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Abstract— Principal curves are smooth parametric curves
passing through the “middle” of a non-elliptical multivari ate
data set. We model the probability distribution of this kind of
data as a mixture of simple nonlinear models and use MCMC
techniques to fit the mixture model.

I. I NTRODUCTION

Principal curves were introduced by [1] as smooth paramet-
ric curves passing through the “middle” of a multidimensional
data set. Several works on principal curves have appeared
since then (see [2], [3], [4] and the references in there for
a broader view to the principal curves literature).

A fruitful way to model principal curves is the mixture of
multivariate normal random variables: [5] estimates a mixture
of normals with as many components as observed data; [6]
suggest a mixture with a fixed number of components and
each of them is fitted by using principal component analysis;
[7] generalize the work of [6] allowing the model noise to
be orthogonal to the principal curve. A common feature of
these papers is that they use the EM algorithm for parameter
estimation.

We propose to modelp-dimensional distributions around
a curve as mixtures of simple nonlinear models. The main
advantage of our proposal is that the number of required
components is lower than when normal models are used in
the mixture: a single nonlinear component may well produce
a similar fitting than that given by the mixture of three or four
normal components.

In Section II we introduce the simple model (that we
call single arch model) and we propose to take a Bayesian
approach to fit it. The Gibbs sampler algorithm is used to
obtain samples from posterior distributions of the parameters
given the data. A mixture model with nonlinear components is
estimated using latent component indicator variables (see[8],
for instance). This is developed in Section III, which finishes
with an illustrative example. The paper ends with a list of
open problems requiring additional attention.

II. PRELIMINARIES. THE SINGLE ARCH MODEL

The simple model we put forward is that followed by
random pointsXi scattered around an arch of circumference
with radius ρ. We call it the single arch model. Let α(s),
s ∈ [−πρ, πρ], be the usual parametric equation for that
circumference with unit speed (that is,‖α′(s)‖ = 1). The
valueSi such that the orthogonal projection of points to the
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tiva, Universitat Politècnica de Catalunya Despatx 214, Edifici C5, Campus
Nord, C/ Jordi Girona 1-3, 08034 Barcelona, Spain (phone: (34) 93 401 5698;
fax: (34) 93 401 5855; email: pedro.delicado@upc.edu). Marcelo Smrekar is
PhD student.

circumference isα(Si), is univariate normal, while the or-
thogonal differencesYi = Xi−α(Si) are(p−1)-dimensional
normal, independent ofSi. Figure 1 helps to identify these
elements.
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Fig. 1. Illustration of parameters and other elements involved in the single
arch model.

A. The likelihood

This model can be obtained applying a one-to-one applica-
tion χ from IR×IRp−1 to IRp. Let I = [−πρ, πρ] ⊂ IR, where
ρ is the radius of the circumference. LetS be a zero-mean
one-dimensional random variable withP (S ∈ I) = 1 with
distribution parameterized by a scale parameter(ρσS). Let
Y be a zero-mean(p− 1)-dimensional random variable such
thatP (‖Y ‖ ≤ ρ) = 1 with spheric distribution parameterized
by a scale parameter(ρσY ). We assume thatS and Y are
independent. Consider the joint distribution of(S, Y ) on
IR × IRp−1, with densityf0(s, y) = fS(s)fY (y).

Let α be a parameterized circumference inIRp with center
θ and radiusρ,

α ≡ {α(s) = (α1(s), . . . , αp(s)) : s ∈ [−πρ, πρ)},

such that‖α(s)−θ‖2 = ρ2 for all s and, for alls, α(s) belongs
to the planeΠ, defined by the pointsθ, µ = α(0) and the speed
vector ν = α′(0). It is assumed thatα is parameterized by
the arc length (so‖α′(s)‖ = 1, for all s, and then‖ν‖ = 1).
Let ω = (µ − θ)/ρ. Then‖ω‖ = 1 andΠ is also given byθ,
ω andν.

At each pointα(s) in the curve, an orthonormal coordinate
systemA(s) = (a1(s), . . . , ap(s)) is defined wherea1(s) =
α′(s) and the other vectorsai are a base of the normal



hyperspace toα at α(s). The frame matrix A(s) can be
chosen as a differentiable function ofs. Moreover, among
others the following properties hold (see, for instance, [9]
for the details): the vectorα′′(s) is orthogonal toα′(s), the
norm of the vectorα′′(s) is the curvature of α at α(s), one
over the curvature is theradius of curvature (the radius of a
circumference contained in the plane defined by the pointα(s)
and the vectorsα′(s) andα′′(s), passing byα(s) and having
the same first and second derivatives asα at α(s); given that
the curve we are considering here is a circumference, the
radius of curvature is constant and equal toρ), the second
vector of A(s), a2(s) can be chosen proportional toα′′(s)
and pointing at thecenter of curvature (defined as the center
of the previously mentioned circumference; in our case the
center of curvature is the center of the circumferenceθ).

We consider the functionχ defined by [1] in the proof of
their Proposition 6: let Hs = H(α(s), α′(s)) be the normal
hyperplane to the curveα at α(s) and defineχ mapping
I × IRp−1 into ∪s∈IHs ⊆ IRp so that χ(s, y) = α(s) +
A(s)(0, yt)t. Thusχ put (s, y) in Hs in a differentiable way
with respect tos andχ applies toI ×Rp−1 the same torsion
and curvature thatα applies toI so that orthogonality is
preserved in some sense.

Consider the random variables inIRp obtained asX =
χ(S, Y ). The distribution ofX has the following parameters:
the center of the circumferenceθ (it is a location parameter);
the radius of the circumferenceρ (it is a scale parameter);
the two unit vectorsω and ν that, jointly with θ, determine
the planeΠ where the circumference belongs to; the scale
parameter of orthogonal projections,σS ; the scale parameter
of orthogonal distances,σY . Observe that parametersσS and
σY are not scale parameters of the whole distribution, despite
the fact that they are scale parameters ofS andY , respectively.

The expression for the density ofXi, given the parameters,
is a special case of Lemma 1, stated at the Appendix. We
need some notations to be able to write the density ofX . Let
χ−1 be the inverse function ofχ. Let s = χ−1

s (x) ∈ IR be
the first component ofχ−1(x). Let y = χ−1

y (x) ∈ IRp−1 be
the remaining(p − 1) components ofχ−1(x), and lety1 be
the first component ofy. Then

fX(x|θ, ρ, ω, ν, σS , σY ) = fS(s|ρσS)
fY (y|ρσY )

1 − (y1/ρ)
. (1)

Observe thatfX at x depends on parameters(θ, ρ, ω, ν)
because(s, y) = χ−1(x) depends on them. Let us note that
fY (y|σ2

Y ) depends ony only by ‖y‖2 becauseY is assumed
to be spheric.

So we need to derive the explicit expressions ofs, y1 and
‖y‖2 to have the full expression offX(x|θ, ρ, ω, ν, σ2

S , σ2
Y ).

Figure 1 helps to find these expressions. Letx be a point in
IRp. Let PΠ(x) andPα(x) be the projections ofx ontoΠ and
α, respectively. ThenPΠ(x) = θ+C(C′C)−1C′(x−θ), where
C = (ω, ν), andPα(x) = θ + ρ(PΠ(x) − θ)/‖PΠ(x) − θ‖.
Pythagoras’ Theorem tells us that(y1+ρ)2+‖x−PΠ(x)‖2 =
‖x − θ‖2, so

y1 = −ρ +
√

‖x − θ‖2 − ‖x − PΠ(x)‖2.

Applying again Pythagoras’ Theorem we have that‖y‖2 =
y2
1 + ‖x − PΠ(x)‖2. Now we deal withs. Observe thats is

the distance (over the curveα) betweenPα(x) andµ = θ+ρω.
Then,

s = ρφ, whereφ = cos−1

(

ω′(Pα(x) − θ)

ρ

)

.

For a set ofn i.i.d. datax = {xi, . . . , xn} the likelihood
function is

f(x|θ, ρ, ω, ν, σS , σY ) =

n
∏

i=1

fS(si|ρσS)
fY (yi|ρσY )1

1 − (yi1/ρ)
, (2)

where si = χ−1
s (xi), yi = χ−1

y (xi) and yi1 is the first
component ofyi.

To fix ideas, from now on we consider the model based
on normality of S and Y . Let S ∼ N(0, (ρσS)2) and
Y ∼ Np−1(0, (ρσY )2Ip−1) We assume thatσS is such that
P (|S| ≤ ρπ) ≈ 1 and thatσY is such thatP (‖Y ‖ ≤ ρ) ≈ 1.
To be specific, we imposeσ2

S < π/χ2
1,.999 = π/(3.29)2

and σ2
Y < 1/χ2

p−1,.999. Observe that strictly speaking the
assumptions stated at the beginning of this subsection on the
distributions ofS and Y are not satisfied by these normal
distributions, and then equation (1) is an approximated result,
but not the true expression offX(x|θ, ρ, ω, ν, σS , σY ) in this
case. Nevertheless such approximation works well in practice.

B. Prior distribution

We consider the six parameters to be independent a priori.
There are a location parameter (θ) and a scale parameter
(ρ). Using Jeffreys priors (see [10], for instance) their joint
contribution to the prior distribution is proportional to1/ρ.
The two unit vectorsω and ν belongs to the compact set
Sp−1. We take there a flat prior. We deal with parametersσS

and σY as if they really were scale parameters and, using
again Jeffreys priors, they contribute to the prior with1/σS

and1/σY , respectively. In summary, we take the prior

π(θ, ρ, ω, ν, σS , σY ) ∝ (σSσY ρ)−1. (3)

C. Posterior and full conditional distributions

The posterior distribution can not be explicitly written,
because the likelihood function (2) depends on the parameters
in a very complicated way (through the inverse functionχ−1).

Nevertheless two of the full conditional distributions are
easily derived. First,

σ2
S |θ, ρ, ω, ν, σY ,x ≡ σ2

S |s ∼ IG

(

n

2
,

1

2ρ2

n
∑

i=1

s2
i

)

,

where s = {s1, . . . , sn}. Second, defining y =
{‖y1‖2, . . . , ‖yn‖2},

σ2
Y |θ, ρ, ω, ν, σY ,x ≡ σ2

Y |y ∼

IG

(

n(p − 1)

2
,

1

2ρ2

n
∑

i=1

‖yi‖
2

)

.

The remaining full conditional distributions are not so easily
derived. We propose to use a Metropolis-Hastings algorithm



to approachπ(θ, ρ, ω, ν|σS , σY ,x). We take a random walk
proposal. After stepm of the algorithm, we defineµ(m) =
θ(m) + ρ(m)ω(m) and generate

ξθ = θ(m) + εθ, ξµ = µ(m) + εµ,

ξν = (ν(m) + εν)/‖ν(m) + εν‖,

where εθ, εµ y εν are p-dimensional independent normal
random variables, centered at 0, and with variancesσ2

θI, σ2
µI,

σ2
νI, respectively. We define

ξρ = ‖ξµ − ξθ‖, ξω = (ξµ − ξθ)/ξρ.

Then, the valueδ is defined as

δ = min

{

π(ξθ, ξρ, ξω, ξν |σS , σY ,x)

π(θ(m), ρ(m), ω(m), ν(m)|σS , σY ,x)
, 1

}

.

Finally, we take

(θ(m+1), ρ(m+1), ω(m+1), ν(m+1)) = (4)

Z × (ξθ, ξρ, ξω, ξν) + (1 − Z) × (θ(m), ρ(m), ω(m), ν(m)),

whereZ ∼ Bernoulli(δ), independent of other random vari-
ables. The valuesσθ, σµ and σν are calibrated so that the
average acceptance rate is roughly1/4, as recommended by
[11]. Observe that

π(θ, ρ, ω, ν|σS , σY ,x) ∝

f(x|θ, ρ, ω, ν, σS , σY )π(θ, ρ, ω, ν|σS , σY ) =

f(x|θ, ρ, ω, ν, σS , σY )π(θ, ρ, ω, ν) ∝

f(x|θ, ρ, ω, ν, σS , σY )/ρ.

Then

δ = min

{

f(x|ξθ , ξρ, ξω , ξν , σS , σY )ρ(m)

f(x|θ(m), ρ(m), ω(m), ν(m), σS , σY )ξρ

, 1

}

.

The likelihood values are computed as equation (2) indicates.

D. Estimating the single arch model by Gibbs sampling

The stept for the Gibbs sampler approaching the distribu-
tion π(θ, ρ, ω, ν, σS , σY |x) is as follows:

1) Generateσ2(t)
S ∼ IG

(

n
2 , 1

2(ρ(t−1))2

∑n

i=1 s2
i

)

, where

s = {si, . . . , sn} is computed using parameter values
(θ(t−1), ρ(t−1), ω(t−1), ν(t−1)).

2) Generateσ2(t)
Y ∼ IG

(

n(p−1)
2 , 1

2(ρ(t−1))2

∑n
i=1 ‖yi‖2

)

,

where parameter values(θ(t−1), ρ(t−1), ω(t−1), ν(t−1))
are used to computey = {‖y1‖

2, . . . , ‖yn‖
2}.

3) Use the Metropolis-Hastings algorithm described
in (4) to generate θ(t), ρ(t), ω(t), ν(t) ∼
π(θ, ρ, ω, ν|σ

(t)
S , σ

(t)
Y ,x).

Observe that in Step 3 it is enough to do only one iteration
of the Metropolis-Hastings algorithm (4). The reason is that
only one iteration of Step 3 is required to prove that the
joint posterior distribution of parameters is the stationary
distribution of the previous MCMC algorithm.

III. M AIN RESULTS. THE MIXTURE MODEL

Consider now ap-dimensional data set distributed around a
one-dimensional curve. We propose to model these data as a
mixture ak single arch models as those described in Section
II. That is, we assume that the data come from a random
variableX with density

k
∑

j=1

pjf(x|θj , ρj , ωj, νj , σS,j, σY,j),

wherepj > 0 and
∑

pj = 1. Let p = (p1, . . . , pk). In our
analysis we follow the Section 6.4 in [8]. In particular, we
assume that the numberk of mixture components is known.

A set of latent vectorszi ∈ {0, 1}k, i = 1, . . . , n,
are introduced. They are the so calledcomponent indicator
vectors: for all i = 1, . . . , n,

∑k

j=1 zij = 1 andzij = 1 if and
only if xi ∼ f(x|θj , ρj , ωj , νj, σS,j , σY,j). The distribution of
X can also be modeled as follows:

zi|{θj, ρj , ωj , νj , σS,j, σY,j , pj : j = 1 . . . k}

≡ zi|p ∼ Mk(1;p),

xi| ({zj, l = 1 . . . n},

{θj , ρj , ωj, νj , σS,j, σY,j , pj : j = 1 . . . k}) ≡

xi|zi, {θj, ρj , ωj , νj , σS,j, σY,j : j = 1 . . . k} ∼

f(x|
k
∏

j=1

θ
zij

j ,

k
∏

j=1

ρ
zij

j ,

k
∏

j=1

ω
zij

j ,

k
∏

j=1

ν
zij

j ,

k
∏

j=1

σ
zij

S,j ,

k
∏

j=1

σ
zij

Y,j).

A. Prior distribution

We consider that parameterp is a priori independent of
the others. Moreover we takep ∼ Dirichlet(α1, . . . , αk). We
take equalαj ’s with α0 =

∑k
j=1 αj small, in order to not

introduce much prior information. For instance, we can take
αj = 1/k. The prior distributions ofθj , ρj , ωj , νj , σS,j, σY,j

and θh, ρh, ωh, νh, σS,h, σY,h are considered independent if
j 6= h. Each of them is taken as indicated at Section II for
the single arch model.

B. Full conditional distributions

For j = 1, . . . , k let xj(z) = {xi, i ∈ {1, . . . , n} : zij =
1}, that is, the set of observations that, according to indicators
zij , were generated by thej-th mixture component. LetΨj =
(θj , ρj , ωj, νj , σS,j , σY,j) the set of parameters identifying the
j-th curve,j = 1, . . . , k. With these definitions we have that

Ψj |(Ψh, h 6= j,p, z,x) ≡ Ψj|xj(z), for j = 1, . . . , k.

This distribution has been studied at Section II. Moreover,
zi|(Ψj , j = 1, . . . , k,p,x) is multinomial,

Mk(1; p1(xi,p, Ψ1), . . . , pk(xi,p, Ψk)),

with

pj(xi,p, Ψj) =
pjf(xi|Ψj)

∑k
h=1 phf(x|Ψh)

.



Finally,
p|(x, z, Ψj , j = 1, . . . , k) ≡ p|z ∼

Dirichlet(α1 +

n
∑

i=1

zi1, . . . , αk +

n
∑

i=1

zik).

C. Estimation of the mixture model by Gibbs sampling

The t-th step of a Gibbs sampler approaching the distribu-
tion of parameters (curve parameters,z, p) given the datax
is as follows:

1) GenerateΨ
(t)
j = (θ

(t)
j , ρ

(t)
j , ω

(t)
j , ν

(t)
j , σ

(t)
S,j, σ

(t)
Y,j) for

j = 1, . . . , k, following Sections II and III-B, and using
z
(t−1) as component indicators.

2) Generate

zi ∼ Mk(1; p1(xi,p
(t−1), Ψ

(t)
1 ), . . . , pk(xi,p

(t−1), Ψ
(t)
k ))

for i = 1, . . . , n.
3) Generatep(t) ∼ Dirichlet(α1 +

∑n

i=1 z
(t)
i1 , . . . , αk +

∑n

i=1 z
(t)
ik ).

IV. SIMULATION RESULTS

We fit the mixture of arch models to a simulated data
set with 100 two-dimensional points. The mixture model
that generates the data hask = 2 components and these
parameters:

p1 = 0.5, θ1 = (0,−1), ρ1 = 1, ω1 = (−1, 0),

σS,1 = 0.75, σY,1 = 0.2,

p2 = 0.5, θ2 = (0, 1), ρ2 = 1, ω2 = (1, 0),

σS,2 = 0.75, σY,2 = 0.2.

Observe that we do not need to specify parametersν1 and
ν2 because the planeΠ is just the planeR2. Figure 3 (upper
panel) shows the data and the generating model.

The Gibbs sampling algorithm described above was used to
simulate from the posterior distribution. A Matlab (Version 7)
code was written for this purpose. The algorithm is left to run
6000 iterations. It takes 1 minute and 35 seconds in a Pentium
4 (CPU 2.8 GHz). Table I shows some posterior statistics
calculated from the last third of simulated posterior values.
Similar results were obtained using WinBUGS. The Gibbs
sampling algorithm development is summarized at Figure 2,
where the evolution of the cumulative mean for simulated
parameters values is shown. Figure 3 compares the true model
with the estimated model (under quadratic loss).

V. CONCLUSIONS AND FURTHER RESEARCH

We have presented a Bayesian framework for modelling
data distributed around a principal curve. This approach re-
duces the required number of mixture components (compare
with fitting a mixture of normal distributions). Moreover it
allows us to face interesting statistical questions beyondthe
determination of point scores over the curve. The following
aspects require additional attention:

TABLE I

RESULTS FROM THE ESTIMATION OF THE MIXTURE OF ARCH MODELS.

6000VALUES FROM THE POSTERIOR DISTRIBUTION WERE GENERATED

BY GIBBS SAMPLING. POSTERIOR STATISTICS WERE CALCULATED USING

THE LAST THIRD OF SIMULATED VALUES.

True Posterior Posterior
Parameter values mean Std. Dev.

p1 .5 .5377 .0563
p2 .5 .4623 .0563
θ1 (0,-1) (.1052,-1.1003) (.1231,.0568)
θ2 (0,1) (.0620,1.0019) (.1295,.0553)
ρ1 1 1.0672 .0998
ρ2 1 .9436 .1035
ω1 (-1,0) (-.9504,.2829) (.0364,.1241)
ω2 (1,0) (.9796,-.1177) (.0269,.1604)
µ1 (-1,-1) (-.9092,-.7990) (.0582,.1272)
µ2 (1,1) (.9866,.8899) (.0461,.1436)

σS1
+ σS2

1.5 1.5008 .1473
.5(σY1

+σY2
) .2 .1878 .0202
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Fig. 2. Cumulative mean evolution for the simulated parameter values. In the
first and second row, corresponding respectively to populations 1 and 2, solid
and dashed lines represent the first and second (respectively) coordinates of
the 2-dimensional vectors. In other panels, solid lines represent population 1
and dotted lines correspond to population 2.
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Fig. 3. True versus estimated model. The upper panel represents the true model (dashed lines, small + and * symbols) and the estimated model (solid lines,
big + and * symbols). The observed data are represented as empty dots. The lower panels include the contour level curves for the true data density (left) and
for the estimated data density (right).

• Analyzing more carefully the choice of the prior distrib-
ution. An open question is to find out whether or not the
Jeffreys prior for the whole model is in fact proportional
to our proposal in (3). The main difficulty (maybe insu-
perable) is the dependence offX(x|θ, ρ, ω, ν, σS , σY ) on
θ, ρ, ω, ν throughχ−1(x).

• Allowing the number of mixture componentsk to be
unknown. The ideas of reversible jump ([12]) or those
of birth-and-death MCMC ([13]) are valid for deal with
this problem. See also the Chapter 11 of [14].

• Allowing S to have distribution different from normal
in each mixture component (we think that the uniform
distribution would also be appropriate). The main effect
of this change is that the full conditional distributions of

σ2
S andσ2

Y are no longer Inverted Gamma. Steps 1 and 2
in the Gibbs sampling algorithm described in Subsection
II-D might be replaced by Metropolis-Hastings steps.

• Extending the single arch model replacing the arch of
circumference by a more flexible arch of ellipse. Some
additional parameters would appear, but the level of
difficulty is similar to the case we have studied in this
paper.

• Extending the implemented application from dimension
2 to the generalp-dimensional case. This extension is
straightforward.

• Extracting a unifying principal curve from the density
function estimated as a mixture of single arch model
densities.



APPENDIX

Lemma 1: Assume thatI = Support(S) is a compact
interval, and that the distributionsY |S = s have convex
compact support contained in the ballB(0, ρ(s)), whereρ(s)
is the curvature radius ofα at the pointα(s). Then the
function χ : Support(S, Y ) → Support(X) is a homeomor-
fism. Moreover, the density function ofX at a given point
x ∈ Support(X) is

fX(x) = fS(s)fY |S=s(y)
1

1 − y1/ρ(s)
,

where (s, y) is the inverse ofx by χ and y1 is the first
component ofy.
Proof. The proof of this result is based on change of variable
standard techniques. Observe that Support(Y |S = s) ⊆
B(0, ρ(s)) and thatHc(α(s), α′(s)) ∩ Hc(α(t), α′(t)) = ∅
when s 6= t. Then χ is a 1-1 function form Support(S, Y )
to the image of this set. Asχ is continuous and it is
defined on a compact set, it follows thatχ(Support(S, Y )) =
Support(χ(S, Y )). Then χ is a homeomorfism because it is
a 1-1 continuous function defined from a compact set to a
metric space.

Remember thatχ(s, y) = α(s) + A(s)(0, yt)t, where the
frame matrixA(s) is an orthonormal matrix, it is differentiable
as a function ofs, and its first column isα′(s). Moreover,
A(s) can be chosen so that the corresponding Cartan matrix
C(A) = A−1A′ = AtA′ is skew-symmetric (Ct = −C)
having elementscij(s) = 0 for |i − j| 6= 1, where A′ is
the matrix whose elements are the derivatives of the elements
of matrix A (for details see, for instance, [9], pp. 158-160).
As χ is 1-1, we call (s(x), y(x)) = χ−1(x), for a given
x ∈ Support(X), whereX = χ(X).

Applying change of variable standard techniques, the den-
sity function of X at a given x can be computed as
fX(x) = f(S,Y )(s(x), y(x))(det(Jχ(s(x), y(x)))−1 , where
Jχ(s(x), y(x)) is the Jacobian ofχ at x, that is to say the
p × p matrix

Jχ(s, y) =
∂χ

∂s∂y
(s, y) = (α′(s) + A′

2(s)y, A2(s)),

where A2(s) is the p × (p − 1) matrix containing the last
(p − 1) columns ofA(s) (so A(s) = (α′(s), A2(s))). Then
det(Jχ(s, y)) = det(α′(s) + A′

2(s)y, A2(s)) =

det(α′(s), A2(s)) + det(A′
2(s)y, A2(s)) =

det(A(s)) +

p
∑

j=2

yj−1 det(a′
j(s), A2(s)),

where aj(s) is the j-th column of A(s). Remember that
(A(s))tA′(s) = C(A(s)) (soA′(s) = A(s)C(A(s))) and that
the Cartan MatrixC(A(s)) has the following structure:














0 −k1(s) 0 . . . 0 0 0
k1(s) 0 −k2(s) . . . 0 0 0

...
...

...
. . .

...
...

...
0 0 0 . . . kp−2(s) 0 −kp−1(s)
0 0 0 . . . 0 kp−1(s) 0















.

kj(s) is the j-th curvature of α(s). In particular,k1(s) =
‖α′′(s)‖ is the curvature ofα at α(s). From A′(s) =
A(s)C(A(s)), it follows that α′′(s) = k1(t)a2(s), a′

2(s) =
−k1(t)α

′(s) + k2(s)a3(s), a′
j(s) = −kj−1(t)aj−1(s) +

kj(s)aj+1(s) for j = 3, . . . , p − 1, and a′
p(s) =

−kp−1(t)ap−1(s). Then, for3 ≤ j ≤ p − 1 we have

det(a′
j(s), A2(s)) =

det(−kj−1(t)aj−1(s) + kj(s)aj+1(s), (a2(s), . . . , ap(s)))

that is equal to 0; forj = p det(a′
p(s), A2(s)) =

det(−kp−1(t)ap−1(s), (a2(s), . . . , ap(s))) = 0; and
for j = 2 det(a′

2(s), A2(s)) = det(−k1(t)α
′(s) +

k2(s)a3(s), (a2(s), . . . , ap(s))) =

(−k1(s)) det(α′(s), (a2(s), . . . , ap(s))) =

(−k1(s)) det(A(s)) = −k1(s).

Moreover,det(A(s)) = 1, becauseA(s) is an orthonormal
matrix. So we conclude thatdet(Jχ(s, y)) = 1 − y1k1(s),
and the result is proved. 2
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[2] B. Kégl, A. Krzyżak, T. Linder, and K. Zeger, “Learningand design
of principal curves,”IEEE Trans. Pattern Analysis and Machine Intel-
ligence, vol. 22, no. 3, pp. 281–297, 2000.

[3] P. Delicado, “Another look at principal curves and surfaces,” Journal of
Multivariate Analysis, vol. 77, pp. 84–116, 2001.

[4] P. Delicado and M. Huerta, “Principal Curves of OrientedPoints:
Theoretical and computational improvements,”Computational Statistics,
vol. 18, pp. 293–315, 2003.

[5] R. J. Tibshirani, “Principal curves revisited,”Stats. & Comp., vol. 2, pp.
183–190, 1992.

[6] M. E. Tipping and C. M. Bishop, “Mixtures of probabilistic principal
component analyzers,”Neural Computation, vol. 11, pp. 443–482, 1999.

[7] K. Chang and J. Ghosh, “A unified model for probabilistic principal
surfaces,”IEEE Trans. on Pattern Anal. and Machine Intel., vol. 23,
pp. 22–41, 2001.

[8] C. P. Robert,The Bayesian choice, 2nd ed. New York: Springer, 2001.
[9] H. W. Guggenheimer,Differential Geometry. Dover Publications, 1977.

[10] R. E. Kass and L. Wasserman, “The selection of prior distributions by
formal rules,”Journal of the American Statistical Association, vol. 91,
pp. 1343–1370, 1996.

[11] G. O. Roberts, A. Gelman, and W. R. Gilks, “Weak convergence and
optimal scaling of random walk Metropolis algorithms,”Ann. Appl.
Probab., vol. 7, no. 1, pp. 110–120, 1997.

[12] P. Green, “Reversible jump MCMC computation and Bayesian model
determination,”Biometrika, vol. 82, pp. 711–732, 1985.

[13] M. Stephens, “Bayesin analysis of mixture models with an unknown
number of components– An alternative to reversible jumps methods,”
Annals of Statistics, vol. 28, pp. 143–151, 2000.

[14] C. P. Robert and G. Gasella,Monte Carlo Statistical Methods, 2nd ed.
New York: Springer, 2004.


