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Abstract— Support Vector Regressors (SVRs) are a class of
nonlinear regressor inspired by Vapnik’s Support Vector (SV)
method for pattern classification. The standard SVR has been
successfully applied to real number regression problems such
as financial prediction and weather forecasting. However in
some applications the domain of the function to be estimated
may be more naturally and efficiently expressed using complex
numbers (eg. communications channels) or quaternions (eg. 3-
dimensional geometrical problems). Since SVRs have previously
been proven to be efficient and accurate regressors, the ex-
tension of this method to complex numbers and quaternions
is of great interest. In the present paper the standard SVR
method is extended to cover regression in complex numbers
and quaternions. Our method differs from existing approaches
in-so-far as the cost function applied in the output space is
rotationally invariant, which is important as in most cases it is
the magnitude of the error in the output which is important,
not the angle. We demonstrate the practical usefulness of this
new formulation by considering the problem of communications
channel equalization.

I. INTRODUCTION

The problem of function estimation can be solved using
supervised learning where the unknown function is assumed
to model some generating system such as a chemical plant.
This is commonly treated as a regression problem, where
given a set of training data consisting of inputs and corre-
sponding system outputs, the unknown generating function
is estimated by regressing on the available data.

Support Vector regressors (SVRs) [1], [2], [3] are a class
of nonlinear regressor inspired by Vapnik’s SV formulation
for classification [4], [5]. Like Vapnik’s support vector classi-
fiers, SVRs achieve nonlinearity by first implicitly mapping
all data into a (usually) higher dimensional feature space.
In this feature space, a linear function is constructed by
minimizing a regularized cost function. The regularization
term in the cost function is present to bias the estimated
function toward functions with smaller gradient in feature
space [6], [7] and hence minimise noise sensitivity.

The standard SVR formulation assumes an unknown gen-
erating function with real outputs. However, in many other
areas such as telecommunications and geometrical problems,
the target outputs are either complex numbers (eg. com-
munication channels, 2-dimensional geometric problems) or
quaternions (eg. 3-dimensional geometric problems), where
quaternions are an extension of complex numbers and have
4 axes which represent 1 real and 3 imaginary components.
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While it is possible to use either 2 or 4 independent SVRs
to separately treat each component (axis) of the complex
number/quaternion output, this may not be desirable for a
number of reasons. Firstly, the complex/quaternion system
outputs may be coupled and treating them independently
may degrade regressor performance. Secondly, as each of
the independent SVRs are constructed using minimization
of a risk function along a single axis, the overall risk
function will not be rotationally symmetric. This means that
changes in angles between the axes will affect the estimated
function when only the magnitude of the error is considered
to be of primal importance. Some previous work has been
done toward the extension of the SVR framework to cover
complex-valued and quaternion-valued regression [8], [9].
However, while this work has addressed the first point (ie.
the problem of interconnectedness) it has not addressed the
second. In this paper we demonstrate a new way of extending
the SVR framework so that both points are addressed.

We begin by first reviewing the standard ε-SVR method
in section II. This is important to set the background for
our proposed extension to complex/quaternionic systems in
section III. We start with the primal form and systematically
work through the derivation to obtain the dual formulation.
While the derivation of the dual is more complex than the
standard ε-SVR case, the dual itself is directly analogous
to the standard ε-SVR dual which means that it can be
solved using ideas from existing SVR training algorithms.
To demonstrate the practical applicability of our regressor,
we apply it to a 4-QAM (Quadrature Amplitude Modulation)
channel equalization problem [10] which requires a highly
non-linear decision boundary.

A. Notation

Throughout this paper the quaternionic division alge-
bra [11], [12], [13] will be denoted H, the field of complex
numbers C, the completely ordered field of reals R, the
positive reals R

+ and the negative reals R
−. We use N to

denote the natural numbers (including zero), Z the integers,
and Zn to represent the integers modulo n ∈ N (so Zn =
{0, 1, . . . , n − 1}). For generality we let X ∈ {R, C, H}. An
n-sphere of radius ε will be denoted Sn

ε (X), ie.:

Sn
ε (X) =

{
z ∈ X

n+1
∣∣ |z| = ε

}
For any x ∈ H, xR ∈ R is defined to be the real part

of x and xI , xJ , xK ∈ R the imaginary parts of x, so in
componentwise notation the quaternion x may be written
x = xR+ixI +jxJ +kxK using the standard i, j,k notation.
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The conjugate and norm of x will be denoted x̄ and |x|
respectively. As per [11], for x ∈ H:

x̄ = xR − ixI − jxJ − kxK

|x| =
√

xx̄ =
√

x2
R + x2

I + x2
J + x2

K ∈ R\R−

Re (x) = 1
2 (x + x̄) = xR ∈ R

Pu (x) = 1
2 (x − x̄) = ixI + jxJ + kxK ∈ H\ (

R
+ ∪ R

−)
Un (x) = x

|x| ∈ S0
1 (H, 0) ∀x �= 0

sgn (x) = sgn (xR) + isgn (xI) + jsgn (xJ) + ksgn (xK)
∇x = ∇xR

+ i∇xI
+ j∇xJ

+ k∇xK

and for convenience we define sgn (0) = Un (0) = 0. This
notation extends to C via the removal of all j, k terms.

The ranges of most indices xi, ym etc. are implicit and
follow the convention i, j, k, l ∈ ZN , m ∈ ZdH

, p ∈ ZdL
and

q, r, s, t ∈ {I, J,K}; where N is the size of the training set,
dL the dimension of input space and dH the dimension of the
feature space. Ordering of indices of a dissimilar type (eg.
i and q) is arbitrary, so for example αi,q = αq,i. Ordering
of similar indices, however, is not arbitrary, so for example
Qi,j �= Qj,i in general. Unless otherwise stated summation
ranges are implicit, so for example:∑

i

fi =
∑

i∈ZN

fi

Column vectors will be written in lower case bold (eg. a, c,
α) and matrices in upper case bold (eg. A, K). Transposition
will be indicated by a superscript T (eg. aT ), and conjugate
transposition by a superscript † (so a† = āT ). We denote
the identity matrix I, and a vector whose every element
is 1 by 1. For two vectors a,b ∈ X

n, abT is the outer
product, ab the elementwise product and aT b the inner
product. We also define the elementwise norm (a = |b|),
the elementwise sigmoid (a = sgn (b)) and the elementwise
unit (a = Un (b)). The standard vector 2-norm is denoted
‖a‖ (so ‖a‖ =

√
a†a).

Vapnik’s ε-insensitive risk function [1] (where ε ∈ R\R−)
is defined to be:

|ϑ|ε =
{ |ϑ| − ε if |ϑ| ≥ ε

0 otherwise
(1)

II. THE STANDARD ε-SVR REGRESSION PROBLEM

The standard (real valued) ε-insensitive support vector
regression (ε-SVR) problem is formulated as follows. Given
a training set:1

Θ = {(x0, z0) , (x1, z1) , . . . , (xN−1, zN−1)}
xi ∈ R

dL is the ith input vector.

zi ∈ R is the system output given input xi.

where zi = ĝ (xi) + noise for some ĝ : R
dL → R, and

xi is drawn from an unknown distribution, construct an

1Technically, there is no reason to restrict the input space to RdL (any
Lebesgue measurable set could be used). However doing so would make
the construction of the primal less intuitive, and moreover once the dual is
attained this extension may be directly introduced using standard extensions
to Mercer’s theorem.

approximation g : R
dL → R of ĝ. An approximation g

constructed for a given training set Θ is called a trained
machine, and the construction process training. We assume
that all noise sources are smooth, independent and identically
distributed (i.i.d.) with zero mean.

In the standard approach [14], [1], [15] we implicitly
define a nonlinear map ϕ : R

dL → R
dH from input space

to feature space, where often dH 
 dL. Using this map, the
trained machine is defined to be:

g (x) = ϕ (x)T w + b

where w ∈ R
dH is the weight vector and b ∈ R is the bias.

This is known as the universal approximator form, and is a
linear function of position in feature space which is nonlinear
in input space by virtue of ϕ if ϕ is nonlinear.

The variables w and b are chosen by solving the ε-SVR
primal, namely:

min
w,b

R (w, b) = 1
2w

T w + C
N

∑
i

|g (xi) − zi|ε (2)

where R is known as the regularized risk function. The
second term in (2) is a measure of the empirical risk
associated with this model when it is applied to the training
set Θ, and the first term is a regularization term included
to minimize sensitivity to noise in x (as ∇xp

g (x) ∝ ‖w‖).
The constant C ∈ R

+ is used to trade-off empirical risk
minimization (and possible overfitting if C is too large) and
regularization (and possible underfitting if C is too small),
while ε ∈ R\R− adds a degree of noise insensitivity. The
dual form of this optimization problem [3] is usually solved
instead of the primal, namely:

min
α∈RN

Q = 1
2α

T Kα+ ε |α|T 1 −αT z

such that: −C
N 1 ≤ α ≤ C

N 1
1Tα = 0

where K ∈ R
N×N , Ki,j = K (xi,xj) and K : R

dL ×
R

dL → R is the kernel function K (x,y) = ϕ (x)T
ϕ (y),

which may be any function satisfying Mercer’s condi-
tion [16].

It may be shown that K is positive semi-definite, and
so the dual is a constrained convex quadratic programming
problem, and hence all local minima will be global. Note
that the exact form of the feature map ϕ is never required
for a given Mercer kernel for either training or use, as the
construction of the dual requires only the kernel K and the
trained machine may be expressed solely in terms of α, b
and the kernel function [3]:

g (y) =
∑

i∈SV

K (y,xi) αi + b

III. THE εX-SVR REGRESSION PROBLEM

We now consider the extension of the standard ε-SVR
to complex and quaternionic ε-insensitive support vector



regression (εX-SVR), where X ∈ {R, C, H} is the division
algebra of interest. The training set is defined to be:

Θ = {(x0, z0) , (x1, z1) , . . . , (xN−1, zN−1)}
xi ∈ R

dL is the ith input vector.
zi ∈ X is the system output given input xi.

where, as for standard ε-SVR, zi = ĝ (xi)+noise and we aim
to construct an approximation g of ĝ. In this case, however,
g, ĝ : R

dL → X, and the trained machine is defined by:

g (x) = ϕ (x)† w + b (3)

where w ∈ X
dH is the weight vector, b ∈ X is the bias, and

ϕ : R
dL → X

dH is the map from input space to (non-real in
general if X �= R) feature space.

By analogy with the standard ε-SVR method, w and b are
chosen to minimize the regularized cost function:

min
w,b

RX (w, b) = 1
2w

†w + C
N

∑
i

| |g (xi) − zi| |ε (4)

where C ∈ R
+ and ε ∈ R\R− are constants. This is directly

analogous to the standard ε-SVR risk, except that:
• The ranges of w and b differ.
• A complex/quaternionic norm is present inside the ε-

insensitive risk term so that only the magnitude of the
error zi − g (xi) is penalized.

The regularization term 1
2w

†w is included to minimize
the sensitivity of the regressor to noise in x. To understand
this choice in the current context, let ŵ = ‖w‖−1 w be the
unit vector in the direction of w. It may be seen that:

∇xp
g (x) = ‖w‖ (∇xp

ϕ (x)
)†

ŵ

is the projection of ∇xp
ϕ (x) in the direction of w, scaled by

the magnitude ‖w‖ of w. It follows that
∣∣∇xp

g (x)
∣∣ ∝ ‖w‖,

and hence minimizing 1
2w

†w = 1
2 ‖w‖2 will minimize the

sensitivity of the regressor to noise in the input, x.

A. The εX-SVR Primal

To simplify (4) we use the standard ε-SVR approach
of introducing a set of slack variables ξ∗ ∈ R

N into the
problem, allowing (4) to be re-expressed as follows:

min
w,b,ξ,ξ∗ RX = 1

2w
†w + C

N

∑
i

ξ∗i

such that: |g (xi) − zi| ≤ (ε + ξ∗i ) ∀i
ξ∗ ≥ 0

(5)

Next, to remove the complex/quaternion norm from the
constraint set we introduce a set of unit slack variables α∠ ∈(
S0

1 (X)
)N

to project the error terms g (xi) − zi onto the
real axis, and an additional set of slack variables ξ ∈ R

N

to counter the ambiguity in the sign of this projection. We
also re-express the bias using b = b∠b||, where b|| = |b| ∈ R

and b∠ = Un (b) ∈ S0
1 (X) ∪ {0}, to obtain the non-convex

quadratic programming problem:

min
w,b||,ξ,ξ∗

,α∠,b∠
RX = 1

2w
†w + C

N

∑
i

(ξi + ξ∗i )

such that: Re
(
ᾱ∠

i (g (xi) − zi)
) ≥ − (ε + ξi) ∀i

Re
(
ᾱ∠

i (g (xi) − zi)
) ≤ (ε + ξ∗i ) ∀i

Pu
(
ᾱ∠

i (g (xi) − zi)
)

= 0 ∀i
ξ, ξ∗ ≥ 0

(6)

which will referred to as the εX-SVR primal. Note that,
for any solution, ξi = 0 and ξ∗i = | |g (xi) − zi| |ε if
Re

(
ᾱ∠

i (g (xi) − zi)
)

= |g (xi) − zi|; and ξ∗i = 0 and
ξi = | |g (xi) − zi| |ε otherwise. Hence all solutions w, b
to (6) must also be solutions to (4) and vice-versa.

The advantage of this form is that it allows us to construct
the εX-SVR dual, which is directly analogous to the standard
ε-SVR dual. This is desirable for two reasons. Firstly, it
makes the feature map implicit rather than explicit, thereby
removing any practical constraints on dH . Secondly, the
constraint set of the dual is simpler than the constraint set
of the primal, which makes it easier to solve.

B. The εX-SVR Dual

As the εX-SVR primal (6) is non-convex it is advantageous
to remove this non-convexity before proceeding further. Our
method of achieving this is to re-write (6) as a bilevel
optimization problem [17]:

min
α∠,b∠

RUX = 1
2w

†w + C
N

∑
i

(ξi + ξ∗i )

such that: Pu
(
ᾱ∠

i (g (xi) − zi)
)

= 0 ∀i
w, b||, ξ, ξ∗ ∈ Ψ

(
α∠, b∠) (7)

where Ψ
(
α∠, b∠)

is the set of solutions to the optimisation
problem:

min
α∠,b∠

RUX = 1
2w

†w + C
N

∑
i

(ξi + ξ∗i )

such that: Re
(
ᾱ∠

i (g (xi) − zi)
) ≥ − (ε + ξi) ∀i

Re
(
ᾱ∠

i (g (xi) − zi)
) ≤ (ε + ξ∗i ) ∀i

ξ, ξ∗ ≥ 0

(8)

wherein (7) is referred to as the upper-level εX-SVR primal
problem, RUX is referred to as the upper-level objective, (8)
is referred to as the lower-level εX-SVR primal problem, and
RLX is referred to as the lower-level objective.

Defining ψi = ϕ (xi) α∠
i and re-writing (8) in componen-

twise form the lower-level εX-SVR primal problem may be
written:

min
w∞,wq,b||,ξ,ξ∗RLX = 1

2w
T
∞w∞ +

∑
q

wT
q wq+ C

N

∑
i

(ξi+ξ∗i )

such that:
ψT

i,∞w∞+
∑
q
ψT

i,qwq+
(
ᾱ∠

i b∠)
∞ b||+ξi ≥

(
ᾱ∠

i zi

)
∞−ε ∀i

ψT
i,∞w∞+

∑
q
ψT

i,qwq+
(
ᾱ∠

i b∠)
∞ b||−ξ∗i ≤ (

ᾱ∠
i zi

)
∞+ε ∀i

ξ ≥ 0
ξ∗ ≥ 0

(9)
which we note is a convex quadratic optimisation problem
in real variables, and hence has a well-defined dual. To
construct this dual, for each of the first set of constraints in
the lower-level εX-SVR primal (9) we associate a Lagrange
multiplier βi ≥ 0, and likewise for each constraint in the
second, third and fourth constraint sets in (9) we associate
the Lagrange multipliers β∗

i ≤ 0, γi ≥ 0 and γ∗
i ≥ 0,



respectively. Using this notation the Lagrangian of (9) is:

LX = 1
2w

T
RwR + 1

2

∑
q

wT
q wq + C

N ξ
T 1 + C

N ξ
∗T 1

− ∑
i

βiψ
T
i,RwR − ∑

i

βi

∑
q
ψT

i,qwq − b||βT Re
(
ᾱ∠b∠)

+βT Re
(
ᾱ∠z

) − εβT 1 − ξTβ − ξTγ

− ∑
i

β∗
i ψ

T
i,RwR − ∑

i

β∗
i

∑
q
ψT

i,qwq − b||β∗T Re
(
ᾱ∠b∠)

+β∗T Re
(
ᾱ∠z

)
+ εβ∗T 1 + ξ∗Tβ∗ − ξ∗Tγ∗

(10)
and the Wolfe dual [18] of (9) is:

min
w,b||,ξ,ξ∗ max

β,β∗
,γ,γ∗

LX

such that: ∇wLX = 0,∇b||LX = 0
∇ξLX = ∇ξ∗LX = 0
β,−β∗,γ,γ∗ ≥ 0

(11)

which has the KKT optimality conditions:

γ
(∇γLX

)
= γ∗ (∇γ∗LX

)
= 0 (12)

β
(
∇βLX

)
= β∗

(
∇β∗LX

)
= 0 (13)

∇wLX = 0 (14)

∇b||LX = 0 (15)

∇ξLX = ∇ξ∗LX = 0 (16)

β,−β∗ ≥ 0 (17)

γ,γ∗ ≥ 0 (18)

Condition (16) implies that:

β = C
N

1 − γ (19)

−β∗ = C
N

1 − γ∗ (20)

and hence, using (17) and (18) and defining α|| = β + β∗

and α = α||α∠ it may be seen that:

−C
N

1 ≤ α|| ≤ C
N

1

It follows from (12) that γi = 0 if ξi > 0 and γ∗
i = 0

if ξ∗i > 0 for all i. Combined with (13), (19) and (20), this
implies that:

βi > 0 ∀i : Re
(
ᾱ∠

i (g (xi) − zi)
)

= −ε − ξi (21)

βi = ξi = 0 ∀i : Re
(
ᾱ∠

i (g (xi) − zi)
)

> −ε (22)

β∗
i = ξ∗i = 0 ∀i : Re

(
ᾱ∠

i (g (xi) − zi)
)

< ε (23)

β∗
i < 0 ∀i : Re

(
ᾱ∠

i (g (xi) − zi)
)

= ε + ξ∗i (24)

and hence:

ξi + ξ∗i = −N
C

(|αi| ε + Re (ᾱi (g (xi) − zi))) (25)

Finally, equations (14) and (15) imply that:

w =
∑
i

α
||
i ψi =

∑
i

αiϕ (xi) (26)

α||T Re
(
ᾱ∠b∠)

= Re
((
α†1

)
b∠)

= 0 (27)

Using these results the lower-level εX-SVR dual (11) may
be written:

max
b||∈R

min
α||∈RN

QLX = 1
2

[
α||

b||

]T [
G g
gT 0

][
α||

b||

]

+ ε
∣∣α||∣∣T 1 −α||T Re

(
ᾱ∠z

)
such that: −C

N 1 ≤ α|| ≤ C
N 1

gTα|| = 0

(28)

where g ∈ R
N , g = Re

(
ᾱ∠b∠)

, G ∈ R
N×N , Gi,j =

Re
(
ᾱ∠

i Ki,jα
∠
i

)
, QLX = −RLX, Ki,j = K (xi,xj), and

K : R
dL × R

dL → X is the kernel function:

K (x,y) = ϕm (x)†ϕm (y)

which may be any function satisfying a quaternionic exten-
sion Mercer’s condition [19].2

Having expressed the lower-level εX-SVR training problem
in dual form we will now rewrite the upper-level εX-SVR
training problem in terms of α and b, which allows us to
merge the resulting bilevel optimization problem back into a
standard optimization problem in terms of α and b.

Consider the upper-level εX-SVR primal (7). Re-
expressing in terms of α and b, negating and using (25),
(26) and (27) this becomes:3

max
b∠,α∠

QUX = 1
2

[
α∠

b∠

]†[ H h
hT 0

][
α∠

b∠

]

+ ε
∣∣α||∣∣T 1 − Re

(
α∠† (

α||z
))

such that: Pu
(
ᾱ∠ (Kα+ 1b − z)

)
= 0

α||, b|| solve (28)

(29)

where h ∈ R
N , h = α||b||, H ∈ X

N×N , Hi,j = α
||
i Ki,jα

||
j

and QUX = −RUX. Recombining (29) and the lower-level
εX-SVR dual (28) we arrive at the complete, single-level εX-
SVR dual optimization problem:

max
b,α∠

min
α||

QX = 1
2

[
α
b

]†[ K 1
1T 0

][
α
b

]

+ ε |α|T 1 − Re
(
α†z

)
such that: 0 ≤ |α| ≤ C

N 1
Pu

(
ᾱ∠ (Kα+ 1b − z)

)
= 0

Re
(
b̄∠ (

1Tα
))

= 0

(30)

Suppose we neglect the third constraints in (30), leaving b
unconstrained. Under this assumption the first order optimal-
ity conditions for b is ∇bQX = 0 or, explicitly, 1Tα = 0.
But this automatically satisfies the third constraint in (30),
indicating that this constraint is superfluous. Hence the εX-
SVR dual may be written in a form directly analogous to the

2The actual statement of the quaternionic extension of Mercer’s condition
is essentially identical to the standard statement of Mercer’s condition,
although more care must be taken with the ordering of elements in the
various equations.

3When deriving this form, note that constraint (27) allows us to add and
subtract arbitrary multiples of Re

((
α†1

)
b∠)

to RUX without modifying
the resulting expression.



standard ε-SVR dual, namely:

max
b,α∠

min
α||

QX = 1
2α

†Kα+ ε |α|T 1 − Re
(
α†z

)
such that: 0 ≤ |α| ≤ C

N 1
1Tα = 0
Pu

(
ᾱ∠ (Kα+ 1b − z)

)
= 0

(31)

which reduces to the standard ε-SVR dual form if X = R

(the final constraint is trivially true in this case, as there are
no imaginary elements in R).

Note that the form of the εX-SVR dual is directly analo-
gous to the standard ε-SVR problem. It may also be seen,
using (3) and (26), that the trained εX-SVR machine has the
form:

g (y) =
∑

i∈SV

K (y,xi) αi + b (32)

and hence, as for standard ε-SVR, training and use of the εX-
SVR does not require an explicit feature map, only a kernel
function satisfying Mercer’s condition.

C. Optimality Conditions

For completeness we now give the optimality conditions
of the εX-SVR dual. To begin we define:[

e
f

]
=

[
K 1
1T 0

] [
α
b

]
−

[
z
0

]

where for all training pairs (xi, zi) ∈ Θ, ei ∈ X is the
difference between the measured output of the system zi

given a input xi and the output of the trained machine g (xi)
given the same input, Using this notation, the lower-level
optimality conditions (21)-(24) may be written:

|ei| ≥ ε ∀i : |αi| = C
N

|ei| = ε ∀i : 0 < |αi| < C
N

|ei| ≤ ε ∀i : αi = 0

Combined with the additional constraints of the εX-SVR
dual (30) the optimality conditions may be seen to be:

f = 0 (33)

0 ≤ |α| ≤ C
N 1 (34)

ei = ± (ε + χi) Un (αi) ∀i : |αi| = C
N

(35)

ei = ±εUn (αi) ∀i : 0 < |αi| < C
N

(36)

|ei| ≤ ε∀i : αi = 0 (37)

where χ ∈ (R+ ∪ {0})N .

IV. EXPERIMENTAL RESULTS

In this section we consider a practical application for the
εC-SVR. Specifically, we consider the problem of equaliza-
tion of a 4-symbol quadrature amplitude modulated (4-QAM)
signal over a complex linear communication channel.

All code for this experiment was written in C++, and all
simulations were done on a 3.2GHz Pentium D 940 processor
based machine with 4GB of RAM running Ubuntu Linux
6.06 (Dapper Drake). The εX-SVR optimizer code was based
on a modified version of SVMHeavy [20].

A. Methodology

We consider equalization of the following channel [10]:4

A (z) = o(z)
s(z) = (0.7409 − i0.7406)

(
1 − (0.2 − i0.1) z−1

)
× (

1 − (0.6 − i0.3) z−1
)

with additive gaussian noise of variance σ2
e = 0.06324

(SNR = 15dB); where s (n) is the channel input sequence
and o (n) the channel output sequence. To facilitate visualiza-
tion of the problem we have chosen to use a 1-dimensional
equalizer and a decision delay of 1. Hence our equalizer
should be able to ascertain the input s (n − 1) from the
channel output o (n) (noting that in this experiment we were
interested only in sgn (g (x))).

The channel input is a random complex sequence
s (n) of symbols from the 4-QAM constellation
{(1 + i) , (1 − i) , (−1 + i) , (−1 − i)}. The channel has 64
output states without noise, which are shown, along with
the optimal Bayesian decision boundary for the 15 dB SNR
case, in figure 1. For this experiment we set C = 5 and
ε = 0.7 for all experiments, and used a Gaussian RBF kernel
K (x,y) = exp (−‖x − y‖ /γ) with γ = 0.7. We have
used a training set containing 1200 random data samples
with an SNR of 15 dB. The testing sets used to obtain bit
error rates each contained 1 million points with the relevant
SNR.

B. Results and Discussion

The decision surface obtained using this training set is
shown in figure 2. It can be seen from this that the resulting
decision surface represents a good approximation of the
Bayesian decision surface in the critical region, as those
regions lying within the general vicinity of the 64 noiseless
channel outputs are well approximated.

We also compared the symbol error rate of the εC-SVR
equalizer with that of the Bayesian equalizer and two stan-
dard ε-SVR regressors (one for the real component, one for
the imaginary). Results are shown in figure 3. This graph
shows that the εC-SVR outperforms the dual-ε-SVR approach
and performs only very slightly worse than the optimal
Bayesian equalizer.

V. CONCLUSION

We have proposed the εX-SVR as a complex/quaternion
extension to the standard real-valued ε-SV regressor. In
contrast to previous approaches, our formulation uses a
rotationally symmetric cost function which ensures that the
trained machine is influenced only by the magnitude of any
training errors and is directionally independent. We have
demonstrated that the εX-SVR outperforms two independent
ε-SVRs for a 4-QAM channel equalization problem requir-
ing a highly non-linear decision boundary. In addition, our

4There is an regrettable notational clash here between the standard
mathematical representation of the complex imaginary element, i =

√−1,
the standard engineering representation of the complex imaginary element,
j =

√−1, and the quaternion derived notation, i =
√−1. For internal

consistency, and as i, j ∈ ZN are used as indexes elsewhere in this paper,
we have chosen to use i =

√−1 here.
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Fig. 1. Bayesian decision boundary. Constellation elements are correctly
classified. Key: + = 1 + i, ♦ = 1 − i, � = −1 + i, ◦ = −1 − i.
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Fig. 2. εC-SVR decision boundary. Constellation elements are correctly
classified. Key: + = 1 + i, ♦ = 1 − i, � = −1 + i, ◦ = −1 − i.
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Fig. 3. Symbol error rate curves over varying SNR for εC-SVR (middle
solid curve), dual ε-SVR (upper dot-dashed curve) and optimal Bayesian
(lower dashed curve) equalizers.

results show that the decision boundary compares favourably
with the optimal decision boundary derived using an ideal
Bayesian equalizer for this channel over a range of SNRs.
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