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Self-Organizing Maps as Traveling Computational Templates
Tarja Knuuttila, Anna-Mari Rusanen, Timo Honkela

Abstract In this article we approach neural networks as
computational templates that travel across various sciences.
Traditionally, it has been thought that models are primarily
models of some target systems: they are assumed to represent
partially or completely their target systems. We argue, instead,
that many computational models cannot easily be conceived of
in representational terms. Rather, they can be seen as models
for various epistemic endeavors. Apart from dealing with the
question of representation, we discuss also what implications
the genuinely cross-disciplinary computational templates such
as neural networks have for the organization of science. We use
Self-organizing maps as an example through which we study
the aforementioned questions.

I. INTRODUCTION

"Our slogan will be mathematics, not logic; computation, not
representation; machines, not mentation."
- Paul Humphreys (2004).

M\/[odels play various roles in science. They can be used
to make precise predictions and represent some

physical systems more or less accurately; some models are
used to analyze, summarize and visualize data; and they can
be also used as a tool for designing experiments and testing
the results. Computational models, and neural networks
among them, are good examples of models that are used for
all these purposes.

Models typically do not only have various roles within a
scientific domain, but they also travel: successful models
cross the boundaries of different scientific disciplines. This
is indeed an old observation in the history of science. Often
the traveling happens through borrowing an already
successful formalism from one scientific domain and
applying it to another scientific domain. This phenomenon is
especially conspicuous in the case of computational models,
where the same formal representations are applied across
radically different subject matters. Recently, philosopher of
science, Paul Humphreys [1] has emphasized, that these
computational templates provide a key feature of
computational science. In his opinion computational
templates, not theory, scientific laws, research programmes
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or models, provide the proper unit of analysis of
computational science. With computational templates
Humphreys refers to mathematical formalisms that are
computationally tractable. According to him "clean, abstract
presentations of formal schemata disguise the fact that the
vast majority of theoretical templates are practically
inapplicable in any direct way even to quite simple physical
systems" [1]. Computational science means for Humphreys a
turn to tractable numerical mathematics from analytical
mathematics, and what is more, the successful computational
templates can be used to model completely different subject
matters. Inspired by his work we will consider in the
following neural networks as traveling computational
templates that have a variety of applications in different
scientific domains.

That neural networks furnish an apt example of traveling
computational templates is already shown by their history.
Initially, most neural networks were inspired by the idea of
looking at brains as a model of a parallel computational
device, but nowadays neural networks are applied in several
different scientific domains, lying most often far away from
the domain of neuroscience. They are, for example,
frequently used in various applications of control theory,
including fields such as engineering, biology, neurosciences
and economics. Or, to mention another flourishing area, they
are used in different sort of tasks that require time series
analysis and prediction.

There are several reasons for this fertility. One of them is
clearly the nature of the neural networks research. The
research strategy of neural networks is to develop and create
simplified mathematical models of generally brain-like
adaptive systems, and to study the properties of these models
to understand how various computational problems can be
handled by them. These tasks are not necessarily ones that
are faced by real biological brains, and neither do they
describe realistically the way the actual biological brains
would handle them. They have offered, however, a powerful
way to model various processes and data. Since research in
every field of science can, at least to some degree, be cast as
a class of some sort of computational problems, it is
understandable why the neural network research has been
able to branch out to so many sciences.
From a philosophical perspective, this raises some

interesting questions. Especially, philosophers should find it
worthwhile to evaluate the discussion concerning the nature
of scientific models from this viewpoint. Traditionally,
philosophers of science have assumed that scientific models
are models of something: they have taken models to
represent some specific target systems in some relevant
respects and aspects. However, granting that neural networks

1-4244-1 380-X/07/$25.00 ©2007 IEEE

Authorized licensed use limited to: Teknillinen Korkeakoulu. Downloaded on January 12, 2010 at 07:41 from IEEE Xplore.  Restrictions apply. 



have several different applications in various scientific
domains, it is difficult to understand why they, as a class of
mathematical structures, should be seen primarily as models
of some pre-defined target system, their "brain-like" initial
motivation notwithstanding. Instead we argue that they could
be seen as computational templates that can be applied to
many purposes.

Apart from the questions concerning models and
representation, our ability to use and recycle same known
computational tools across disciplinary boundaries has also
significant consequences for how we envisage the
organization of science. Perhaps, as Humphreys suggests,
parts of the theoretical science could be reclassified on the
basis of which computational templates they use [2].

In what follows, we will explore the aforementioned
questions concerning (i) the role of representation in
modeling and (ii) the role of computational templates as
having a potential integrative role in current sciences. To
render our presentation more concrete, we will look more
closely at one specific type of neural network, the Self-
Organizing Map, (the SOM).

II. SELF-ORGANIZING MAPS

A. The Architecture ofSelf-Organizing Maps
The architecture of a Kohonen self-organizing map can be
summarized as follows [3,4]: It consists of a set of laterally
interacting adaptive processing elements, adaptive
prototypes. They are usually arranged as a two-dimensional
grid called the map. Every node of the map is connected to a
common set of input. Any activity pattern on the input gives
raise to excitation of some local group of map nodes. Since
there is no need for a priori classifications of the input, the
learning of the map is unsupervised. The learning process is
based on similarity comparisons in a continuous space. After
the learning process, the spatial positions of the excited
groups specify a mapping of the input onto the map. The
resulting system is a system that maps similar inputs close to
each other in the resulting map.
More technically, starting with an initially random set of

prototypes, the self-organizing map algorithm gradually
adjusts them to reflect the clustering of the training data. In
setting up the self-organizing map, one first assigns to each
unit in the array a parameter vector m,(t)eWR called the
prototype vector. It has the same number of elements as the
input vector x(t). The initial values of the parameters can be
selected at random [3,4]. The following process changes
these parameters. The image of an input item on the map is
defined to be in the location of the model vector mi(t) which
matches best with x(t) in some metric. The self-organizing
algorithm that creates the ordered mapping can be described
as a repetition of the following basic tasks [3,4]:

* An input vector x(t) is compared with all the

on the map, i.e. the unit where the parameter
vector is most similar to the input vector in some
metric, called the winner, is identified.

* The prototype vectors of the winner and a
number of its neighboring units in the array are
changed incrementally according to the learning
principle.

The idea of the self-organizing map can thus be summarized
as follows: For each input sample vector x(t) the parameters
of the winner and units in its neighborhood are changed
closer to x(t). Adaptation of the prototype vectors in the
learning process takes place according to the following
equation:

m,(t+l)=m,(t)+ u(t)[x(t)-m,(t)] for each ie NC(t),

where t is the discrete-time index of the variables, the factor
a (t) e[0,1] is a scalar that defines the relative size of the
learning step, and NC(t) specifies the neighborhood around
the winner [3,4]. At the beginning of the learning process
the radius of the neighborhood is large. It shrinks during
learning. This ensures that the global order is obtained
already at the beginning, whereas towards the end, as the
radius gets smaller, the local corrections of the prototype
vectors in the map will be more specific.

B. The applications ofSOMs
Originally self-organizing maps were regarded as artificial
models of experimentally found ordered "maps" in the
cortex. There is some neurophysiological evidence to
support the idea that the self-organizing map can serve as an
abstract model of some of the fundamental adaptive
processing principles of the brains [4]. However, since then
SOMs have been used to model phenomena in various
scientific fields, including real-life applications, such as,
speech recognition [3], image analysis [5,6], recognition of
handwritten characters [7], decision support [8], financial
analysis [9], information retrieval [10] and process
monitoring [11,12]. To furthermore indicate the range of
applications, the SOMs are being applied by the authors to
analyze the behavior of consumers and to visualize data
about the conceptual organization of the students of
philosophy.

III. THE NON-REPRESENTATIONAL NATURE OF
COMPUTATIONAL MODELS

That a model can have so many and various applications,
raises in our opinion some significant philosophical issues
concerning the nature of models and how they give us
knowledge. Both questions have traditionally been answered
by philosophers of science by reverting to representation. On
one hand models are considered to be representations and,
on the other hand, they are thought to give us knowledgeprototype vectors mi(t). The best-matching unit
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because they represent. To understand how this
representational conception of models came to be held by the
overwhelming majority of philosophers, let us quickly
review the dominant views on models of the last century.

Traditionally, it has been theories and not models that
have occupied the center stage in the philosophical
discussion. Models have been defined according to what
kind of a relation they have towards theory. Thus according
to the so-called syntactic view of theories, the first one of the
two 20th century dominant views concerning theories and
models, a model is an entity that is designed to give an
interpretation to a theory. For the proponents of this view, a
scientific theory in turn was a partially interpreted or
uninterpreted formalism or calculus i.e. a syntactic structure
consisting of a set of axioms. The models were relegated the
task of interpreting the theoretical structures: to interpret a
theory was to specify a model for it. Models were also
expected to give more flesh to abstract formalisms in terms
of familiar concepts and visualizable materials.

The semantic conception that challenged the
aforementioned "received view" becoming itself in turn the
received view, was inspired by the mathematical model-
theory and emerging computer science. The semantic
conception of theories contested the syntactic view by
replacing the syntactic formulation of the theory with
theory s models which were conceived of as non-linguistic
entities in contrast to the syntactic view. For the proponents
of the semantic conception, models are structures that are
either defined by the use of set-theoretical predicates or by
the use of suitable mathematical language. The kernel of this
semantic, or structuralist, conception of models, is the
conception that models specify structures that are posited as
possible representations of either observed phenomena, or
underlying target systems [for overview, see 13,14]. A
scientific theory, according to this view, consists of a set, or
a "family" of models. This structuralist conception
emphasizes that the representation provided by a model can
be understood as a correspondence between the model and
its target system. The correspondence was analysed in terms
of isomorphism or similarity [for example, 13,15].

In the recent research in the philosophy of science it has
been shown, however, that neither isomorphism nor
similarity can provide an adequate analysis of scientific
representation. They lead to well-known problems. Firstly,
the isomorphism view in fact assumes that there is no such
thing as false representation, either the model and its target
system are isomorphic, or then they are not, in which case
there is no representation either. Secondly, both isomorphism
and similarity are symmetric relations, which runs counter
our intuitions concerning representation: we want a model to
represent its target system but not vice versa. Both problems
appear to be solved once the pragmatic aspects of
representation are taken into account. The users' intentions
create the directionality needed to establish a representative

model of something else. Taking into account human agency

introduces also indeterminateness into the representative
relationship: human beings as representers are fallible.

Consequently, pragmatic approaches to representation
solve many problems of the structuralist notion of
representation but this comes with a price. When
representation is grounded primarily on the specific goals
and representing activity of humans as opposed to the
respective properties of the representative vehicle and its
target system, nothing very substantive can be said about
representation in general: There is nothing in the nature of
the representation (the model) and its target system that
guarantees the representative relationship between the two.
But if nothing substantive can be said about representation in
general, then to regard models as representations does not
tell us much about their cognitive value either. Whether or

not this is an unwelcome consequence depends on to which
degree we attribute the knowledge-bearing aspects of models
to representation.

Indeed, one way to interpret the recent practice-oriented
approaches to scientific models is to regard them to be in the
process of breaking away from the too restrictive
representational paradigm in favor for other ways to
approach models.
We suggest that looking at models from the point of view

of formal templates they share and embody provides such a

new approach to modeling. We do not of course deny that in
many cases models are made to represent some target system
or object. However, it seems to us that the representational
character of for instance such computational models as

neural networks should not be overplayed. There are several
reasons for that. Firstly, the representational properties of
neural networks do no explain their usefulness and versatility
across different domains. Secondly, even if neural networks
were taken as representations of some aspects of human or

animal brains, there are also many known facts about neural
information processing that are not modeled in any given
connectionistic model. Thus, to the extent that models are

actually directly relevant to understanding what goes on in
real brains, they are at best coarse approximations of some

details of neurophysiological processing [16].
This is true of self-organizing maps as well. In their

inception SOMs were based on a few simplified
approximations of the neurophysiological processes at a very

abstract level of description. Thus they carry some initial
analogy to the brains, but it is not so clear, whether they
represent the human brain in any particularly revealing or

interesting way.
More importantly, even though SOMs were originally

inspired by the neurophysiological structures of the cortex,
that fact does not explain their success in other domains.
What is more, when SOMs are used in the fields of inquiry
that lie quite afar from the neurophysiological research of the
cortex, to conceive SOMs as representations becomes vague.

relationship; something is being used and/or interpreted as a Instead, the SOM models reveal statistical structure in the
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data. To do this they rely on a "neurally inspired" algorithm,
but this fact does not really make the SOM a representation
of a neural representation of the domain of interest. If it
represents anything, then it represents the data in a certain
way. In this SOM models are like simulation models in
general, since often they are first and foremost appreciated
for the output representations they produce. There was also
a specific reason to consider the SOM as a sample of a
neural network model rather than for instance, a
backpropagation algorithm. Namely, as the SOM applies
unsupervised learning paradigm, the end result of the
analysis reflects relatively more the contents of the data than
any supervised learning model that imposes the
predetermined output categories on the analysis.
When a computational template such as the SOM is

applied to a new domain, the modelers' primary goal is
usually to get their models to produce proper output, or to
reveal something interesting about the modeled data or the
underlying system that has produced that data. The
application of the SOM can, depending on the task at hand,
be considered as (1) an artificial neural network model, (2) a
statistical machine learning method, (3) a tool for data
analysis and visualization within data and text mining area or
(4) a model component for some cognitive functions [21].
Thus it is not enlightening to envisage the applications of
SOMs, or any other similar computational models for that
matter, as clear cut representations of any specific external
target systems. They from rather a class of multipurpose
things that can play various roles in scientific endeavor and
are flexible enough to be applied to diverse computational
tasks in different domains. Maybe it is this flexibility that has
lead to the current situation: the SOM is used practically in
all scientific disciplines. A bibliography of the research on
SOM theory and applications has been collected and it
includes currently over 7700 publications [17, 18, 19].
As has been argued by Knuuttila and her colleagues [20,

21], taking seriously this phenomenon is bound to change the
way we conceive the epistemic (or knowledge-bearing)
nature of models. As we have already mentioned, models
have traditionally been seen as ready-made representations
of pre-defined target systems. Yet it seems that in many
cases their epistemic value could be better appreciated if
they were rather conceived of as epistemic artifacts that
bring us knowledge in many ways [20, 21, 22]. Calling
models epistemic artefacts means that they can be conceived
of as intentionally constructed things that are materialized in
some medium and used in our epistemic endeavor in a
multitude of ways. Thus the very same model can variously
take the roles of a tool, of a research object or inferential
device. These different roles of models are also discernible
in the case of SOMs. As a tool the SOM can used to
represent data, in which uses the modelers need not be
interested in the very characteristics of the SOM method
itself using it more or less in a black box manner. This can

developers of the SOM method are interested of the SOM as

an evolving research object in its own right. Also in these
uses the SOM may be applied to various kinds of data, but
the main focus is on the applicability and the various
characteristics of the SOM method itself. The SOM can also
be used to infer various things about our linguistic and
cognitive skills. The inferential role of models comes closest
to that of representation, but does not assume that the model
would be an accurate or even "right" representation of its
target system [23]. (It is a common phenomenon in the
sciences that even false models can give us knowledge). The
discussions in the cognitive science concerning the
implications of the connectionist modeling methods as

regards to our cognitive architecture serve as a good example
of the use of the neural networks as inferential devices. Thus
we suggest that rather than being a model of, or a

representation of, anything in particular, neural network
models could be fruitfully approached as epistemic artefacts
that unfold into many different epistemic tools, objects and
inferential devices, depending on the task at hand.
Representation is just one aspect of these uses.

This artefactual and multipurpose nature of neural
networks becomes even more evident, if one focuses on the
role the computational templates play in neural networks. In
a nutshell, a computational template is a computationally
tractable template, which is the "heart" of a computational
model. These computational templates are not models,
models are too specific in embodying already an

interpretation and data to function like templates, viz. as

pieces of formalism that can rather easily be transferred from
one discipline to another [1,2]. The detailed subject-specific
considerations, construction assumptions, approximations
and idealizations that make part of the constructing of
models make them also context-specific. Computational
templates are in contrast general and context independent, at
least to some degree. They are not yet models of anything in
particular but can be turned into such.
As a consequence, computational templates such as the

SOM can be also considered from a purely syntactic point of
view without any empirical interpretation [ 1,2]. Thus
syntactically isomorphic templates with different
interpretations should not be considered as re-interpretations
of the same model, but they are completely different
computational models [1,2]. Thus, even if a computational
template can be used to model more than one system type,
the resulting computational models will be distinct, if the
interpretations of the syntactically isomorphic templates are

different.

IV. COMPUTATIONAL TEMPLATES As SOURCES OF
UNIFICATION

We also suggest in line with Paul Humphreys that if
philosophers of science adopted the genuinely cross-

be contrasted with those uses of the SOM in which the disciplinary computational templates as units of their
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analysis, it would have potentially far-reaching implications.
It might lead them to rethink the issues concerning the
organization of science, the relationship between different
disciplines and the nature of scientific knowledge. Our
ability to use and reuse the same computational templates
across various disciplines could be taken as a starting point
for studying the organization of science, because, as
Humphreys puts it, "the emphasis on the sameness of
mathematical form has significant consequences for how to
conceive of scientific domains" [2]. Thus computational
templates provide a new perspective to consider the issue of
unification across various disciplines.

With the unity of science or unification it has been
referred to many things, but the classical accounts of
unification typically fall into a two categories, i.e. to the
methodological and explanatory unification.
By methodological unification is meant a search for such

unificatory methodological principles that could offer a
common methodology for all sciences. The classical
demarcation criteria suggested by Karl Popper or the
verification thesis advocated by the early logical empiricists,
are examples of this style of unification.
A classical example of explanatory unification is the idea

of inter-scientific reduction, in which the approach is to
characterize the unity of science in terms of the ability to
explain (the phenomena of) higher level sciences in terms of
some lower and fundamental level science (i.e. ultimately
physics). The unity of science will be achieved through such
reduction of higher-level sciences to lower level sciences.
This emphasizes the unity of science as unity of scientific
ontology and vocabulary, which is achieved by reinterpreting
the idiom of the reduced theory in terms of the reducing
theory.

There are many good reasons for not to adopt these
conceptions of unification if only because they do not seem
to be supported by the actual scientific practice. In
consequence, philosophers of science have attempted to
develop other models of unification. For example, in the
context of neurosciences, Craver has recently defended the
so called mosaic model of unification [22]. The central idea
of the mosaic model is that the unification is done not by the
reduction of all explanations to a fundamental level, but
rather by using results from different fields to constrain a
multilevel mechanistic explanation [22]. This is similar to
the template-based approach in spirit, but differs in that it is
the domain-specific contents rather than the abstract
computational templates that are considered to be the
vehicles of interdisciplinary cross-pollination.

The computational templates seem to serve neither as a
source of common methodology nor as explanatory elements
in science. The reason for the former is quite transparent.
Templates as such do not have any empirical content and as
a consequence they cannot be used as a source of common
empirical methodology. Thus the mere templates cannot be
considered as the purveyors of methodological unification in
the classical sense. Moreover, as bare formalisms
computational templates do not serve as sources for

They are, at best, parts of theories (or models) that do the
explanatory job after the interpretation is done. Thus the
computational templates as such seem not to have anything
to do with the explanatory notions of unification such as the
inter-level reduction or the mosaic model of unification. In
both cases the explanations, not the computational templates
inside them, are the source of unification.

Consequently, there is a need for a quite different kind of
conception of scientific unification or organization. Perhaps
this kind of unification has some similar features to the
unificatory power of taxonomies. Sometimes taxonomies are

partially borrowed from the other disciplines, and they offer
conceptual tools for reorganizing and slotting items into
more and more accurate categories. They seem to bring unity
to science without explaining, since - as Carl Craver once

put it -"merely slotting is not explaining" [24]. However, if
in an attempt to comprehend unification we target scientific
understanding instead of explanation, rather different kinds
of conclusions are seen to emerge. Namely, it is often
claimed that explanations explain because they make the
phenomena intelligible and thus the weight is shifted to the
problem of understanding. Interestingly, one influential view
on scientific understanding approaches intelligibility as that
of seeing connections and common patterns in different
situations. According to Philip Kitcher "science advances
our understanding of nature by showing us how to derive
descriptions of many phenomena using the same patterns of
derivation again and again" [25]. The computational
templates do bring initially very remote fields of inquiry a bit
closer to each other by using the same computationally
tractable templates, and if the templates used prove

successful that is bound to lead to further questions of how
and in virtue of what the various phenomena might be
similar. Moreover, the templates, though syntactic structures,
are not innocent and neutral. In many cases they are carriers
of certain kinds of metaphysical assumptions. Thus for
instance the SOMs model their target systems as self-
organizing and adaptive. There is ample evidence already
that the various computational templates adopted by different
disciplines tend to refashion their problems and lead to new
conceptualizations, new questions to be asked and even to
the emergence ofnew disciplines.

V. CONCLUSIONS

In this paper we have discussed the nature of computational
models and templates. As an example we have used the self-
organizing maps. We have argued that being computational
models designed to execute certain computational tasks, the
various applications of SOMs do not as such represent any

target systems in the world, not at least in any

straightforward way. Moreover, we have suggested that they
should be rather conceptualized as multifunctional epistemic
artifacts. More generally, the traditional philosophical view
according to which models are first and foremost
representations of some pre-defined target systems does not
capture what seems to us the characteristic feature of

explanatory power either. modeling: the use of inherently cross-disciplinary
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computational templates. What indeed could the ideal of
accurate represelntationlmean inlte case whenlte same

computationlal templates are used inl various disciplines
dealing wit totally differenLt natural or social phenLomenLa.
We have also discussed the role of computational templates
in organizing and unifying the different disciplines. It seems
to us that this question opens up one of the most intriguing
topics concerning interdisciplinary research: how do
computational templates redesign the fields to which they are
applied.
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