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Abstract— The optimal model parameters of a kernel ma- and polynomial kernels
chine are typically given by the solution of a convex optimisation
problem with a single global optimum. Obtaining the best IC(m,a:’) — (:c'a:’+c)d 4)
possible performance is therefore largely a matter of thedesign
of a good kernel for the problem at hand, exploiting any where ¢ and d are kernel parametersi (= 2 gives the
underlying structure and optimisation of the regularisation and quadratic kernel andl = 3 the cubic kernel). The model

kernel parameters, i.e. model selection. Fortunately, analytic . by th L f larised
bounds on, or approximations to, the leave-one-out cross- parametergw, b) are given by the minimum of a regularise

validation error are often available, providing an efficient and  [23] least-squares loss function,
generally reliable means to guide model selection. However, the

degree to which the incorporation of prior knowledge improves 1 9 1 2
performance over that which can be obtained using “standard” L= §||w|| + Y lyi —w-@(x:i) = 0",  (5)
kernels with automated model selection (i.eagnostic learning), i3

is an open question. In this paper, we compare approaches using . o . .
example solutions for all of the benchmark tasks on both tracks where . is a regularisation parameter controlling the bias

of the IJCNN-2007 Agnostic Learning versus Prior Knowledge Variance trade-off [10]. The accuracy of the kernel machine
Challenge. on test data is critically dependent on the choice of good

values for thehyper-parametersin this caseu andn. The
search for the optimal values for such hyper-parameters is a
process known amodel selectionThe representer theorem
[13] states that the solution to this optimisation problesn c

be written as an expansion of the form

14

I. KERNELLEARNING METHODS

Assume we are given labeled training dat® =
{(zs,y:)Y_,, wherexz; € X c R is a vector of input
features describing th&" example andy; € {—1,+1} is
an indicator variable such that = —1 if the i*" example
is drawn from clas€~ andy; = +1 is drawn from class ¢ ¢
C™. Kernel Ridge Regression [19] (or alternatively the Least-W = Z ap(x) = f(x)= Z o K(zi, @) +b.
Squares Support Vector Machine [21]) aims to construct a i=1 =1
linear modelf(z) = w - ¢(x) + b in a fixed feature space, The dual parameters of the kernel machine are then given by

¢ : X — F, that is able to distinguish between exampleshe solution of a system of linear equations,
drawn fromC~ andC™, such that

{c+ if f(@)>0 {KV‘“ 1““}:['5]. 6)
x € _ . . 1 0 b 0
C otherwise
However, rather than specifying the feature spa&eljrectly, which can be solved efficiently via Cholesky factorisation
it is implied by a kernel functiorC : X x X — R, giving the Of K + ulI, with a computational complexity oO(¢*)
inner product between the images of vectors in the featufPerations [21].
space,F, i.e. K(z, ') = ¢(x) - p(x’). A common kernel
function is the Radial Basis Function (RBF) kernel
no_ _ 2 An attractive feature of the kernel ridge regression maghin
Ka, ) = eXp{ iz =l } ’ @) is that it is possible to perform leave-one-out cross-liah
where n is a kernel parameter controlling the sensitivity[14, 16] in closed form, with minimal cost as a by-product of
of the kernel function. Other useful kernels include thehe training algorithm. LeC represent the matrix on the left
Automatic Relevance Determination (ARD) kernel hand side of (6), then the residual error for ti& training
pattern in thei'" fold of the leave-one-out process is given
(=1) @y

d
K(w,m') eXP{Zm(zz I;)Q} ) (2) bY-
D g = O

which provides individual control over the sensitivity difet C;il'
kernel to each of the input features, and the linear,

A. Model Selection

(7)

Similar methods have been used in least-squares linear
Klz,z') =z -z (3) regression for many years, e.g [24]. While the optimal model
. . , _ parameters of the kernel machine are given by the solution
Gavin Cawley and Nicola Talbot are with the School of Computin
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{gcc, nl ct }@np. uea. ac. uk model selection is required to determine good values for the



hyper-parameters@ = (u,n) in order to maximise gen- upper tail, making it better suited to distance-based Kerne
eralisation performance. The analytic leave-one-out szrosfunctions, such as the RBF kernel. Models were generated
validation procedure described here can easily be adoptading both kernel ridge regression and kernel logistic re-
to form the basis of an efficient model selection strateggression, with a variety of kernel functions. Table | shows
[6] based on a Allen’s predicted residual sum-of-squarae®gpresentative results for tiA benchmark; the best results

(PRESS) statistic [1], were obtained using kernel ridge regression, with an ARD
’ kernel, which is currently the leading model on the prior
PRESS(6) = Z {rl(—O}Q. knowledge track for this dataset, in terms of validation set

performance. However, given that reliable cross-valatati
._results are not yet available for this model, it would be wsewi

scaled conjugate gradient descent (e.g. [25]). For fuliitiet % confidentlyexpect a similar level of performance on the

o . test data.
of the training and model selection procedures for the Kerne
ridge regression model, see [4]. The kernel machines used TABLE |
in this study were implemented using a MATLAB toolbox REPRESENTATIVE RESULTS FOR THADA BENCHMARK.
implementing a generalised form of kernel learning method,
described in companion paper [5]. cross-validation validation set
model kernel
BER AUC BER | AUC

B. Performance Estimation

KRR linear 0.2004 | 0.8838 | 0.2206 | 0.8644

It not seem wise to be over-reliant on the validation set KRR poly (= 2) | 01909 | 0.8948 | 0.2143 | 0.8745

BER, available from the challenge websijtéo guide the KRR poly (p = 3) | 0.1920 | 0.8941 | 0.2094 | 0.8727
development of models as it is far to small to provide a reli-| (g RBE 01949 | 08941 | 0.2095 | 0.8729
able |nd|cator of the true level of generalisation perfonte, KRR ARD 01653 | 0.918¢ | 0.1740| 0.8910
especially for highly imbalanced datasets, suctHa¥A. A
more reliable guide can be obtained via cross-validati@j [2
or bootstrap re-sampling [9] procedures using the labeled
training set. For the previous Performance Prediction Chal
lenge [12] and the Agnostic Learning track, we employed ) i )
a computationally expensive, but reliable scheme based onThe G NA benchmark essentially describes an optical
100-fold test-training splits of the available data. Far giior ~ character recognition (OCR) problem, constructed from the
knowledge track, we adopt a more reasonable 10-fold cros'g!-N'STz data [15], where the task is to distinguish the odd
validation approach. It is important to avoid selectionsbiadigits from the even. Each digit is represented by a grid of
by performing model selection separately in each fold of8<28 integer pixel values in the range 255], which we
the cross-validation procedure, i.e. we should view modéfscaled to lie in the rang@® 1], by dividing each feature

selection as an integral part of the model fitting process. PY 255. For the agnostic track, the input vector consists
of the pixel intensity values for two adjacent digits, the

Il. RESULTSOBTAINED ON THE ADA DATASET task being to determine whether the second digit is odd or

The goal of theADA benchmark is to identify high income €ven, so half of the input features represent uninformative
individuals, earnings50K per annum or more, on the basisdistractors The reference solutions for the agnostic track
of census data. The benchmark is derived fromAdel t  Were implemented by training kernel ridge regression medel
dataset from the UCI machine learning repository [17]. Thiith linear, quadratic, cubic and RBF kernels directly on
data include a mixture of continuous, ordinal and BooleaHe scaled input data. The results of performance estimatio
features (e.g.age, education and sex respectively). Using 100 random training-test partitions of the data are
This dataset seemed to present the least opportunity foROWn in Table Il. An improved agnostic solution, using an
incorporating prior knowledge into the design as of a kernéhRD kernel acting on the first hundred principal compo-
model as the pre-processing of the data for the agnosti€nts of the data was later implemented, although external
track of the challenge is eminently sensible. We thereforgf0Ss-validation proved prohibitively expensive, and Be t
followed the same pre-processing steps for both the agnc,Sgerformance estimate given here is the optimistically duas
and prior-knowledge submissions, with the exception gfgave-one-out estimate used as the model selection onteri

power transformations of thege, capital-gain and A Epgineered Solutions for the Prior Knowledge Track

capi tal -1 oss continuous features, such that, e.g. The prior knowledge that th&l NA dataset describes an
age 10/, .age optical character recognition problem, where each feature
! ! represents a pixel intensity on a regular grid, can be ex-
This type of transformation [3] is commonly used to reduceloited in the design of the kernel. It seems reasonable to
the skew of the distribution of a feature having a heavguggest that different areas of the grid are likely to carry

t biased leave-one-out estimate from the model selection process.

IIl. RESULTSOBTAINED ON THE G NA DATASET

T
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TABLE Il
RESULTS ON THEGQ NA DATASET FOR THEAGNOSTICLEARNING TRACK
(BEST RESULTS SHOWN IN BOLD.

on a simple radial basis function kernel, operating disectl
on the pixel intensity values. The regularisation and kierne
parameters were optimised separately for each network, via
minimisation of the PRESS statistic. While this may appear

model | kemel 100-fold validation | validation set to be computationally rather expensive, the datasets wsed t
BER AUC | BER | AUC train each network consisted of only those training pastern
KRR linear 0.1324 | 0.9364 | 0.1273 | 0.9461 representing two of the ten digits. As the computational

KRR poly (p =2) | 0.0578 | 0.9848 | 0.0317 | 0.9940 complexity of the training and model selection procedures
KRR poly (p = 3) | 0.0532 | 0.9870 | 0.0285| 0.9955 are O(¢3), training the full set of low level networks is still

KRR RBF 0.0571 | 0.9853 | 0.0442| 0.9955 approximately five time faster than training a model on the
KRR PCA-ARD | 0.0297 | 0.9950 | 0.0253 | 0.9968 full dataset. The output classifier is trained on the leave-o
T biased leave-one-out estimate from the model selection process. out output of the first Iayer networks, in order to prOVide

a reasonably unbiased dataset that is more representétive o
operational conditions (c.f. [8]).

TABLE Il
RESULTS ON THEGQ NA DATASET FOR THEPRIOR KNOWLEDGE TRACK
(BEST RESULTS SHOWN IN BOLD.

) model kernel cross validation validation set
N e BER AUC BER | AUC
(@) (b) KRR linear 0.1297 | 0.9416 | 0.1270 | 0.9525
KRR poly (p = 2) | 0.0365 | 0.9914 | 0.0158 | 0.9998
Fig. 1. Initial distribution of receptive fields for the mudte receptive field KRR poly (p =3) | 0.0310 | 0.9938 | 0.0095 | 0.9999
(MRF) kernel (a) and the configuration following model seil@tt(b). KRR poly (p =4) | 0.0284 | 0.9948 | 0.0064 | 0.9999
KRR poly (p = 5) | 0.0279 | 0.9949 | 0.0064 | 0.9999
KRR poly (p = 6) | 0.0256 | 0.9949 | 0.0126 | 0.9999
more discriminative information than others, but that the krr RBF 0.0290 | 0.9945 | 0.0095 | 0.9998
variation in discriminative information is reasonably sotio KRR MRF 0.0315 | 0.9948 | 0.0157 | 0.9996
across the image. The direct application of an ARD kernelkRR+KRR | RBF+RBF 0.0263 | 0.9956 | 0.0128 | 0.9996
would be computationally infeasible in this case as theee ar KRR+KRR | RBF+ARD | 0.0253 | 0.9959 | 0.0192 | 0.9994
28 x 28 = 784 hyper-parameters to be tuned (this would KRR+KRR | MRF+RBF | 0.2??% | 0.22?% | 0.2???| 0.2???
also be highly likely to result in over-fitting of the model| KRR+KRR | MRF+ARD | 0.2??% | 0.2??% | 0.22??| 0.2???

selection criterion [7]). We therefore introduce the nlki T biased leave-one-out estimate from the model selection process.

receptive field (MRF) kernel, which is essentially an ARD

kernel_where th? We_|ghts are given by the sum of seven Table Il shows example results for the Prior Knowledge

Gaussian receptive fields distributed across the image. Tpe . L )
: . track. In this case, we are able to significantly improve an th

twenty eight hyper-parameters of the MRF kernel descnb&

the location, width and sensitivity of each of the receptiv
fields. Figure 1 (a) shows a contour plot of the initial Welghvalidation set BER. It seems likely that this is largely dae t

matrix for the_ multiple receptive field RBF kernel. Throughthe deletion of the distractors (note that the best perfacea
model selection, the hyper-parameters evolve so that the . . . . : - .

- ; L iS” still obtained using a relatively simple classifier). # i
receptive fields focus on areas of the image containing the

L T : o possible that the distractors we particularly maliciousehe
most discriminative information, as shown in Figure 1 (b). . ; .
_ /" as they are highly correlated with each other, but describe a
The dataset for the prior knowledge tract also provideg,perent, but uninformative structure within the data.
the identity of each digit comprising the training set. This

is useful as the target concept is actually a composite of V. RESULTSOBTAINED ON THE HI VA DATASET

ten latent sub-classes, representing each individuat. dig The aim of theHl VA benchmark is to identify small
therefore adopt a hierarchical approach, in which the firsho|ecules that are active against HIV based on their chémica
layer consists of 25 kernel ridge regression models, tdaingrycture. The Agnostic Track dataset provides a large fset o
to distinguish between all possible pairs consisting of onginary molecular descriptors, computed using the CheinTK
odd digit and one even digit. The outputs of these kernglackage. The reference solutions for this dataset compfise
machines form the input to a kernel logistic regression modeernel ridge regression models with standard kernels gctin

used to estimate the-posteriori probability that the input girectly on the binary features. In each case, the threshold
digit is odd. The design of the first layer networks was

relatively straight-forward, with all networks being bdse 3http://www. sagei nformatics. com

gnostic Learning track entries, the best model is curyentl
ied for first place on the Prior Knowledge track in terms of



regularisation and kernel parameters were optimised usimgolecules will share many common paths, and so a simple
the PRESS statistic. A similar approach was used to produkernel function for small molecules simply computes the
the first place entry for the corresponding benchmark in thi@ner products between histograms [22]. This kernel can be
WCCI-2006 Performance Prediction Challenge, with a testomputed efficiently using e or suffix tree structure [11].
BER of 0.2757. Work is currently underway to investigate the use of such
kernels for theHl VA dataset and on data integration, to

TABLE IV o . - .
assimilate kernels based on different sources of infownati
RESULTS ON THEHI VA DATASET FOR THEAGNOSTICLEARNING
TRACK.
V. RESULTSOBTAINED ON THE NOVA DATASET
ol | el 100-fold validation | _ validation set The NOVA dataset consists of messages posted to var-

mode ermne BER AUC BER | AuC ious Usenet newsgroups, with messages posted to groups
KRR linear 025471 08071 | 03311 06990 pertaining to religion or politics forming the positive sk&

For the Agnostic Learning track all words containing digits
were removed and all letters converted to lower case. Short
words with less than three letters were discarded, alonly wit
~ 2000 very common words. All words were then truncated
to a maximum of seven letters. The input vector for each
. ) ) message then records the number of occurrences of each
A. Engineered Solution for the Prior Knowledge Track ot 16 969 remaining distinct words comprising the corpus.
For the prior knowledge track, we obtained 1024 bitTable VI shows representative results obtained by applying
binary chemical fingerprints for each molecule, using th&RR models, with standard kernels and automated model
gener at end tool from the ChemAxon chemoinformatics selection to the standardized data. This simple approach
suite. These fingerprints, which represent structural propeappears to give highly competitive results, and the linear a
ties of the molecule, are widely used in searching for similacubic KRR classifiers have yet to be surpassed in terms of
molecules in large databases, or for screening molecutes fglidation set BER.
putative pharmacological activity. These fingerprintsvinle
a reasonable starting point for investigation of tHeVA TABLE VI
benchmark. Work is currently ongoing to fine-tune these RESULTS ONTHENOVADATASET FOR THEAGNOSTICLEARNING

KRR poly (d=2) | 0.2444| 0.7991 | 0.2535 | 0.7253
KRR poly (d=3) | 0.2523| 0.8051 | 0.2467 | 0.7486
KRR RBF 0.2495 | 0.8092 | 0.2819 | 0.7604

chemical fingerprints and to investigate other forms ofcstru TRACK.
tural descriptors. Representative results are shown ite b
at the close of the development phase, the model based on & ..; | remel 100-fold validation | validation set
quadratic kernel is in first place, according to the valioati BER AUC BER | AUC
set BER. KRR linear 0.0491 | 0.9878 | 0.0440]| 0.9968
TABLE V KRR poly (d = ?) 0.0550 | 0.9862 | 0.0640 | 0.9955
RESULTS ON THEHI VA DATASET FOR THEPRIOR KNOWLEDGE TRACK. KRR poly (4 =3) | 0.0569 0.9854 1 0.0044 1 0.9947
KRR RBF 0.0635| 0.9828 | 0.0480 | 0.9942
100-fold validation validation set
model kernel
BER AUC BER | AuC
KRR linear 0.2957 | 0.7988 | 0.2548 | 0.7486 A. Engineered Solution for the Prior Knowledge Track

KRR poly (d=2) | 0.2914 | 0.7411 | 0.2476 | 0.6786
KRR poly (d=3) | 0.2888| 0.7406 | 0.2629 | 0.7741
KRR poly (d =4) | 0.2989 | 0.7365 | 0.3444 | 0.7384
KRR RBF 0.4889 | 0.4573 | 0.5000 | 0.4519

The NOVA benchmark provides greater scope for engineer-
ing the data than many of the other benchmarks included
in the challenge. Messages posted to newsgroups are often
typed in haste and submitted without proof-reading. We
therefore perform automated correction of mis-spellings a

A molecule can be viewed as a graph, with labeled verticé¥) Optional stage in the pre-processing of the data, in order
representing the atoms and weighted edges representf@dmprove the accuracy of term-matching. Many words vary
the chemical bonds. A walk through such a graph Caﬁnly dugto the presence of a suffix, which d.oes not affect t_he
then be represented as a string (e4C- C=0) giving the information co_nveyed by t_he word. Stemming aims to strip
atoms visited and the strength of the bonds connectif§dundant suffixes to obtain tiséemor root of the word, e.g.
them. A histogram, recording the counts of strings repré€ducing “fisher”, *fishing” or “fished” to the stem “fish".
senting all possible walks of lengthor less, then provides Here we use the UEA-Lite stemnierLastly, we adopt the
a sparsemolecular fingerprintdescribing the structure of t€rm frequency-inverse document frequency (TF-IDF) cgdin
the molecule. It seems reasonable to suggest that simiffheéme commonly used in text retrieval problems [18]. The

4ht t p: / / ww. chemaxon. conl Shttp://iwww.cmp.uea.ac.uk/Research/stemmer



term frequency within a document is given by of cartographic features representing four patterns from t

n; original dataset. Two of these patterns are used to decide

tf = , . " -
S Tk the label and two are irrelevant (the positive class coimgjst

of records where both key patterns represent Ponderosa
Pine, the negative pattern consisting of records wher&aeit
represents Ponderosa Pine). This implies that half of ti& 10
. |D| input features are distractors and the remainder exhiloiteso
idf = log { |dy Dt } degree of redundancy. Table VIII shows representativetsesu

provides a measure of the importance of a term, whelfgr automated Iear.ning methods, using standard kernets (se
|D| represents the number of documents in the corpus aid for further details).

wheren,, records the number of occurrences of #ié term.
The inverse document frequency,

|dr. O t;| is the number of documents in which tertn TABLE VIl
appears. Rather than using a simple count, wetyisedf, RESULTS ON THESYLVA DATASET FOR THEAGNOSTICLEARNING
which has the effect of suppressing common terms, while TRACK.

amplifying rare, but informative terms. Table VII shows sem
preliminary results, note that we have been able to improve
marginally on the performance of the equivalent modelg model | kemel
from the Agnostic Learning Track. Stemming appears to b om ; Somao | 09952 | 50065 | 55950
helpful, providing the lowest validation set BER recorded s near ' : ' :

. KRR poly (d=2) | 0.0077 | 0.9991 | 0.0045 | 0.0990
far, however the automated spell checking appears to haye poly @—3) | 00078 | 0.9990 | 0.0045 | 0.9991
:)heiser;rg;ggtggﬁzzes,yast?gmwe are in the process of fine-tuni YRR RBF 00079 | 0.9990 | 0.0049 | 0.9991

100-fold validation validation set
BER AUC BER AUC

TABLE VI
RESULTS ON THENOVA DATASET FOR THEPRIOR KNOWLEDGE TRACK.  A. Engineered Solution for the Prior Knowledge Track

For the Prior Knowledge track, the irrelevant input feasure

model | Pre- | cross validation | validation set are discarded, which should substantially reduce the diffic
processing| BER | AUC | BER | AUC of the task. The training set provides details of 26,17 Armlist

KRR none 0.0432 | 0.9894 | 0.0540 | 0.9886 patterns from the originaCOVTYPE dataset. Table IX shows

KRR stemming | 0.0504 | 0.9890 | 0.0360 | 0.9878 the distribution of cover type for each of the four wilderaes

KRR spell+stem| 0.0626 | 0.9817 | 0.0540 | 0.9782 areas, note that Ponderosa Pine are not found in the Rawah

or Neota wilderness areas. In addition Ponderosa Pine are
. . . . only found to exist in thirteen (1-6, 10, 11, 13, 14, 16,
Again as newsgroups are organised in an hierarchy7 " o4 35) of the forty soil types. We can therefore pre-
cal manner, -an alternative approach would involve Fh‘élassify any example containing a sub-pattern from Rawah
creation of a number of expert models, each of WhiC Neota or from any other soil type as belonging to the
s used to distinguish between different groups at thgg aiive class. This leaves only 1,38&icult patterns that
top level (e.g.alt.x-v-conp. ), an intermediate level 4 he classified. This is well within the reach of a kernel
(e.g.conp. sys. *-v-t a}l k.politics. *.) or the !oweSt ridge regression model. A KRR model with an RBF kernel
level (e.g.conp. graphi cs-v-tal k. politics.msc). niaves a validation set BER of 0.0041 (joirit place)

These experts then provide the input features for a classifisnd an AUC of 0.9992, and performs slightly better than the
used to identify messages posted to groups relating to regbrresponding Agnostic Track model
gion or politics. This approach will be investigated at @tat '

stage, although the performance of single classifiers,ngive VIl. CONCLUSIONS
appropriate pre-processing, is already good. In this paper, we have presented solutions to both tracks

VI. RESULTS OBTAINED ON THE SYLVA DATASET of the IJICNN-07 Agnostic Learning versus Prior Knowledge

The SYLVA dataset describes the distribution of different
tree species in four wilderness areas within the Roosevelt
National Forest, located in northern Colorado, accordimg t

TABLE IX
COVER TYPE BY WILDERNESS AREA

a set of cartographic variables [2], describing geograahic| cover Type Rawah | Neota | comanche | Cache la
location, terrain and soil type. While the original data are : ke Poudre
partitioned into classes representing seven differeng¢ tre Sgé“‘ée';g bine ggg ﬁg 2233 125
species (Spruce—Flr, Lodgepole P|r_1e, Ponderosa Pine, Co -on%efosa Pine 0 o 663 o047
tonwood/Willow, Aspen, Douglas-Fir and Krummholz), the cottonwoodmwillow 0 0 0 137
aim of the SYLVA benchmark is to distinguish between| Aspen 174 0 245 0
Ponderosa Pine and all other species. For the Agnostic LearnPouglas-Fir 0 0 373 453
ing track, the input vector is formed by the concatenationKrummholz 228 104 565 0

[ Total 11816 1310 11374 1672




Challenge. The reference solutions for the Agnostic Learnis]
ing track rely on the use of a limited range of standard
kernel functions and an automated model selection schen‘[e]
to achieve a good level of generalisation performance. The
prior knowledge solutions are currently placed first or join
first on four of the five benchmark#\DA, G NA, Hl VAand g
NOVA), third on SYLVA and also leading overall. However,
these results are based on the validation set performancg]
which is known to have a high variance, and so the final
standings may well be very different! It is interesting t@se
however that the provision of prior knowledge, suggesting©!
solutions that exploit any hidden structure of the problem, [11
encouraging the use of bespoke kernels, has had relatively
little effect on the results. The only dataset where the rPrid!2]
Knowledge model performed appreciable bett@rNA), and
there the difference in performance seems due solely to
the deletion of irrelevant input features, rather than th&3l
incorporation of prior knowledge, This suggests perhap[§4]
that automated model selection procedures are becoming a
genuinely practical proposition (or alternatively jusattwe [15]
have not been sufficiently imaginative in applying our prior
knowledge!; -) . [16]
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