
 
 

 

  

Abstract— The correct segmentation and measurement of 
mammography images is of fundamental importance for the 
development of automatic or computer-aided cancer detection 
systems.  In this paper we propose a method to segment 
mammogram image using a self-organizing neural network 
based on spatial isomorphism.   The method used is a modified 
version of the algorithm proposed by Venkatesh and Rishikesh 
[1] to extract object boundaries in an image.  This model 
explores the principle of spatial isomorphism and self-
organization in order to create flexible contours that 
characterize shapes in images.  We modified the original 
algorithm to overcame problems of local minimum, poor 
performance for image object with large concavity and 
imprecise results when simple or far from object border 
contour are chosen. A comparison of both algorithm and 
original segmentation used by the MIAS database [9] is 
presented.  
 

I. INTRODUCTION 

 
HE main objective of this paper is to develop a method 
to segment objects (tumors) in a mammogram image.  
Presently there has been an enormous interest in image 

processing and analysis techniques in mammography 
[14][15][16], since breast cancer is the leading type of 
cancer in women and the second most fatal type of cancer 
[17]. Early detection is of most importance for survival, but 
manual diagnosis is tedious, time consuming, and requires 
an expert [14][15].  Mammograms are the best method of 
detecting breast cancer; its results can indicate cancer years 
before physical symptoms occur. Doctors may choose to use 
an automated detection system to help or simply as an aid in 
locating suspicious masses [15].  The precise localization 
and correct segmentation and measurement of the image 
tumor are of importance. Here, we propose a method to 
segment mammogram image using a self-organizing neural 
network based on spatial isomorphism.    
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There are many techniques based in models, which uses 
an initial contour that adjusts to the border of the object of 
interest.  The models used in these processes can be rigid or 
flexible, such as active contour models (ACM) or 
deformable templates. An ACM algorithm utilizes an initial 
contour defined as the border object that modifies itself until 
the contour approximates the border of the object.  The word 
active is used to represent the dynamic nature of the model 
in the process to define the final contour. Due to the 
flexibility of active contour models, they have been used to 
solve various problems in computer vision, such as: 
stereovision, movement tracking, contour detection and face 
recognition [1][7][8]. 

The problem discussed in the paper is the localization and 
extraction of the tumor region (salient contour) in the 
mammogram images. We use an ACM based on self-
organizing network (SON)[4][5] to segment the region of 
interest in the image. This model explores the principle of 
isomorphism and self-organization to create flexible 
contours that characterizes the shapes in the image [1][7][8].   

The flexibility of the model is obtained by a scheme of 
local cooperation and global competition in the self-
organizing neural networks, which allows the inclusion of 
the nearest salient contour of the image. This model requires 
a rough border as initial contour to start the process of 
deformation. Also, the technique is semi-automatic since it 
needs an initial contour. However, it is useful in various 
different types of problems such as border extraction, 
medical images and digital libraries [1][2][3][7][8]. 

The model proposed by Venkatesh and Rishikesh [1] is 
completely different from other models of active contour in 
both theory and implementation.  They used a modified 
neural networks proposed by Ganesh Murthy and Venkatesh 
[2] and used by Shanmukh et al [3], that applies isomorphic 
self-organizing networks (SON) to the patterns. Venkatesh 
and Rishikesh explored the simplicity and elegance of this 
model to adapt to the problem of contour extraction. 
However, this method presents the same difficulties found in 
other ACM, which are problems in local minimum, poor 
modeling for object with large concavity and imprecise 
results, if a simple or far away initial border is used.  We 
propose a modified version of this model that minimizes 
these problems.  
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II. ACTIVE CONTOUR MODELS 

A. Definition 
 

The first and most important step in image analysis is the 
segmentation procedure (generally referred as border 
estimation, edge detection or object localization). 
Segmentation subdivides an image in different basic 
constituent parts. Segmentation algorithms for gray level 
images are generally based on two fundamental properties: 
discontinuity and similarity.  The first method divides the 
image based on sudden changes in the gray levels (isolate 
points, lines and borders), while the second method is based 
on threshold, growth region and division and fusion of 
regions. 

Both methods use information present only in the image. 
However the problem with these procedures is that the 
border obtained might not be the actual object borders.  
Except images of very high quality obtained in controlled 
environments these methods can create false border and 
wholes. In general, they are also limited and useless in 
images of low quality. The limitations of these methods are 
due to the use of information only on the neighborhood of 
the local image.  They ignore information based on image 
model and border grouping.  These methods are considered 
low-level mechanisms [6][7][8].  Alternatively we can use 
high-level segmentation methods that utilize prior 
knowledge of the shape, texture, color or object position in 
the segmentation procedure. 

Active Contour Models (ACM) or snakes are curves 
generated by computer that moves along the image in search 
of the border of the object [6]. They are often used in 
computer vision and image analysis to localize objects and 
to describe its shapes. For example, a snake can be used to 
find a region in a medical image or to identify a character in 
a handwritten letter. They are defined as partial differential 
equations and are considered an ACM method. Snakes can 
be implemented using an implicit finite difference or 
through dynamical programming or using methods of finite 
elements. The first two methods are more common in the 
literature [7][8].  Some applications of object segmentation 
using ACM are: snakes, balloons, template deformation, and 
dynamical contours.  

 

B. Snakes 
 

Snake is a parametric curve defined in the image domain. 
All the proprieties of Snake and its behavior are specified 
through an energy function in analog with a physical system. 
A partial differential equation controlling a Snake has the 
objective to minimize the energy; the analogy with a 
physical system can be extended to the notion of Snake [13].  
Let’s image that a border map is a barrier, in which the 
parametric curve can be moved, force acting upon the curve 
moves the barrier trying to restore the energy equilibrium. 

The model that moves the barrier has two components: one 
that controls the behavior  (to preserver the original form, to 
develop a curve, etc) the other controls the direction. The 
objective is to the curve adjusts itself to the border of the 
specific object in the image.  The border can be recognized 
as the low values of the negative border map; therefore the 
equilibrium equation should minimize the term involved in 
the negative border or the potential energy of the dynamical 
system.  Since the general form of the object is known, we 
can draw the evolution equation in which a Snake can easily 
hold the object, which should be elastic, firm and capable to 
develop a curve or something similar. Kass, Witkin and 
Terzopoulous proposed the first Snake model in 1987 [6].  

 

C. Deformation template  
 

Deformation template is another technique to approximate 
objects. This method applies a prior knowledge of the shape 
of the object, which is obtained through a draft, binary 
template or parametric prototype. The prior information is 
coded in the shape of the binary border in a template or 
parameter vector. The information does not need to be 
extract in a sense that it does not need to correspond exactly 
to the borders of the image [11]. 

The difference between Snakes and deformation template 
is that Snake are functions that minimize free energy of the 
shape. In the Snake model there are no global structure in 
the curve except for some restriction that regulates the 
smoothness and continuity of the border.  On the other hand, 
deformation templates control the deformation using a set of 
parameters capable to codify a specific shape. This type of 
model is used in case that more specific information about 
the shape, that can be described in a binary template or in a 
set of parameters, is available.  

 

D. Dynamic Contour 
 

Both Snakes and deformation templates can be classified 
as dynamical contours, since they utilize a dynamic 
environment [12]. ACM can be applied to simple static 
images or to a sequence of dynamical images.  In dynamical 
applications some additional moments can be incorporated 
in the model, so that any prior knowledge about the object 
and deformation can be expressed.  In contrast, using Snakes 
only the active contour varies, the dynamical contour of the 
border map is also variable. Snake can also be applied in a 
sequence of images. This group of ACM has application in 
traffic monitoring, visual speech recognition, movement 
control and others.  ACM can be classified according to 
some difference criteria; ACM free of form and ACM with 
limited form. 

There are no global structures for the contours in the free 
of form ACM. The limitation is due to local continuity 
restrictions and smoothness.  Also, there is no use of prior 



 
 

 

information upon the form since this information is used to 
adjust the model parameters over the contour proprieties 
(elasticity, rigidity, etc) that enable the procedure to encircle 
the object of interest. 

The limited form ACM uses prior information on the 
direction of the geometrical shape. This information is 
available as a vector of parameters, which codes the shape 
of interest. The geometrical shape of the contour is adjusted 
through the variation of the parameters. Deformation 
templates are example of limited form ACM.  The reason to 
call them limited is because they cannot take any arbitrary 
shape.  Shape validity is limited through the prototype of the 
template.  

ACM can also be classified by the information obtained in 
the shape of the image used to align the contour with the 
object of interest. The model can be classified as: region 
based model or border-based model. Region based models 
represents a contour of the image segment within well-
defined region. The image is examined to decide if a pixel 
belongs to the object or if it is outside the frontier of the 
object. A pixel belongs to the border if it is in the region of 
the object and its neighbors are in the background. 
Segmentation is used to produce an image with a force field 
that aligns the active contour with the object of interest. 

III. ISOMORPHISM 
 

Based on the recognition of the human vision system, the 
use of spatial isomorphism for object and character 
recognition was identified as a strategy to maintain the 
characteristics of the human vision system, like scale 
changes, rotation and shift. For this reason, in the 
implementation of the model, we used a self-organization 
scheme similar to the model of Kohonen, but different in 
terms of architecture, since it was not used a lattice of 
neurons. 

 

IV.  MODELING ACTIVE CONTOUR THROUGH SON NETWORK   
 
Venkatesh and N. Rishikesh [1] introduced Self-

organizing Network (SON) by as an alternative for the 
traditional active contour model (ACM)[6].  SON network is 
adapted to solve the problem of border extraction of objects 
in an image, which is done by minimization of functions 
based on energy.  The network, that has a fixed number of 
neurons in a ring topology, is created in an isomorphic way 
for an initial condition (one-to-one correspondent between 
the contour points and the networks points), initializing a 
contour and being deformed until the image contour is 
mapped.  Figure 1(a) shows a traditional SON network 
topology and figure 1(b) shows the topology of a SON 
network based on ACMs. 

 
Fig 1. (a) Lattice topology employed in conventional Kohonen-SOM 
algorithms. (b) Chain topology used in SOM-based ACMs. 

 
The primary limitations of SON-based ACMs are the 

condition of the initial contour, which must be: near the 
border of the object and similar to the shape of the object. 

This is due to the fact that the neighborhood function in 
the update of the weights is based only on the physical 
distance between the neurons and not on the indices.  In this 
way the update of the weights turn gradually smaller when 
the neurons are distant of the winner, even if they are 
topologically neighbors. As long as the number of contour 
points remains fixed, the final contour will not be a precise 
representation of the real border.  If the contour is not 
specified by a set of continuous points, the algorithm fails.  

The model proposed by Venkatesh and Rishikesh [1] 
produces good results when the initial contour is near the 
border of the object.  Even then it might happen that some 
parts of the initial contour never gets near the borders, 
mainly when the initial contour is far away of the object or 
when the object have concavities.  We proposed a modified 
algorithm that is able to minimize these problems. 

 

V. PROPOSED ACTIVE CONTOUR MODEL 
 
With the objective of minimizing the problems of initial 

contour far from the object border and object concavity, we 
implemented the algorithm proposed in [1] with a penalty to 
the winner neurons in the next interactions.  Like most of the 
ACM models, our proposed model needs an initial contour 
that involves the object of interest.  The initial contour used 
in the test is the circle indicated in each of the images [9]. A 
neural network isomorphic to the initial contour is build, 
which is followed by a procedure that modifies this contour 
with the objective of obtaining the most accurate contour of 
the object in the image. The steps involved in this procedure 
are the following:   

 
1. Apply an image filter to smooth eventual noise, which 

appears from the image acquisition procedure. We used 
a median filter with window size varying from 3 to 9 
pixels.  

 
2. Normalize the image to enhance the desired object 



 
 

 

(tumor). We divided the gray levels of the images in 64 
bands.  Since the objects (tumors) that we want to 
localize have a higher gray level value, we changed the  
f greater gray levels bands in a value equal 255. The 
parameter f varies from 8 to 20. 

 
3. Compute the edge map of the image, because the 

method needs a rough boundary as the initial contour to 
start with the deformation process. We used a Sobel 
method instead of the Hough transform originally used 
in [1] because of its excessive requirement for memory 
and computation time especially as the number of 
parameters increases [10]. 

 
4. Obtain the edge points E = {(xi, yi),i=1, ..., Ne} within 

the region of interest, where Ne  is the number of edge 
points within the region of interest. 

 
5. Construct a network with Nc neurons, where Nc  is the 

number of points on the initial contour. Each neuron in 
the network receives three inputs (I1, I2, I3). The weights 

c
iiii Niwwww ,...,1),,,( 321 == , corresponding to 

these three inputs, are initialized to the co-ordinates of 
points on the initial contour ( ii ww 21 , ) and the penalty 

equals zero ( iw3 ).  The penalty weight ( iw3 ) is useful to 
avoid that the same neuron becomes the winner 
repeatedly.  

 
6. Repeat the following steps a certain number of times 

(Niter): 
 

(i) Select a point p = (u, v) ∈ E randomly, and feed the 
(x, y) co-ordinates of the selected point p as inputs 
(I1, I2) to every neuron in the network. 

 
(ii) Determine the neuron whose weight vector is 

closest to the input vector, and declare it as the 
winner neuron. Compute the distance using   

 
 
distance = Euclidian distance measure + iw3  (1) 
 

The penalty weight ( iw3 ) is used to give a chance to 
another neuron to be the winner, since each time 
that a neuron is the winner this parameter is 
increased. If the distance between the vector (Ww) 
and the input vector is greater than a particular 
threshold Twd , then go to (i).   
 

(iii) Add the penalty parameter (α) to winner neuron’s 
weight iw3 . 

 

(iv) Update the weights of the neurons in the network 
using the following rule: 
For neuron i, 
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where  η, σ  are the standard learning rate and 
neighborhood parameters. 
 

(v) Calculate the parameter Cnp (neighborhood 
parameter) of the contour as: 
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If Cnp > Tnp the threshold value of the neighborhood 
constraint parameter, then restore the previous 
network weights discarding the present update. 
 

(vi) Vary η and σ according to the following rules: 
 
 

,)(* iterNiter
initfininit ηηηη =  (4) 

,)(* iterNiter
initfininit σσσσ =  (5) 

 
where ηini and ηfin  initial and final values of η; σini and 
σfin  are those of  σ ; and iter  is the current iteration 
number. 

 
 
The algorithm was implemented using Matlab Version 7 

R13. The images used in this work were obtained from 
MIAS MiniMammographic Database.  By popular request 
the original MIAS Database (digitized at 50 micron pixel 
edge) has been reduced to 200-micron pixel edge and 
clipped/padded so that every image is 1024 pixels x 1024 
pixels. The images are available in [9].  

 

VI. RESULTS 
 

We tested the proposed modifications of the original 
algorithm using the images taken from the MIAS database 
of mammograms [9]. The original image shows a circular 
object that represents the tumor as shown in the figures.   

Since the algorithm needs a rough initial contour to start 
the process of deformation, we used the circle defined by the 
images of the MIAS database as initial contour.  The 
encircled region indicates the location of a suspected tumor. 
Because of the isomorphism, the size of the net (number of 
neurons) depends in the initial selected contour. If the initial 



 
 

 

contour has n pixels the size of the net will consequently 
also be n. 

The constraint on the winner-distance (Twd  parameter) is 
useful in avoiding the influence of edge points, which are 
within the region of interest, but are not a part of the nearest 
salient contour of interest [1]. In the absence of such a 
constraint, the neurons organize themselves to spurious 
edges. If the distance between the input vector and the 
winner neuron’s vector weight is greater than   Twd, then the 
weights of network are not update. 

The neighborhood constraint (Tnp  parameter) refers to 
maximum of the distances in x- and y-directions, taken over 
of all the adjacent pairs of points on the contour. 
Constraining this parameter helps in maintaining the 
continuity of the contour in the course in the course of its 
deformation [1]. In the absence of this parameter many 
neurons tend to organize themselves towards a single point 
of the input image, leading to discontinuities in the final 
contour. 

The penalty parameter (α) is utilized in avoiding the same 
neuron became winner repeatedly, because each time that a 
neuron is a winner the weight ( iw3 ) is increased by α. Using 
this parameter it was possible to overcome problems of local 
minimum, poor performance for image object with large 
concavity and imprecise results when simple or far from 
object border contour is chosen. 

 
 
 

TABLE I 
 PARAMETERS 

File Niter ηini ηfin   σini σfin   Twd Tnp α 

mdb001 2000 0.90 0.01 5 0.10 132 132 25 
mdb010 700 0.70 0.01 5 0.20 26 26 5 
mdb015 1200 0.70 0.01 5 0.20 61 61 15 
mdb021 1200 0.70 0.01 5 0.20 44 44 15 
mdb023 700 0.70 0.01 5 0.20 17 17 10 
mdb025 1200 0.70 0.01 5 0.20 76 76 20 
mdb028 1200 0.70 0.01 5 0.20 50 50 15 
mdb069 1000 0.70 0.00 3 0.10 40 40 20 
mdb091 1200 0.70 0.01 5 0.20 14 14 10 
mdb132 1200 0.70 0.01 5 0.20 42 42 20 

 
 
 

Table I shows the parameters used to test the algorithms 
using the images selected from the database (the first 
column shows the file name of these images).  
 

 
 
 

 
 

TABLE II 
AREA IN PIXEL 

File Original 
circle 

Original 
algorithm 

Modified 
algorithm 

Difference 
between 

algorithms (%) 
mdb001 67853 58979 30167 -48.85 
mdb010 3405.5 2794 2726 -2.43 
mdb015 14499 12706 10464.5 -17.64 
mdb021 7526.5 6294 4820 -23.42 
mdb023 2628 2559.5 2475.5 -3.28 
mdb025 22136 18426 10578 -42.59 
mdb028 9822 7582 6459.5 -14.80 
mdb069 6067.5 5455.5 2176 -60.11 
mdb091 1246.5 1227.5 1171.5 -4.56 
mdb132 6921.5 5506 1711.5 -68.92 
 
 
Table II, shows the total area (values in pixel count) of the 

encircled image indicating in [9], the obtained area for the 
original algorithm [1] and the area obtained with our 
proposed modified.  These values represent the size of the 
suspected region, allowing a more accurate measurement of 
the tumor region.  In the last column, it is shown the 
difference of area, in percentage, comparing both 
algorithms.   

 
 

 
 

 
Fig. 2 (a) Original image mdb0025. (b) Edge map. (c) Final contour of the 
original  method (d) Final contour of the modified algorithm. 
 

Figure 2 shows the segmented images of the original 
database, the edge map used, the resulting segmentation 
using Venkatesh and Rishikesh algorithm and the segmented 
image obtained by our modified algorithm. Figures 2 to 4 
correspond to the processed images mdb0025, mdb0028 and 
mdb0021, respectively.  
 
 



 
 

 

 
 
Fig. 3 (a) Original image. (b) Edge map. (c) Final contour of the original.  
method (d) Final contour of the modified algorithm. 
 
 

 
 
Fig. 4.  (a) Original image. (b) Edge map. (c) Final contour of the original.  
method (d) Final contour of the modified algorithm. 
 
 

In all the images tested, we confirm the problem that the 
active contour model have in dealing image objects with 
large concavity and distant from the object border. In 
Figures 2(c), 3(c) and 4(c), we observe the formation 
“bubble” areas using the original algorithm. The (d) images 
in these figures show the results for the modified algorithm, 
the segmented region represents a closer approximation of 
the tumor region. 

VII. CONCLUSIONS 
 
We have shown the exploration of the isomorphism and 

self-organization principles applied to create flexible 
contours to enhance shapes of the images.  The main 

contribution of this model is segmentation procedure, which 
performs a more accurate tumor region selection in 
mammogram images.  We believe that the improved 
algorithm will also perform better than the original in other 
types of image segmentation problem since it handles better 
the contour minimization process.   

The principal advantage of this modified algorithm is that 
it avoids the traditional problems of the ACM models with 
distant border contour and objects with large concavity.   
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