Mixture of nonlinear models: a Bayesian fit for Principal Curves

Pedro Delicado and Marcelo Smrekar

Abstract— Principal curves are smooth parametric curves circumference isx(.S;), is univariate normal, while the or-
passing through the “middle” of a non-elliptical multivari ate  thogonal difference¥; = X; —a(S;) are(p—1)-dimensional

data set. We model the probability distribution of this kind of ; O ; ;
data as a mixture of simple nonlinear models and use MCMC glc()arnﬁ]\:rl{tslndependent afi;. Figure 1 helps to identify these

techniques to fit the mixture model.

I. INTRODUCTION

M n=n(,p,c.v)

Principal curves were introduced by [1] as smooth paramet-
ric curves passing through the “middle” of a multidimensibn
data set. Several works on principal curves have appeared
since then (see [2], [3], [4] and the references in there for
a broader view to the principal curves literature).

A fruitful way to model principal curves is the mixture of
multivariate normal random variables: [5] estimates a omixt
of normals with as many components as observed data; [6]
suggest a mixture with a fixed number of components and
each of them is fitted by using principal component analysis;
[7] generalize the work of [6] allowing the model noise to ‘ ,
be orthogonal to the principal curve. A common feature of /| |
these papers is that they use the EM algorithm for paramet ¢
estimation.

We propose to modep-dimensional distributions around
a curve as mixtures of simple nonlinear models. The mairg. 1. lllustration of parameters and other elements irealin the single
advantage of our proposal is that the number of requiredch model.
components is lower than when normal models are used in
the mixture: a single nonlinear component may well producg The Jikelihood

a similar fitting than that given by the mixture of three orifou This model can be obtained applying a one-to-one applica-

normal components. .
p—1 D — [—
In Section Il we introduce the simple model (that well©nX from IRxIi?™~to Iit - Let] = [-mp, mp] C IR, where

call single arch model) and we propose to take a Bayesiarn’ 1S the rad_|us of the cwcum_ferencg L&tbe a Zero-mean
approach to fit it. The Gibbs sampler algorithm is used t§_ne-.d|m.en3|onal randpm variable wid(5 € I) = 1 with
obtain samples from posterior distributions of the paramset istribution parametenzed. by a scale paramémj_'s). Let
given the data. A mixture model with nonlinear components i be a zero-meafp — 1)-dimensional random variable such

estimated using latent component indicator variables [@ge b atP(HYIH <p)= 1t with Spl‘\l;rlc d|str|but1[(r)12€para(;n§tenzed
for instance). This is developed in Section Ill, which firesh . y a scale parame_e(rpo—y). ve assume thab an are
dependent. Consider the joint distribution ¢f,Y) on

with an illustrative example. The paper ends with a list 0% « IRP-L, with density fo(s, ) = fs(5)fy (1)
) 0\9, =Js Y .

open problems requiring additional attention. ; . .
pen p q g Let o be a parameterized circumferencelitf with center
II. PRELIMINARIES. THE SINGLE ARCH MODEL ¢ and radiusp,

The simple model we put forward is that followed by a={a(s) = (1(s),...,ap(s) : s € [-mp,Tp)},
random pointsX; scattered around an arch of circumference ) )
with radius p. We call it the single arch model. Let a(s), Suchthatja(s)—0|* = p* forall s and, for alls, a(s) belongs
s € [~mp,mp, be the usual parametric equation for thaf® the pIand‘I,/defmeq by the poin®, 1 = «(0) and the speed
circumference with unit speed (that i/ (s)| = 1). The vectorv = &/(0). It is assumed thatv is parameterized by

value S; such that the orthogonal projection of points to thé€ arc length (s¢a’(s)|| = 1, for all s, and then/|v|| = 1).
etw = (u—0)/p. Then||w|| = 1 andII is also given by,
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hyperspace tor at a(s). The frame matrix A(s) can be Applying again Pythagoras’ Theorem we have thaf?
chosen as a differentiable function ef Moreover, among y? + ||z — P (z)|?>. Now we deal withs. Observe thas is
others the following properties hold (see, for instancd, [%he distance (over the curvg betweenP, (x) andy = 6+ pw.

for the details): the vecton” (s) is orthogonal toa/(s), the
norm of the vectorw (s) is the curvature of « at «(s), one
over the curvature is theadius of curvature (the radius of a
circumference contained in the plane defined by the pojat
and the vectors/(s) anda’’(s), passing byx(s) and having
the same first and second derivativeshaat a(s); given that

the curve we are considering here is a circumference, the

radius of curvature is constant and equalpdo the second
vector of A(s), az(s) can be chosen proportional t@’(s)

and pointing at theenter of curvature (defined as the center where s; = x;'(z;), v

Then,

s = p¢, where¢ = cos™ ' (W) .

For a set ofn i.i.d. datax = {z;,...,z,} the likelihood

function is

n

oo Ty (yilpoy)1
Efs(sz|0 5)71 ~lyn/p)

= X,vjl(xi) and y;; is the first

(2)

f(x|07p7w7 V? US7UY) =

of the previously mentioned circumference; in our case th@omponent ofy;.

center of curvature is the center of the circumferefice

We consider the functioty defined by [1] in the proof of
their Proposition 6: let H, = H(a(s),d/(s)) be the normal
hyperplane to the curver at «(s) and definey mapping
I x IRP~Y into UgerHy C IRP so thaty(s,y) = afs) +
A(5)(0,9")*. Thusy put (s,y) in Hy in a differentiable way
with respect tos andy applies tol x RP~! the same torsion
and curvature thatv applies tol so that orthogonality is
preserved in some sense.

Consider the random variables i®? obtained asX =

x(S,Y). The distribution ofX has the following parameters:

the center of the circumferendg(it is a location parameter);
the radius of the circumferenge (it is a scale parameter);
the two unit vectorsv and v that, jointly with 6, determine

To fix ideas, from now on we consider the model based
on normality of S and Y. Let S ~ N(0,(pos)?) and
Y ~ N,-1(0, (poy)?I,—1) We assume thats is such that
P(|S] < pm) ~ 1 and thatoy is such thatP(||Y]| < p) = 1.
To be specific, we impose? < 7/x7 999 = 7/(3.29)°
and o3, < 1/x2_, g99- Observe that strictly speaking the
assumptions stated at the beginning of this subsectionen th
distributions of S and Y are not satisfied by these normal
distributions, and then equation (1) is an approximatedites
but not the true expression ¢f (x|0, p,w,v, 05,0y ) in this
case. Nevertheless such approximation works well in practi

B. Prior distribution
We consider the six parameters to be independent a priori.

the planell where the circumference belongs to; the scald€re are a location parametef) (and a scale parameter

parameter of orthogonal projectionss; the scale paramete
of orthogonal distances;y. Observe that parameters and

r (p). Using Jeffreys priors (see [10], for instance) their foin

contribution to the prior distribution is proportional i/ p.

oy are not scale parameters of the whole distribution, despifd'€ WO unit vectorss and v belongs to the compact set

the fact that they are scale parameter§ aindY’, respectively.

The expression for the density &f;, given the parameters,

Sp—1. We take there a flat prior. We deal with parametess
and oy as if they really were scale parameters and, using

is a special case of Lemma 1, stated at the Appendix. Wigain Jeffreys priors, they contribute to the prior witfys

need some notations to be able to write the densit¥ of.et
x~! be the inverse function of. Let s = x;!(z) € IR be
the first component ok !(z). Lety = x, '(z) € IRP~" be
the remaining(p — 1) components ofy~!(z), and lety; be
the first component of. Then

Ty (ylpoy)
/) O

Observe thatfx at x depends on parametel¥, p,w, v)

fX(CU|9,P,w, v, O'S,Uy) = fs(8|p0'5)

becausgs,y) = x~!(x) depends on them. Let us note that

[y (y|o?) depends oy only by ||y||* becaus&” is assumed
to be spheric.

So we need to derive the explicit expressions0f; and
lly||? to have the full expression ofx (x|, p,w, v, 0%, 0% ).
Figure 1 helps to find these expressions. kdte a point in
IR?. Let Py(z) and P, («) be the projections af ontoII and
a, respectively. Thet®(z) = 6+C(C'C)~1C’ (z—0), where
C = (w,v), and Py(z) = 6 + p(Pr(z) — 0)/||Pu(z) — 0]
Pythagoras’ Theorem tells us that + )%+ ||z — P (z)||? =
lz — 6]|2, so

y1=—p+ e - 012 |z — Pu(2)]>

and1/oy, respectively. In summary, we take the prior

(0, p,w,v,05,0y) x (cgsayp) L. 3)
C. Posterior and full conditional distributions

The posterior distribution can not be explicitly written,
because the likelihood function (2) depends on the paramete
in a very complicated way (through the inverse function').

Nevertheless two of the full conditional distributions are
easily derived. First,

no1 &
o360, p,w,v,0y,x = 05|s ~IG (5, 3,7 ;ﬁ) ,

where s = {s1,...,8,}. Second, definingy
{lyall?s - lynl?3,

2 _ 2
oy |0, p,w,v,0y, X = oy ly ~

n(P—l)in 12
zg(—7;—3%2§ywm>.

The remaining full conditional distributions are not soias
derived. We propose to use a Metropolis-Hastings algorithm



to approachr (9, p,w,v|os, oy, x). We take a random walk [1l. M AIN RESULTS. THE MIXTURE MODEL
proposal. After stepn of the algorithm, we defing,("™) =

Consider now a-dimensional data set distributed around a
6™ 4+ p(m) (M) and generate

one-dimensional curve. We propose to model these data as a

o =0 +ep, & =p™ 4, mixture ak single arch models as those described in Section
e ! Il. That is, we assume that the data come from a random
v =V ev)/ v evlls variable X with densi
& =" +e)/ <m+ [ ble X with density
where ¢, ¢, Yy €, are p-dimensional independent normal
random variables, centered at 0, and with varianggs 071, ij 2|05, pj, w5, v5,05,5,0v.5),
o1, respectively. We define
_ _ _ _ wherep; > 0 and)_ p; = 1. Letp = (p1,...,px). In our
S = 16w = &l & = (6 = C0)/%- analysis we follow the Section 6.4 in [8]. In particular, we
Then, the valu® is defined as assume that the numbegrof mixture components is known.
A set of latent vectorsy; € {0,1}%, i = 1,...,n,
: 0 ) ySwrSr|05,0Y, X B ? ) ’
o= mln{ﬁ(e(m)@e(i’; f}(mi L(i”; CB ) 1}. are introduced. They are the so calleamponent indicator
. P ’ S 0% vectors: forall: =1,...,n, Z -, 2 = landz; =1ifand
Finally, we take only if z; ~ f(x |9J,pj,wj, uj,asj,ayj) The distribution of
(0D plmtD) lmAD) b)) 4) X can also be modeled as follows:
Z % (€0,6pr €0 &) + (1= Z) x (80, p™), (™) (), il pgrgo v, 095, 0%,3:P5 1T =11 )
where Z ~ Bernoulli(#), independent of other random vari- = zilp ~ Mi(1;p),
ables. The valuesy, o, and o, are calibrated so that the 2| ({z;,1=1...n}
average acceptance rate is roughit, as recommended by
[11] Observe that {Hj,pj,wj, Vj,08,5,0Y,j,Pj * j =1.. k}) =
(0, p,w,v|cs, oy, X) zilzi, {0}, pj,wj,vj, 08,0y, j=1...k} ~
f(x|0,p,w,v,05,0v)n(0,p,w,v|os,0v) = k k k
ez” Zij Zij Zij Zu
f(x|0,p,w,v,05,07)m(0, p,w,v) x|H HP Hw H HUSJ7HGYJ
s My M By ’ (R} j=1 j=1 Jj=1 Jj=1
fx|0,p,w,v,05,0v)/p. A. Prior distribution
Then We consider that parametgr is a priori independent of
the others. Moreover we take~ Dirichlet(a, ..., o). We
F(x[€0,6. €06 )pt™ i ;
5= min{ X180, 8p) 8w &0, 05, 0Y)p ’1}. take equale;'s with ap = Y27, a; small, in order to not
(x]0m), pm), w(m) p(m) gg, 0y ), introduce much prior mformatlon For instance, we can take

The likelihood values are computed as equation (2) indicate; = 1/k. The prior distributions ob;, p;,w;, v;,05,5,0v,;
and 0y, pn, wh, v, 0s,h, 0y, are considered independent if

D. Estimating the single arch mode! by Gibbs sampling j # h. Each of them is taken as indicated at Section Il for
The stept for the Gibbs sampler approaching the distributhe single arch model.
tion (6, p, w, v, 05, ov|x) is as follows: B. Full conditional distributions
Forj=1,...,k letx;(z) = {x;,i € {1,...,n} : 2z;; =
S11, that is, the set of observations that, according to indisat
2) (1) zij, were generated by thieth mixture component. Le¥; =
2) Generaters'! ~ IG (” B 2Ty it ||.%-H2), (0, p;,wj, v;,05.4,0yv;) the set of parameters identifying the

1) Generateo2” ~ Ig (%,WZLI sf) where

s = {si,...,sn} IS computed using parameter value
(0D pt=1) (,(t=1) 1 (t=1)y,

where parameter valug®(®—1 p(t=1) (=1 -1y  j-th curve,j = 1,... k. With these definitions we have that
are used to compute = {[|y1%, ..., |ly.ll*}. _ . E— .

3) Use the Metropolis-Hastings algorithm described Vjl(Wn, b # 5., 2, %) = Vjlx;(2), forj=1,....k.
in (4) to generate 6® p® w® p® ~  This distribution has been studied at Section Il. Moreover,
70, p,w,vlod, ol x). %|(W;,5 =1,....k p,x) is multinomial,

Observe that in Step 3 it is enough to do only one iteration
of the Metropolis-Hastings algorithm (4). The reason ig tha
only one iteration of Step 3 is required to prove that thevith
joint posterior distribution of parameters is the statigna (5P, U;) = pjf (V) .
distribution of the previous MCMC algorithm. S Sk o f (@] W)

Mk(l;pl(xiapa \111)7 cee 7pk(xiapa \Ijk))a




Finally, TABLE |

p|(X, z, \I/ja.j = 1, ceey k) = p|Z ~ RESULTS FROM THE ESTIMATION OF THE MIXTURE OF ARCH MODELS
n n 6000VALUES FROM THE POSTERIOR DISTRIBUTION WERE GENERATED
Dirichlet(a; + Z Zily oo, + Z Zik)- BY GIBBS SAMPLING. POSTERIOR STATISTICS WERE CALCULATED USING
i—1 i—1 THE LAST THIRD OF SIMULATED VALUES.
C. Estimation of the mixture model by Gibbs sampling _ _
] ) o True Posterior Posterior
The t-th step of a Gibbs sampler approaching the distribu- Parameter values mean Std. Dev.
tion of parameters (curve parametezsp) given the datax p1 g igg -8223
; . P2 . . .
is as follows: 01 (0-1) (.1052-1.1003) (.1231,.0568)
1) Generateqjg,f) — (95}5)7 pgﬂ,wgt), VJ@’ U(st)J crgf)j) for 02 (0,1)  (.0620,1.0019)  (.1295,.0553)
o NEARLE It ; . : o1 1 1.0672 .0998
J = 11, ook, foIIowmg_Se_ctlons Il and IlI-B, and using o 1 9436 1035
z(*~1) as component indicators. w1 (-1,0)  (-.9504,.2829)  (.0364,.1241)
2) Generate wo (1,00  (.9796,-.1177)  (.0269,.1604)
w (-1,-1)  (-.9092,-.7990)  (.0582,.1272)
) t—1) (®) t—1) (®) 1,1 .9866,.8899 .0461,.1436
Zi NMk(17pl(xi7p( )7\111 )a"'apk(xiap( )7\Ijk )) UsllfUSQ (1_5) ( 1.5008 ) ( 1473 )
fori— 1 n Sloy,toy,) 2 1878 .0202
=1,...,n.
3) Generatep() ~ Dirichlet(a; + S0, 2. ay +
S a)
i=1%ik ):
IV. SIMULATION RESULTS 2 05
We fit the mixture of arch models to a simulated d: € 1|\ ? twmmmT ey
. . . . . g g 0 8
set with 100 two-dimensional points. The mixture moc £ ©° £ £
that generates the data has= 2 components and thes§ | P — E s 3
. £ " g g
parameters: s - s 3
(SUP—
-3 -1 -1
p1 =05, 01 =(0,-1), pr =1, w1 = (-1,0), D o o a0 o0 o0 w0 awo
051 = 0.75, oy,1 = 0.2, 2 1 1.4

12

P2 = 0.5, 92 = (01 1)7 P2 = 1, wa = (110)7

4
2

05,2 = 0.75, oy2 = 0.2.

..........

Cumulative mean(ez)
|
- o
Cumulative mean(uu2
o
>
1
Cumulative mean(uz)

0.6

Observe that we do not need to specify parametgrand
v, because the plardé is just the planeR?. Figure 3 (upper % 2000 4000 6000 %o 2000 4000 6000 o 2000 4000 6000
panel) shows the data and the generating model.

The Gibbs sampling algorithm described above was use
simulate from the posterior distribution. A Matlab (Vensid)
code was written for this purpose. The algorithm is left to «
6000 iterations. It takes 1 minute and 35 seconds in a Pen
4 (CPU 2.8 GHz). Table | shows some posterior statis
calculated from the last third of simulated posterior valu 0.05
Similar results were obtained using WinBUGS. The Git  °  “leaions. " Aeraions. 0 Meraons "
sampling algorithm development is summarized at Figure

!
!
=}

w
-

0.25

N
»
4
©

Cumulative mean(p)
N

0.1F

=
&

I
=
Cumulative mean(ov)

Cumulative mean(as)
o
D

o
N
o

2 2 2
where the evolution of the cumulative mean for simula _ oes ﬁlsﬁﬁ e H
parameters values is shown. Figure 3 compares the true n'§ 0"5'2 5 S -
. . . e 0 \ D £ 1.6|(y N 16
with the estimated model (under quadratic loss). 2 os|; g i H 5
§ ousl: 3 14| g 14
El K 2 B \\ *
V. CONCLUSIONS AND FURTHER RESEARCH 3 o 312 k\ 12 -
We have presented a Bayesian framework for model o 2000 4000 6000 1_ 5000 1M,2 o 5
data distributed around a principal curve. This approaeh ferations tterations %2

duces the required number of mixture components (COMpPatR. 2. Cumulative mean evolution for the simulated parametlues. In the
with fitting a mixture of normal distributions). Moreover it first and second row, corresponding respectively to pojpuiatl and 2, solid

; ; ot ; and dashed lines represent the first and second (respgrctda@rdinates of
allows us to face interesting statistical questions beytred the 2-dimensional vectors. In other panels, solid linesesgnt population 1

determination of point scores over the curve. The followingnd dotted lines correspond to population 2.
aspects require additional attention:



True and estimated model

25 T

-2

-2 -1 0 1 2

Fig. 3. True versus estimated model. The upper panel refiretiee true model (dashed lines, small + and * symbols) aecgtimated model (solid lines,
big + and * symbols). The observed data are represented ay eloig. The lower panels include the contour level curvedte true data density (left) and

for the estimated data density (right).

« Analyzing more carefully the choice of the prior distrib-
ution. An open question is to find out whether or not the
Jeffreys prior for the whole model is in fact proportional
to our proposal in (3). The main difficulty (maybe insu-

perable) is the dependence bf (z|0, p,w, v, 05,0y ) On
0, p,w, v throughy=1(z).
« Allowing the number of mixture componenis to be

unknown. The ideas of reversible jump ([12]) or those
of birth-and-death MCMC ([13]) are valid for deal with

this problem. See also the Chapter 11 of [14].

« Allowing S to have distribution different from normal
in each mixture component (we think that the uniform
distribution would also be appropriate). The main effect
of this change is that the full conditional distributions of

0% ando? are no longer Inverted Gamma. Steps 1 and 2
in the Gibbs sampling algorithm described in Subsection
11I-D might be replaced by Metropolis-Hastings steps.
Extending the single arch model replacing the arch of
circumference by a more flexible arch of ellipse. Some
additional parameters would appear, but the level of
difficulty is similar to the case we have studied in this
paper.

Extending the implemented application from dimension
2 to the generap-dimensional case. This extension is
straightforward.

Extracting a unifying principal curve from the density
function estimated as a mixture of single arch model
densities.



APPENDIX

k;(s) is the j-th curvature of «a(s). In particular,ki(s) =
Lemma 1: Assume that! = SupportS) is a compact [[@(s) is the curvature Off/)i at a(s). From A'(S)

interval, and that the distributions S = s have convex A(s)C(A(s)), it follows that a”(s) = ki (t)ax(s), as(s) =
compact support contained in the b&i{0, p(s)), wherep(s) ~ —k1(t)a’(s) + ka(s)as(s), aj(s) = —kjal(t )a, 1(s) +
is the curvature radius ofr at the pointa(s). Then the ki(s)aji1(s) for j = 3a---_7p - 1, and ay(s) =
function y: SupportS,Y) — SupportX) is a homeomor- —kp-1(t)ap-1(s). Then, for3 <j <p—1 we have
fism. Moreover,_the density function of at a given point det(a}(s),AQ(s)) _
x € SupportX) is

(@) = Fols)f W 1 det(—kj—1(t)aj-1(s) + kj(s)ajt1(s), (az(s), ..., ap(s)))

M SIS =Ty To(s) that is equal to 0; forj = p det(a)(s), Aa(s)) =
where (s,y) is the inverse ofz by y and y; is the first det(—kp—1(t)ay—1(s), (a2(s ) ~,ap(s)) = 0, and
component ofy. for j = 2 det(az() 2(s)) = det(—ki(t)a'(s) +
Proof. The proof of this result is based on change of variabléz(s)as(s), (a2(s), ..., a,(s))) =
standard techniques. Observe that Sup(p{qﬂ’ = s) C _ o _
whens # t. Theny is a 1-1 function form Suppqn‘o‘, Y) (—kl(s))det(A(s)) = —kl(s).

to the image of this set. Ag¢ is continuous and it is
defined on a compact set, it follows thatSupports,Y)) =
Supportx(S,Y)). Theny is a homeomorfism because it is
a 1-1 continuous function defined from a compact set to
metric space.

Remember thak(s,y) = a(s) + A(s)(0,y")!, where the
frame matrixA(s) is an orthonormal matrix, it is differentiable

as a function ofs, and its first column isy/(s). Moreover, Ed

Moreover,det(A(s)) =
matrix. So we conclude thatet(
%nd the result is proved.

1, becauseA(s) is an orthonormal

Jx(5,9)) = 1 = yiki(s),
0
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C(A) = A71A" = A'A" is skew-symmetric @' = —C)
having elements;;(s) = 0 for |i — j| # 1, where A’ is
the matrix whose elements are the derivatives of the elesnent
of matrix A (for details see, for instance, [9], pp. 158-160).[2]
As x is 1-1, we call(s(z),y(x)) = x~!(z), for a given
x € SupportX), whereX = x(X). 3]
Applying change of variable standard techniques, the den-
sity function of X at a givenxz can be computed as [4l
Fx(@) = fisy)(s(x),y(@)(det(Jy(s(z),y(x))) ", where
Jy(s(x),y(x)) is the Jacobian ok at x, that is to say the
p X p matrix

I(511) = = 510) = (@) + A5 (6)y. Aa(s))

1]

(5]
(6]
(7]

where As(s) is the p x (p — 1) matrix contalnlng the last
(p — 1) columns of A(s) (so A( ) = (/(s), As(s))). Then [g]
det(J(s,)) = det(a’ () + Ab(s)y, Aa(s)) = i
det((s), Az(s)) + det(A5(s)y, Az(s)) =
P [11]
det(A(s)) + Zyj 1 det(a’(s), Aa(s)),
=2 [12]
where a;(s) is the j-th column of A(s). Remember that
(A(2))' A'(s) = C(A(s)) (50 A'(5) = A()C(A(s))) and that 1
the Cartan Matrix”(A(s)) has the following structure:
0 —ki(s) O 0 0 0 [l
kl (S) 0 —kQ(S) NN 0 0 0
0 0 0 kpfg(S) 0 pfl(S)
0 0 0 0 kya(s) 0
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