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Abstract— To obtain accurate modeling results, it is of primal
importance to find optimal values for the hyperparameters in
the Support Vector Regression (SVR) model. In general, we
search for those parameters that minimize an estimate of the
generalization error.

In this study, we empirically investigate different perfor-
mance measures found in the literature: k-fold cross-validation,
the computationally intensive, but almost unbiased leave-one-
out error, its upper bounds - radius/margin and span bound -,
Vapnik’s measure, which uses an estimate of the VC dimension,
and the regularized risk functional itself. For each of the
estimates we focus on accuracy, complexity and the presence of
local minima. The latter significantly influences the applicability
of gradient-based search techniques to determine the optimal
parameters.

I. INTRODUCTION

The performance of SV regression depends heavily on the
choice of the hyperparameters. We focus in this paper on
the following hyperparameters: the width ¢ of the insensitive
zone, a regularization factor C' penalizing constraint errors,
and a kernel function parameter o specifying the width of
the Gaussian Radial Basis Function (RBF) kernel.

During the last few years, several methods have been
proposed for choosing the parameters of support vector ma-
chines. These methods use distinct criteria, or performance
measures, for assessing the optimality of the parameters.
In addition, the methods differ in the way they search the
parameter space, i.e. either using greedy search techniques
like grid search, pattern search or genetic algorithms, or local
gradient-based optimization techniques.

The aim of this paper is to empirically study the usefulness
of the various performance measures for tuning the SVR
hyperparameters. In addition, we look for clues pointing
out which optimization routines — either global or local,
with or without making use of gradient information — are
most appropriate for a specific estimate of the generalization
performance.

The rest of the paper is organized as follows. We start
in Section [IT with a brief introduction to support vector
regression, after which we give a review of the various
performance measures studied in this paper. The settings of
the computational experiments are described in Section [111}
The experimental results are analyzed and discussed in
Section [IV. Finally, some concluding remarks and links to
current research are made in Section
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Il. BACKGROUND

This section briefly reviews the support vector regression
algorithm and presents the performance measures that will
be compared in this paper.

A. Support Vector Regression

Given training vectors ; € R™, ¢ = 1,...,m with
corresponding target values y;, the idea of support vector
regression is to look for a function f(z) = (w, ®(x))x + b,
with w and ®(x) being some vectors of a given reproducing
kernel Hilbert space (RKHS), that minimizes the following
regularized risk [17]:
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where L(y;, f(x;)) is either the linear e-insensitive loss (L1-
SVR) function defined by

L(y, f(x)) = ly — f(z)]c = max(0, |y — f(z)| —¢),
or the quadratic e-insensitive loss (L2-SVR) defined by

L(y, f(z)) = ly — f(z)[2.
In the rest of this paper we will focus only on L2-SVR,
because all the theoretical bounds, together with their deriva-
tives, are defined for that case. Moreover, for the leave-one-
out error the landscape based on the ¢;-norm is not smooth
[9]. Using the L2-SVR formulation, (1) is equivalent to
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subject to —e— & < f(x;) —yi < e+ &.

The solution of this problem can be obtained by means of
Lagrangian theory and it is easy to show that:
w = z:(oz;k —a;)P(x;),
=1
where e and o* are the Lagrange multipliers associated with
the constraints of (2). Their values are the solution of the
following dual problem [7]
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with K(z;,z;) = K(x;,x;) + 50;;, where we already
applied the kernel trick by substituting K(xz;,x;) =
(@(x:), ©(x;))m-

To summarize, we have the following regression function
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where we use the Gaussian RBF kernel
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as kernel function.

B. Performance Measures

1) k-fold Cross-Validation and Leave-One-Out: Cross-
validation is a frequently used technique, where one ran-
domly splits the training samples in k parts of equal size:
one is used as validation, while the remaining parts are used
to build a model. The generalization performance is assessed
by averaging the test error over the & splits.

The leave-one-out (LOO) procedure can be viewed as an
extreme case of k-fold cross-validation in which & equals the
number of training samples m. For every training sample one
trains a model using the other samples and checks whether
it is possible to predict the label of the sample left out. It is
known [17] that the LOO procedure gives an almost unbiased
estimate of the expected generalization error.

Both k-fold cross-validation and LOO are applicable to
arbitrary learning algorithms. In case of support vector
machines (classification and regression), it is however not
necessary to run the leave-one-out procedure on all m
samples — only the support vectors suffice [11]. In addition
one could speed up the calculation by using warm start
algorithms or using online support vector machines, like
the increment/decrement support vector implementation as
described in [12].

Despite this, tuning the hyperparameters with leave-one-
out is very time consuming. Therefore upper bounds of the
LOO error, that are much cheaper to obtain, have been de-
veloped. For SVM in classification, the most frequently used
bounds are the radius/margin [5], [6] and span bound [16].
Recently, Chang et al. have proposed analogous bounds for
SV regression, which are used in [14] for feature selection.

In [9] the authors introduce the MCV (Minimum Cross-
Validation) method, where the hyperparameters of SVR
are determined by minimizing the leave-one-out (or cross-
validation) error using gradient descent. When comparing
the performance of MCV with a brute force grid search,
they observe a reduced number of SVR evaluations needed
to find the optimal hyperparameters and an optimal leave-
one-out error which is smaller than the one obtained from a
grid search. However, the performance is not compared on a
separated test set. In [10], [11] the authors speed up MCV by
using only the support vectors in the leave-one-out procedure
and the calculation of the gradient.

2) Radius/Margin Bound: For the radius/margin bound,
the following result holds:

Theorem 1 (Chang et al. [4]). Under the assumption that
the set of support vectors SV is non-empty, the leave-one-out
error is bounded by
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In this expression R is the radius of the smallest sphere

in feature space containing the points {é(mi)}izlw,ym with
VC

and e; the ith canonical basis vector of R™. R can be com-
puted by solving the following convex quadratic optimization
problem:
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with K = K + A1,
3) Shan Bound: For the span bound, the following result
holds:

Theorem 2 (Chang et al. [4]). Under the assumptions that
the set of support vectors SV is non-empty and remains the
same during the leave-one-out procedure, the leave-one-out
error for SVR is bounded by
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where S; is the distance between ®(x;) and the span of all
other support vectors
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Because S? is a discontinuous function, Chapelle et al.
suggested in [5] to replace it by a looser but smoother
function S?, which is a regularized version of S?. Instead of
solving multiple optimization problems, one can compute the
(approximated) span estimates by a single matrix inversion,
i.e.
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where 1sy, is a vector of |SV| ones, Ksy + Dgy are
|SV| x |SV| matrices with elements respectively given by
Ki,j = K(wi,acj) + %(SU and D@j = ﬁnaz(slj. The
parameter 5 is a user defined constant which denotes the
amount of smoothing regularization, and is set to 0.01 [5].

For more details regarding the derivation as well as explicit



expressions for the gradients, we refer to the original paper
[4].

The authors of [4] apply Theorem 1land|2 in a comparative
study between 5-fold cross-validation, in combination with
a grid search, and radius/margin and span bound, both using
a gradient based method. The study involves several bench-
mark data sets, including ‘Housing data’ (see Section [II).
Only the optimal parameters found using span bound are
capable of competing with 5-fold cross-validation in accu-
racy, and much less SVR evaluations are needed than with 5-
fold cross-validation. The authors observe a big difference in
optimal parameters depending on the performance measure.
We will discuss this issue, confirmed by our experiments,
further in Section[IV.

4) Vapnik's Measure: Another overall error measure is
Vapnik’s measure [17]. This error measure uses an approxi-
mation of an upper bound of the prediction risk provided by
statistical learning theory and is given by
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which depends on the (e-insensitive) loss function used, and
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Here h is the VC-dimension of the set of loss functions and ¢
is a constant that reflects the “tails of the distribution”, i.e. the
probability of observing large values of loss. Furthermore,
the upper bound holds true with probability 1 — n. For
practical purposes, ¢ = 1 and n = min(4/y/m,1) are
recommended in [17]. An estimate of the VC-dimension of
a given learning machine model that Vapnik proposes is

&
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and R is the radius of the smallest sphere containing all
training samples, as in the radius/margin bound.

Except for the more theoretical discussion in [17], there
are few results on the use of Vapnik’s measure as a model
selection criterion. This might be explained by the observed
poor behaviour of this measure, which will be discussed in
Section (V.

5) Regularized Risk Functional: The objective of the
learning process is to find a regression hyperplane with a
small risk by minimizing the regularized risk functional

A
2wl + Rep.

Here ||wl/?> is the term which characterizes the model
complexity, and Remp measures the training error (5), with
A being a constant determining the trade-off. In terms of

support vector hyperparameters A equals 1/C. In short,
minimizing the regularized risk functional captures the main
insight of statistical learning theory, stating that in order to
obtain a small risk, one needs to control both training error
and model complexity, i.e. explaining the data with a simple
model.

One could also apply the risk minimization principle,
together with gradient descent, for learning the shape and
distribution of kernel functions [18].

I1l. EXPERIMENTS

We consider the same two real benchmark data used
in [10], [11]: the Auto Imports Database and the Boston
Housing Data.

The ‘Autos’ data set [13] contains data on the car and
truck specifications in 1985, and is used to predict a price
based on its specifications. The data set has 159 samples with
no missing values and consists of 14 numeric explanatory
variables and one target variable (price).

The ‘Housing’ data set [13] contains data on the housing
and environmental conditions related to housing values in
suburbs of Boston, and is used to predict a value based on
its conditions. The data set has 506 samples with no missing
values and consists of 13 numeric explanatory variables and
one target value.

While the number of samples in these data sets is rather
small, they allow comparison with other results obtained in
the literature.

To have a reliable comparison, we randomly produce 10
training/test splits. Each training set consists of 4/5 of the
data, the rest is used for testing and provides an estimate for
the generalization error. Before the analysis, the response
variables are standardized as follows

b= g v - mean(y) - 1)

while the predictor variables are scaled between [0, 1].

The various performance measures, as described in Sec-
tion 11-B, are implemented in Matlab. The convex quadratic
problems are solved through the Matlab interface to a
modified version of LIBSVM 2.81 [3], which includes the
calculation of L2-SVR, with quadratic penalization of the
constraint violations, and the computation of the smallest
sphere radius.

TABLE |
GRID SPECIFICATIONS OF THE PARAMETER SEARCH SPACE.

min | max | # Steps
log(C) —10 10 20
log(e) —10 1 100
log(c?) | —10 | 10 100

We train a vast amount of SVR models, where we let the
model parameters (C, ¢, 02) range in log-space as specified
in Table T. The upper bound on loge is set to

POg maxi—1,..m Ui ; min;—1,...m ?]z‘J 7 (6)




as larger values of e cause all the training data to lie inside
the e-tube and hence the zero vector (¢ = a® = 0) is an
optimal solution of (3) [2].

For each of the models, we record the value of the
various performance measures together with the number
of support vectors and the mean squared error (MSE) on
training and test set. From these values we infer the optimal
model in the three-dimensional (C, e, o2)-grid according to
each performance measure. Except for Vapnik’s measure,
which reaches zero in a number of parameter combina-
tions (see Figure 2(e)), the performance measures have a
unique minimum over the three-dimensional grid. In case of
Vapnik’s measure, we return the first optimal model found.
This choice, however, does not have serious implications, as
we see later on. To get an estimate of the computational
complexity, we monitor the time spent on the evaluation of
the different performance measures.

All experiments are run on CalcUA, the cluster available
at the University of Antwerp, which consists of 256 Sun Fire
V20z nodes (dual AMD Opteron with 4 or 8 GB RAM).

IV. ANALYSIS AND DISCUSSION

TABLE I
MEAN AND STANDARD DEVIATION OF MSE ‘OPTIMAL’ SVR MODEL

Autos Housing
5-fold cross-validation | 0.154+0.07 | 0.124+0.04
leave-one-out 0.154+0.05 | 0.12+0.04
radius/margin bound 0.284+0.05 | 0.2940.04
span bound 0.154+0.06 | 0.13+0.04
vapnik measure 2.1440.25 | 1.2440.14
regularized risk 0.724+0.23 | 0.29+0.07
training error 0.87+0.29 | 0.61+0.12
test error 0.08+0.03 | 0.1040.02

Table[ll presents the mean and standard deviation, over 10
different training/test splits, of the MSE on the test data of the
optimal model according to each of the various performance
measures described in Section [TI-B] In addition, the results
for the models with the lowest training error and the lowest
test error are given. It should be clear that only 5-fold
cross validation, leave-one-out and the span bound closely
approximate the optimal MSE.

TABLE Il
MEAN AND STANDARD DEVIATION OF ‘OPTIMAL’ PARAMETERS
(AuTos)
log(C) log(e) log(0?)
5-fold cross-validation 7.80+2.20 -6.14+4.09 1.96+1.59
leave-one-out 8.404+2.07 -5.94+3.83 1.92+1.23
radius/margin bound 0.00+0.00 -0.76+0.13 0.20+0.16
span bound 2.804+1.03 | -10.00+0.00 0.984+0.73
vapnik measure 10.004-0.00 0.67+0.00 -2.56+0.53
regularized risk 10.00+0.00 -2.224+0.32 -6.50+1.71
training error 10.00+0.00 | -10.00+0.00 | -10.00+40.00
test error 7.00+2.16 -4.56+£3.77 0.32+1.94

Table TIT and [TV give the mean and standard deviation
of the optimal model parameters as determined by the

various performance measures. As in [4], the value of the
“optimal” hyperparameters differ strongly among the criteria,
including the ones that achieve an almost optimal MSE in
Table [T} Moreover, we notice — in case of k-fold cross-
validation, leave-one-out and the test error — a large standard
deviation in the optimal parameters. This all suggests that
the optimal model doesn’t exist and that other factors, like
the number of support vectors, prior domain knowledge, etc,
will be decisive. Furthermore, this diminishes the chance
of developing fast and automatic model selection methods
that only consider the data without relying on compromising
heuristics.

TABLE IV
MEAN AND STANDARD DEVIATION OF ‘OPTIMAL’ PARAMETERS
(HOUSING)
log(C) log(e) log(o?)
5-fold cross-validation 5.80+2.20 -7.22+3.15 0.02+0.89
leave-one-out 4.80+1.40 -8.19+3.08 -0.40+0.46
radius/margin bound 0.00+-0.00 -0.78+0.05 -0.92+0.14
span bound 3.80+0.63 -9.824+0.56 -0.06+0.39
vapnik measure 8.00+0.00 0.89+0.00 | -10.00+0.00
regularized risk 10.00+0.00 -3.25+0.09 -3.78+0.06
training error 10.0040.00 | -10.0040.00 -5.26+0.16
test error 4.80+2.35 -6.22+3.40 -0.92+0.70

In classification tasks [5], [6], [8] the radius/margin
and span bound perform evenly. In our experiments (and
those performed in [4], [14]) using regression data, the
radius/margin bound performs poorly compared to the span
bound. Even more surprising is the fact that the measures
that capture the main insights of Statistical Learning Theory
— Vapnik’s measure and the regularized risk —, are not able
to give preference to models that eventually have a good
prediction error. From Figure 2(e) and 2(f), we see that
the two measures behave similarly. The explanation for the
poor behaviour of Vapnik’s measure is twofold. First, a large
epsilon value gives rise to models where the e-insensitive loss
function equals zero. On the other hand, models with very
small o’s mean that the kernel is more localized, thus, SV
regression has a tendency to overfit and the empirical error
will also equal zero. In both cases, this means that Remp
equals zero, and becomes the dominant factor in (4) and
hence bad generalizing models are considered optimal. As
a last remark, we observe that only looking at the training
error will not result in a good model choice, either.

TABLE V
AVERAGED MEAN AND STANDARD DEVIATION OF TIME SPENT

Autos Housing
5-fold cross-validation 5.051+11.06 397+ 324
|eave-one-out 125.83+25.24 | 401.93+216.91
radius/margin bound 291+ 0.10 2.25+ 4.06
span bound 238+ 1.01 389+ 242
vapnik measure 3.15+ 3.90 3.86+ 3.98
regularized risk 3.224+ 0.53 3.61+ 0.74
training error 157+ 0.26 171+ 0.29
test error 1.15+ 0.09 118+ 0.09
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Table [V shows the average relative time spent, where the
time to build a model with a specific set of parameters is
used as time unit. This gives us a ratio of how much longer
it takes to assess the performance of a model compared to
the time needed to train that particular model. Results are as
expected, with a clear peak at the leave-one-out procedure.
Also note that the time necessary to calculate the span bound,
which involves a matrix inversion, approaches the time for
5-fold cross-validation as the sample size increases.

In Figure 1(a), we plot the MSE of SVR models where
the parameter ¢ varies, while the other two parameters of
the model are determined by minimizing the performance
measure over the (C,o?)-grid. It is clear that the MSE is
independent of the value of e in the interval [—10,—3].
An explanation for this behaviour is that in this interval,
models are constructed that use all data as support vectors
(see Figure 1(b)). So there is need for a lower bound, like
the upper bound (6), to restrict the range of e.

TABLE VI
MEAN AND STANDARD DEVIATION OF MSE ‘OPTIMAL’ SVR MODEL
(RANGE log(€) = [—3,1])
Autos Housing
5-fold cross-validation | 0.14+ 0.06 0.13+0.04
|leave-one-out 0.14+ 0.05 0.124+0.04
radius/margin bound 0.28+ 0.05 0.29+0.04
span bound 0.14+ 0.06 0.134+0.04
vapnik measure 2.14+ 0.25 1.24+0.14
regularized risk 0.72+ 0.23 0.28+0.06
training error 0.66+ 0.43 0.231-0.06
test error 0.08+ 0.04 0.10£0.02

Table V1 is analogous to Table 11/ but now for the range of
log(e) restricted to [—3, 1] instead of [—10, 1]. It is clear that
the influence of restricting the range of log(e) is negligible
for the MSE on the test data. A similar observation can be
made for the parameters of the optimal model. It should be

“logte)”
(b) Mean percentage SVs (variable ¢ — optimal (o2, C'))

Insensitivity of parameter e (Housing data)

noted that the offset point —3 corresponds with the value of
log(e) for which the number of support vectors is no longer
maximal (see Figure [1(b)), but it is rather a coincidence that
it is the same for both data sets.

The plots in Figure 2| show that, except k-fold cross-
validation, the performance measures are rather smooth,
so gradient based methods can be useful for optimization,
although they might get stuck at the various plateaus. We
could probably smooth k-fold cross-validation, too, if we
choose a fixed split of the folds, but this could introduce a
possible bias in minimizing the error of that particular split
and with possible loss of generalization as consequence.

V. CONCLUSIONS AND FUTURE WORK

In this paper we empirically study the usefulness of various
performance measures for the optimization of the SVR
hyperparameters in a fast, accurate and autonomous way.
Only k-fold cross-validation, leave-one-out and span bound
propose optimal models with low test error. However, there is
no consensus regarding the value of the optimal parameters.

As measure to assess the performance, we clearly suggest
(a smoothed version of) k-fold cross-validation or span
bound because they seem to perform well and the gradients
can be calculated without much overhead. In a related study
[8], which evaluates simple performance measures for tuning
SVM hyperparameters, the span bound is disregarded be-
cause it requires matrix inversion. Nevertheless, on small data
sets, there is no need to put aside the span bound: timings to
compute the span bound analytically are less than or similar
to 5-fold cross-validation, the model selection criterion that
performs best for classification according to [8].

Our results also reveal new questions that need an answer
in the near future.

Due to the observed insensitivity of e over a large region
of the search space, it is essential to be able to restrict its
range. It is still unknown how to determine the lower bound
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in general. One might rely on v»-SVR which, starting from
a specific rate of support vectors, calculates ¢ implicitly [2],
[15]. The insensitivity of € in SVR is also observed for the
parameter v in v-SVR [1].

To determine the optimal C' and o2 parameters in the
context of »-SVR, there is need for a more intensive study to
see whether radius margin and span bound can be generalized
for »-SVR and whether the performance measures behave
similarly. Furthermore, in both SVR and v-SVR domain
knowledge might be exploited to restrict the search space
of the hyperparameters.
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