidden layer and the input vector isn-dimensional. Then
the final nonlinear mapping of our model is given by :
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TABLE I

DESCRIPTION OF THE NOTATIONS USED

Notaion Description
Q Number of training samples
X Input vector
W Weight vector
n Number of features
k Number of hidden nodes

w0j weight between the output node and thejth hidden node
wij weight between theith input node and thejth hidden node
b0 bias of the output node
bj bias of thejth hidden node
φ1 Activation function of the hidden nodes
φ2 Activation function of the output node
ti target value of theith input sample
y output of the network
ei Error for theith input sample

y(W,X) = φ2

(
k∑

j=1

w0jφ1

(
n∑

i=1

wijxi + bj

)
+ b0

)
(2)

whereφ1 andφ2 are the activation functions of the hidden nodes and the output nodes respectively.φ1

and φ2 can be same functions or can be different functions. We have chosen to useφ2 to be sigmoidal
andφ1 to be linear. Results in the literature [10], suggest that this set of activation functions yield the best
results for feedforward neural networks. As shown in Fig. 1,w0j indicate the weights between the hidden
layer and the output layer andwij indicate the weights between the input layer and the hidden layer.bj are
the biases of thek hidden nodes andb0 is the bias of the output node.xi is then-dimensional input feature
vector andXi indicates theith training sample. The task of the network is to learn associations between
the input-output pairs(X1, t1), (X2, t2), ..., (XQ, tQ). The weight vector to be optimized is constructed as
follows:

W=(w01, w02, .., w0k, .., wn1, wn2, .., wnk, b0, b1, b2.., bk)
T

which includes all the weights and biases that are to be computed. Hence, the problem of training
neural networks iss-dimensional unconstrained minimization problem wheres = (n + 2)k + 1.

min
W

C(W ) (3)

The mean squared error which is to be minimized can be written as

C(W) =
1

Q

Q∑
i=1

e2
i (W) (4)

where the error
ei(W) = ti − y(W , Xi) (5)

The error cost functionC(·) averaged over all training data is a highly nonlinear function of the synaptic
vector W Ignoring the constant for simplicity, it can be shown that

∇C(W) = JT (W)e(W) (6)

∇2C(W) = JT (W)J(W) + S(W) (7)
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whereJ(W) is the Jacobian matrix

J(W) =




∂e1

∂W1

∂e1

∂W2
. . ∂e1

∂WN

∂e2

∂W1

∂e2

∂W2
. . ∂e2

∂WN

. . . .

. . . .
∂eQ

∂W1

∂eQ

∂W2
. .

∂eQ

∂WN




and

S(W) =

Q∑
i=1

ei(W)∇2ei(W) (8)

Generally, if we would like to minimizeJ(W) with respect to the parameter vectorW , any variation of
Newton’s method can be written as

∆W = − [∇2C(W)
]−1 ∇C(W)

= − [
JT (W)J(W) + S(W)

]−1
JT (W)e(W)

(9)

IV. TRUST-TECHBASED APPROACH

In this paper, we exploit the topological structure of the error surface to explore multiple local optimal
solutions in a systematic manner. Firstly, we describe the transformation of the original problem into its
corresponding nonlinear dynamical system and then propose a new algorithm for finding multiple local
optimal solutions.

A. Problem Transformation

This section mainly deals with the transformation of the original likelihood function into its correspond-
ing nonlinear dynamical system and introduces some terminology pertinent to comprehend our algorithm.
This transformation gives the correspondence between all the critical points of the error surface and that
of its corresponding gradient system. To analyze the geometric structure of the error surface, we build a
generalized gradient systemdescribed by

dW

dt
= −gradR C(W) = −R(W)−1∇C(W) (10)

where the error functionC is assumed to be twice differentiable to guarantee unique solution for each
initial conditionW(0) andR(W) is a positive definite symmetric matrix (also known asReimannian metric)
for all W ∈ <s. The state vectorW belongs to the Euclidean space<s, and the vector fieldC : <s → <s

satisfies the sufficient condition for the existence and uniqueness of the solutions. The solution curve of
Eq. (10) starting fromW at time t = 0 is called atrajectory and it is denoted byΦ(W,·):<→<s. A state
vector W is called anequilibrium pointof Eq. (10) if ∇C(W) = 0. An equilibrium point is said to be
hyperbolic if the Jacobian ofC at point W̄ has no eigenvalues with zero real part.

Definition 1: A hyperbolic equilibrium point is called a (asymptotically)stable equilibrium point(SEP)
if all the eigenvalues of its corresponding Jacobian have negative real part.

An equilibrium point is called atype-k equilibrium pointif its corresponding Jacobian has exactk
eigenvalues with positive real part. Thestable(W s(x̃)) andunstable(W u(x̃)) manifolds of an equilibrium
point, sayx̃, is defined as:
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W s(x̃) = {x ∈ <s : lim
t→∞

Φ(x, t) = x̃} (11)

W u(x̃) = {x ∈ <s : lim
t→−∞

Φ(x, t) = x̃} (12)

It is interesting to note the relationship between (10) and (9) and obtain different local solving methods
used to find the nearest local optimal solution with guaranteed convergence. For example, ifR(W) = I,
then it is a naive error back-propagation algorithm. IfR(W) = [J(W)T J(W)] then it is the Gauss-Newton
method and ifR(W) = [J(W)T J(W) + µI] then it is the Levenberg-Marquardt method.

B. Stability Regions

Now, the task of finding multiple local minima on the error surface has been transformed into the task
of finding multiple stable equilibrium points on its corresponding dynamical system. The advantage of
our approach is that this transformation into the corresponding negative gradient system will yield more
knowledge about the various dynamic and geometric characteristics of the original surface and leads to
the development a powerful method for finding improved neighborhood solutions. For our algorithm, we
are particularly interested in the properties of the local minima and their one-to-one correspondence of the
critical points. To comprehend this transformation, we need to defineenergy function. A smooth function
V (·) : <s → <s satisfyingV̇ (Φ(W , t)) < 0 , ∀ x /∈ {set of equilibrium points (E)} and t∈ <+ is termed
as energy function.

Theorem 4.1:[8]: C(W) is a energy function for the gradient system (10).
Definition 2: A type-1 equilibrium pointxd (k=1) on the practical stability boundary of a stable

equilibrium pointxs is called adecomposition point.
Definition 3: The practical stability regionof a stable equilibrium pointxs of a nonlinear dynamical

system (10), denoted byAp(xs) and is the interior of closure of the stability regionA(xs) which is given
by :

A(xs) = {x ∈ <s : lim
t→∞

Φ(x, t) = xs} (13)

The boundary of practical stability region is called thepractical stability boundaryof xs and will
be denoted by∂Ap(xs). Theorem 4.2 asserts that the practical stability boundary is contained in the
union of the closure of the stable manifolds of all the decomposition points on the practical stability
boundary. Hence, if the decomposition points can be identified, then an explicit characterization of the
practical stability boundary can be established using (14). This theorem gives an explicit description of
the geometrical and dynamical structure of the practical stability boundary.

Theorem 4.2:(Characterization of practical stability boundary)[15]:Consider a negative gradient sys-
tem described by (10). Letσi , i=1,2,... be the decomposition points on the practical stability boundary
∂Ap(xs) of a stable equilibrium point, sayxs. Then

∂Ap(xs) =
⋃

σi∈∂Ap

W s(σi). (14)

Our approach takes advantage of these concepts of stability regions to compute neighborhood local minima
on the error surface. Originally, the basic idea of our algorithm was to find decomposition points on the
practical stability boundary. Since, each decomposition point connects two local minima uniquely, it is
important to obtain the decomposition points from the given local minimum and then move to the next
local minimum through this decomposition point [21]. Though, this procedure gives a guarantee that the
local minimum is not revisited, the computational expense for tracing the stability boundary and identifying
the decomposition point is high compared to the cost of applying the local method directly using the exit
point without considering the decomposition point.
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C. TRUST-TECH Algorithm

The proposed algorithm for training neural networks , uses a promising starting point (A∗) as input and
outputs the best local minimum of the neighborhood in the weight space. Figure 4 shows the flowchart
of our approach.

Fig. 4. Flow chart of our method

Input: Initial guess(A∗), Tolerance (τ ), Step size (s)
Output: Best local minimum (Aij) in the neighborhood
Algorithm:
Step 1: Obtaining good initial guess (A∗): The initial guess for the algorithm can be obtained from other
global search methods or from a purely random start. Some domain knowledge about the specific dataset
that the network is being trained on, might help in eliminating non-promising set of initial weights.
Step 2: Moving to the local minimum (mi): Using an appropriate local solver (such as conjugate-gradient,
quasi-Newton or Levenberg-Marquardt), the local optimummi is obtained usingA∗ as the initial guess.
The starting point will bexi for the later stages.
Step 3: Determining the search direction (dj): The eigenvectorsdj of the Jacobian are computed atmi.
These eigenvector directions might lead to promising regions of the subspace. Other search directions can
also be chosen based on the specific problem that is being dealt.
Step 4: Escaping from the local minimum:Taking small step sizes away frommi along thedj directions
increases the objective function value till it hits the stability boundary. However, the objective function
value then decreases after the search trajectory moves away from the exit point on the stability boundary.
xi is used as initial guess and local solver is applied again (go to Step 2).
Step 5: Finding Tier-1 local minima (A1i): Exploring the neighborhood of the local optimal solution
corresponding to the initial guess leads to tier-1 local optima. Exploring from tier-k local optima leads to
tier-k + 1 local optima.
Step 6: Exploring Tier-k local minima (Akj): Explore all other tiers in the similar manner described above
(see Fig. 5). From all these solutions, the best one is chosen to be the desired global optimum.
Step 7: Termination Criteria:The procedure can be terminated when the best solution obtained so far is
satisfactory (lesser thansolreq) or a predefined maximum number of tiers is explored.
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Fig. 5. Diagram Illustrating two tier exit point strategy. The ‘*’ represents the initial guess. Dotted arrows represent the convergence of the
local solver. Solid arrows represent the gradient ascent linear searches along eigenvector directions. ‘X’ indicates a new initial condition in
the neighboring stability region.M represents the local minimum obtained by applying local methods from ’X’.A1i indicates Tier-1 local
minima. e1i are the exit points betweenM andA1i. Similarly, A2j and e2j are the second-tier local minima and their corresponding exit
points respectively.

V. I MPLEMENTATION DETAILS

All programs were implemented in MATLAB v6.5 and run on Pentium IV 2.8 GHz machines. This
section describes the various implementation details used in our simulations. The following issues are
discussed in detail : (i) Architecture and local methods, (ii) Initialization Schemes and (iii) TRUST-TECH.

A. Architecture and Local Methods

As described in the introduction section, we have chosen to demonstrate the capability of our newly
proposed TRUST-TECH algorithm on a network with single hidden layer and an output layer containing
only one output node. This architecture is not complicated and has the capability to precisely demonstrate
the problems with the existing approaches. A network described in this paper containsn (number of
attributes) input nodes which is equal to the number of features available in the dataset, one hidden layer
with k nodes and one output node. Thus, each network hasnk weights andk biases to the hidden layer,
andk weights and one bias to the output node. Hence, training a neural network is necessarily a search
problem of dimensionality(n+2)k+1. Each hidden node has a tangent-sigmoid transfer function and the
output node has a pure linear transfer function. The number of nodes in the hidden layer is determined
by incrementally adding hidden nodes, and selecting the architecture that achieves a compromise between
minimal error value and minimal number of nodes. The trust region based Levenberg-Marquardt algorithm
is chosen because of efficiency in terms of time and space consumption. It utilizes the approximation of
the Jacobian in its iterative gradient descent, which will be used for generating promising directions in
TRUST-TECH.

B. Initialization Schemes

Two different initialization schemes were implemented. The most basic global method which is multiple
random starts with initial set of parameters between -1 and 1. More effective global method namely
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Nguyen-Widrow (NW) algorithm [19] has also been used to test the performance of our algorithm. The
NW algorithm is implemented as the standard initialization procedure in MATLAB. In both cases, the
best initial set of parameters n terms of training error is chosen and improved with our TRUST-TECH
algorithm.

Algorithm 1 New Wts TRUST TECH(NET, Wts, s, τ )
Wts = Train(NET, Wts, τ)
Error = Estimate(NET, Wts)
Thresh = c ∗ Error
Wts1[ ] = Neighbors(NET, Wts, s, τ)
for k = 1 to size(Wts1) do

if Estimate(NET, Wts1[k]) < Thresh then
Wts2[k][ ] = Neighbors(NET, Wts1, s, τ)

end if
end for
Return best(Wts,Wts1,Wts2)

C. TRUST-TECH

It is effective to use TRUST-TECH methodology for those promising solutions obtained from stochastic
global methods. Algorithm 1 describes the two-tier TRUST-TECH algorithm.NET assumes to have a
fixed architecture with a single output node.s is the step size required for moving out of the stability region
to obtain the exit point.τ is the tolerance of error used for the convergence of the local method.Weights
give the initial set of weight parameter values.Train function implements the Levenberg-Marquardt
method that obtains the local optimal solution from the initial condition. The procedureEstimate
computes the mean square error (MSE) value of the network model. A threshold value (Thresh) is set
based on this MSE value. The procedureNeighbors returns all the next tier local optimal solutions from
a given solution. After obtaining all the tier-1 solutions, Neighbors is again invoked (only for promising
solutions) to obtain the second-tier solutions. The algorithm finally compares the initial solution, tier-1
and tier-2 solutions and returns the network corresponding to the lowest error among all these solutions.

Algorithm 2 Wts[ ] Neighbors (NET, Wts, s, τ )
[Wts, Hess] = Train(NET, Wts, τ)
evec = Eig V ec(Hess)
Wts[ ] = NULL
for k = 1 to size(evec) do

Old Wts = Wts
ext P t = Find Ext(NET, Old Wts, s, evec[k])
if (ext P t) then

New Wts = Move(NET, Old Wts, evec[k])
New Wts = Train(NET,New Wts, τ)
Errors = Estimate(NET, New Wts)
Wts[ ] = Append(Wts[ ], New Wts, Errors)

end if
end for
Return Wts[ ]

The approximate Hessian matrix obtained during the updation in the Levenberg-Marquardt method
used for computing the search direction. Since there is no optimal way of obtaining the search directions,
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the Eigen vectors of this Hessian matrix are used as search directions. Along each search direction, the
exit point is obtained by evaluating the function value along that particular direction. The step size for
evaluation is chosen to be the average step size taken during the convergence of the local procedure. The
function value increases initially and then starts to reduce indicating the presence of exit point on the
stability boundary.Move function ensures that a new point (obtained from the exit point) is located in
a different (neighboring) stability region. From this new initial guess, the local method is applied again
to obtain the local optimal solution of the neighborhood stability region. For certain directions, there
might not be exit points. For these directions, the search for exit points will be stopped after evaluating
the function for certain number of steps. This avoids inefficient use of resources required to search in
non-promising directions.

VI. EXPERIMENTAL RESULTS

A. Benchmark Datasets

The newly proposed training method is evaluated using seven benchmark datasets taken from the UCI
machine learning repository available at [4]. Since the main focus of the paper is the development of
training algorithm, only simple experiments were conducted for choosing the architecture of the neural
network. The hidden nodes in the hidden layer are added incrementally and the train error is computed. The
final architecture is chosen with a fixed number of hidden nodes where there is no significant improvement
in the training error. The number of nodes where the improvement in the training error is not significant
is chosen as the final architecture. Table II summarizes the datasets. It gives the number of samples, input
features, output classes along with the number of hidden nodes of the optimal architecture. These datasets
have varying degrees of complexity in terms of sample size, output classes and the class overlaps. More
details about these datasets are given in Appendix-A.

TABLE II

SUMMARY OF BENCHMARK DATASETS.

Sample Input Output Hidden Search
Dataset Size Features Classes Nodes Variables

(D) (Q) (n) (p) (H) (n+2)k+1
Cancer 683 9 2 5 56

Diabetes 178 8 3 4 61
Image 2310 19 7 8 169

Ionosphere 351 34 2 9 325
Iris 150 4 3 3 19

Sonar 208 60 2 8 497
Wine 178 13 3 4 61

B. Error Estimation

To demonstrate the generalization capability (and hence the robustness) of the training algorithm, ten-
fold cross validation is performed on each dataset. This practice of cross validation effectively removes
any bias in the dataset segmentation. The use of the validation dataset allows early stopping of the local
method and prevents over-fitting to a particular dataset. Essentially, each dataset is partitioned into ten
folds of approximately equal size. Let these folds are denoted byT1, T2, ...T10. Each time, the validation
set will be Ti in which the the target labels will be deleted. The test set isTj for j = (i + 1) mod 10.
The training set comprises of the rest of the dataset and is given by:

10∑

k=1
k 6=i k 6=j

Tk (15)
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The final MSE is the average of all the errors obtained across each of the ten folds. Usually, training error
is much lower than the test error because the network is modeled using the training data and this data
will be accurately classified compared to the unseen test data. All the network parameters including the
architecture and the set of weights are obtained using the training data. Once the final model is fixed, the
accuracy on the test data will provide an estimate of the generalization capability of the network models
and training algorithm.

C. Classification Accuracy

The criteria of evaluation is given by the classification accuracy of the network model. The classification
accuracy is given by the following formula:

% accuracy =
diff( t(i), y(W,X) )

Q
∗ 100 (16)

wherediff gives the number of misclassified samples. Tables III and IV shows the improvements
in the train error and the test error using TRUST-TECH methodology. For effective implementation, only
the best five tier-1 and corresponding tier-2 solutions were obtained using the TRUST-TECH strategy. For
some of the datasets, there had been considerable improvement in the classifier performance.

TABLE III

CLASSIFICATION ERRORS FOR TRAINING AND TEST DATA USINGTRUST-TECHWITH MULTIPLE RANDOM RESTARTS.

Train Test
Dataset MRS+BP TRUST-TECH Improvement MRS+BP TRUST-TECH Improvement

Cancer 2.21 1.74 27.01 3.95 2.63 50.19
Image 9.37 8.04 16.54 11.08 9.74 13.76

Ionosphere 2.35 0.57 312.28 10.25 7.96 28.77
Iris 1.25 1.00 25.00 3.33 2.67 24.72

Diabetes 22.04 20.69 6.52 23.83 20.58 15.79
Sonar 1.56 0.72 116.67 19.17 12.98 47.69
Wine 4.56 3.58 27.37 14.94 6.73 121.99

TABLE IV

CLASSIFICATION ERRORS FOR TRAINING AND TEST DATA USING TRAINING AND TEST DATA USINGTRUST-TECHWITH

MATLAB INITIALIZATION .

Train Test
Dataset NW+BP TRUST-TECH Improvement NW+BP TRUST-TECH Improvement

Cancer 2.25 1.57 42.99 3.65 3.06 19.06
Image 7.48 5.17 44.82 9.39 7.40 26.90

Ionosphere 1.56 0.92 69.57 8.67 6.54 32.57
Iris 1.33 0.67 100.00 3.33 2.67 25.00

Diabetes 21.41 19.55 9.53 23.70 21.09 12.37
Sonar 2.35 0.42 456.96 17.26 14.38 20.03
Wine 7.60 1.62 370.06 14.54 4.48 224.82

D. Visualization

The improvements of the TRUST-TECH method are demonstrated using spider web diagrams. Spider-
web diagram (shown in Fig. 6) is a pretentious way to demonstrate the improvements in a tier-by-tier
manner. The circle in the middle of the plot represents the starting local optimal solution. The basic
two dimensions are chosen arbitrarily for effective visualization and the vertical axis is the percentage
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improvement in the classification accuracy. Unit distances are used between the tiers and the improvements
are averaged out for 10 folds. The five vertical lines surrounding the center circle are the best five local
minima obtained from a tier-1 search across all folds. The tier-2 improvements are also plotted. It should
be noted that the best tier-1 solution need not give the best second tier solution.

(a) Wine Dataset (b) Diabetes Dataset

(c) Cancer Dataset (d) Image Dataset

Fig. 6. Spider web diagrams showing the tier-1 and tier-2 improvements using TRUST-TECH method on various benchmark datasets. The
basis two axes are chosen arbitrarily and the vertical axis represents the improvements in the classifier accuracy. The distances between each
tier are normalized to unity.

VII. C ONCLUSION AND FUTURE WORK

Most successful algorithms for training artificial neural networks make use of some stochastic ap-
proaches in combination with local methods to obtain an effective set of training parameters. Due to
the limited fine-tuning capability of these algorithms, even the best solutions that they can provide are
locally optimal. In this paper, a new stability region based neighborhood search method for improving the
local search capability of these training algorithms is proposed. This method improves the neural network
model thus allowing improved classification accuracies by providing a better set of training parameters.
Since it is not probabilistic in nature, multiple runs from an initial guess will provide exactly the same
results. Different global and local methods work effectively on different datasets. The proposed method
also allows the user to have the flexibility of choosing different global and local techniques for training.
As a continuation of this work, the new training algorithm will be used for simultaneously deciding
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the architecture and the training parameters. Its performance on large-scale applications like character
recognition, load forecasting etc will also be studied.

APPENDIX

APPENDIX-A: DESCRIPTION OFDATASETS

Cancer : This dataset contains data from cancer patients. It has 683 samples out of which 444 are
benign cases and 239 are malignant cases. 9 attributes describing the tumor were used for classification.

Diabetes :This dataset gives information about patients who have some signs of diabetes according to
World Health Organization criteria. Each sample has 8 real valued attributes. A total of 768 samples with
500 negative cases and 268 positive cases are available.

Image :This dataset contains images which were drawn randomly from a database of 7 outdoor images.
The images were hand-segmented to create a classification for every pixel. There are 19 attributes that
describe each instance (which is a 3x3 region) of a given image. The datset contains a total of 2310
samples.

Ionosphere :This radar data was collected by a system consisting a phased array of 16 high-frequency
antennas with total transmitted power on the order of 6.4 kilowatts. The targets were free electrons in
the ionosphere. The dataset consists of 351 samplees with 34 attributes. The classification task here is to
separate good radar signals from that of the bad ones.

Iris : The dataset contains 3 classes of 50 samples each, where each class refers to a type of iris plant.
It is relatively simple dataset where one class is linearly separable from the other two, but the other two
have significant overlap and are not linearly separable from each other. The four attributes considered for
classification are sepal length, sepal width, petal length and petal width. All attributes are measured in
centimeters.

Sonar : This dataset is used for the classification of sonar signals. The task is to discriminate sonar
signals bounced off a metal cylinder from those bounced off a roughly cylindrical rock. The dataset
contains a total of 208 samples (111 for mines and 97 for rocks). The data set contains signals that were
obtained from a variety of different aspect angles, spanning 90 degrees for the cylinder and 180 degrees
for the rock. Each pattern is a set of 60 numbers in the range 0.0 to 1.0 that represents the energy within
a particular frequency band, integrated over a certain period of time.

Wine : This dataset was obtained from the results of a chemical analysis of wines derived from three
different cultivars. The analysis determined the quantities of 13 constituents found in each of the three
types of wines. A total of 178 samples with the following distribution (59,71,48).
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