
 
 

 

  

Abstract – A type of recurrent neural network has been 
proposed by H. Jaeger. This model, called Echo State Network 
(ESN), possesses a highly interconnected and recurrent 
topology of nonlinear processing elements, which constitutes a 
“reservoir of rich dynamics” and contains information about 
the history of input or/and output patterns. The interesting 
property of ESN is that only the memoryless readout is trained, 
whereas the recurrent topology has fixed connection weights. 
This reduces the complexity of recurrent neural network 
training to simple linear regression while preserving a 
recurrent topology. In this paper, the ESN is used to forecast 
hydropower plant reservoir water inflow, which is a 
fundamental information to the hydrothermal power system 
operation planning. A database of average monthly water 
inflows of Furnas plant, one of the Brazilian hydropower 
plants, was used as source of training and test data. The 
performance of the ESN is compared with SONARX network, 
RBF network and ANFIS model. The results show that the 
Echo State Network provides pretty good results for one-step 
ahead water inflow forecasting, providing a valuable 
information for the system operator. 

I. INTRODUCTION 
HIS paper presents and applies a constructive learning 
algorithm for recurrent neural networks, which modifies 

only the weights to output units in order to achieve the 
learning task. 

Under certain conditions, the activation state x(n) of a 
recurrent neural network (RNN) is a function of the input 
history u(n); u(n-1); … presented to the network, i.e., there 
exists a function E such that x(n) = E(u(n); u(n-1);…). 
Metaphorically, the state x(n) can be understood as an 
“echo” of the input history [1]. 

At [1], Jaeger investigated what can be gained when RNN 
states are understood as echo states, specifically, under 
which conditions echo states arise and describes how RNNs 
can be trained, exploiting echo states. 

The Echo State Network (ESN) is used to forecast 
hydropower plant reservoir water inflow, an essential 
problem in electric power system operation and planning. 
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Long term hydrothermal operative planning is a complex 
problem due to various aspects of the modeling involved, 
including the randomness of inflows into the hydropower 
plants, the interconnection of hydropower plants located in a 
cascade, and the nonlinearity of hydro production and 
thermal cost functions. 

A promising approach to this problem combines a 
deterministic optimization of the hydrothermal scheduling 
problem with inflows furnished by a forecasting model [2]. 

At each stage of the planning period this feedback control 
scheme determines an optimal decision based on the current 
forecast of future values, and this decision is utilized until a 
new forecast becomes available. When a new forecast 
becomes available, a new optimal decision is determined 
within the framework of partial open-loop feedback control. 

II. ECHO STATE NETWORK 
Recurrent neural networks (RNN) are examples of neural-

based computation models that handle time without the need 
for pre-processing delay lines. RNNs have recurrent 
connections between the processing elements (PEs) creating 
internally the memory required to store the history of the 
input patterns. RNNs have been widely used in many 
applications such as system identification and control of 
dynamical systems [3]-[5]. 

The main problem with the RNNs is the difficulty to 
adapt the system weights. The training algorithms for RNNs 
usually suffer from a variety of problems: computational 
complexity resulting in slow training, complex performances 
surfaces, the possibility of instability, and the decay of 
gradients through the topology and time [6]. 

Recently, a new utilization of recurrent network 
topologies that aims at addressing the difficulties in RNN 
training has been introduced by Jaeger under the name of 
echo state networks (ESN) [1][7]. 

The ESN idea divides the RNN architecture into two 
separate parts: a recurrent topology of nonlinear PEs, called 
the dynamical reservoir, and a memoryless linear network, 
called the readout. The state of the dynamical reservoir is 
called “echo states” and they contain information about the 
history of input patterns. The outputs of the internal PEs are 
fed to a readout network that reads the reservoir and 
produces the network output. The interesting property of 
ESNs is that only the memoryless linear readout is trained 
whereas the recurrent topology has fixed connections. 

Consider the recurrent discrete-time neural network given 
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in Figure 1 with M input units, N internal PEs and L output 
units. The value of the input unit at time n is u(n), of internal 
units are x(n), and of output units are y(n). 

 
Fig. 1 - Diagram of an echo state network (ESN) 

 
The activation of the internal PEs (echo states) is updated 

according to: 
 

x(n+1) = f(Winu(n+1) + Wx(n))      (1) 
 

where x(n) is the echo state vector, W is the recurrent 
connection weight matrix, u(n) is the input signal, Win  are  
the weights between the input and the internal PEs. Here, f 
represents the activation function of the internal units, which 
is usually a hyperbolic tangent function. 

The echo state condition is defined in terms of the spectral 
radius of the reservoir’s weight matrix (|W|<1), which 
relates to the condition under which the recurrent network 
states are strongly coupled with the input history. Although 
this condition is very useful in terms of defining the region 
of parameters resulting in echo states, it does not specify a 
sufficiently accurate design principle to construct ESNs for 
function approximation. 

The output of the ESN is computed according to: 
 

     ( ) ( )outn n= ,y W x             (2) 
 
For a given input signal, the echo states can be computed 

using equation (1). The optimal output weight matrix, 
linearW  in the mean square error (MSE) sense can be 

analytically computed by: 
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here E[.], P, x and d denote the expected value operator, the 
number of input data, the input and the desired target 
signals, respectively. 
 

For the ESN experiment we submit in this paper, the input 
weight matrix Win was fully connected and took on values 
of 1±  with equal probability. The recurrent connection 
matrix W generated from a zero mean random Gaussian 
distribution. Output feedback and the direct connection from 
inputs to the output mapper were disconnected. 

III. THE CASE STUDY: FORECASTING WATER INFLOW 
Analysis and forecast of water inflow series are of utmost 

importance in the operation planning of hydropower 
systems. One of the greatest difficulties to forecast is the 
nonstationary nature of the streamflow series due to wet and 
dry periods of the year. 

Forecasting models based on Box & Jenkins methodology 
has been largely used in streamflow forecasting problems 
[8],[9]. However, those parametric auto-regressive models 
assume linear relationship between the series values [10]. 

In the last years, Artificial Neural Networks (ANN) have 
been suggested for time series analysis due to their ability to 
deal with nonlinear input-output relationships [6],[11]. 
MultiLayer Perceptrons (MLP) with a backpropagation 
algorithm, the most popular of them, have been applied to 
forecast streamflow with promising results [12]. Afterward, 
other types of ANN have also been used for this problem 
with the same success [13]-[16]. 

In this problem, the use of ANN usually require 
considerable modeling effort, since they are dealing with a 
very difficult real world problem. Consequently, it implies 
in a task to estimate a great number of parameters. 
Moreover, another great problem in forecasting applications 
is the definition of the “optimal” embedding that defines the 
most important previous measured samples which must be 
considered as input data of the predictor. 

Therefore, the ESN appears to deal with those 
characteristics. This is because one of interesting property of 
ESN is that only the memoryless readout is trained, whereas 
the recurrent topology has fixed connection weights. This 
reduces the complexity of recurrent neural network training 
to simple linear regression while preserving a recurrent 
topology which is proven to be very powerful in neural 
networks literature [1][7]. Moreover, since the system has 
internal built-in memory resulting from the feedback 
connections, it is not necessary to embed the input signal 
before further processing. The training of the linear readout 
weights can be done analytically; hence very fast. 

In this paper, the ESN works as a one-step-ahead 
predictor of the monthly average hydropower plant reservoir 
water inflow. The performance of this approach is evaluated 
and compared to the Self-Organizing Nonlinear Auto-
Regressive model with eXogenous input (SONARX) model 
[17], the Radial Basis Function (SONARX-RBF) network 
[16] and the Adaptive Neuro-Fuzzy Inference System 
(ANFIS) model [18]. 
 
 



 
 

 

A. Results 
 
In this case study, the Furnas hydroelectric power plant 

(HPP) was chosen because of its relative position on the 
cascade, an upstream reservoir, consequently, without 
whatever operative influence. 

A monthly water inflow historic data, covering the period 
of 1931-1994, have been available to this study. A stretch of 
5 (five) years was selected as testing data, which 
corresponds to the period of 1972-1976. Then, the whole 
historic period without theses testing samples, 1972-1976, 
was taken as training data. 

Usually, most of the predictor models, including the 
models that ESN is compared with, require the previous 
choice of the “optimal” embedding that defines the most 
important previous measured samples which must be 
considered as input data. 

Here, we chose for all predictor models, except for ESN, 
3 (three) options of embedding. The first option of 
embedding was chosen as a short time delay memory, 
defined as: 
 
     )()(1 twitx =  

     )1()(2 −= twitx  

     )2()(3 −= twitx  
 
where t = 1,…,T denotes the current month, wi the water 
inflow sample, and xi the input variable to the predictor 
model. 

The second option of embedding was chosen as a longer 
time delay memory, which probably contains more useful 
information; defined as: 

 
     )()(1 twitx =  

     )1()(2 −= twitx  

     )2()(3 −= twitx  

     )3()(4 −= twitx  

     )4()(5 −= twitx  

     )5()(6 −= twitx  
 
 And, the third one was chosen with two short periods, one 
within the immediate past and another related to the 
previous year. This was a way to fid the models not only 
with the monthly information but also with the year season 
information. It was, then, defined as: 
 
     )()(1 twitx =  

     )1()(2 −= twitx  

     )2()(3 −= twitx  

     )10()(4 −= twitx  

     )11()(5 −= twitx  

     )12()(6 −= twitx  
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Fig. 2 – “Echo States” of the ESN model trained with monthly water inflow historic samples 

 
 



 
 

 

 

0 100 200 300 400 500 600 700
0

500

1000

1500

2000

2500

3000

3500

4000

Months

m
3/

s

Water Inflow (Training Samples)

Observed
Forecasted

 
Fig. 3 – Training Patterns: Water Inflow of Furnas Hydroelectric Power Plant 

 
Nevertheless, as mentioned before, the ESN doesn’t need 

to use any of those options of embedding, since ESN has 
internal built-in memory resulting from the feedback 
connections. 

In addition, as the objective, here, was to obtain a one-
step-ahead forecasting, the desired output of all models was 
defined as: 
 
    )1()( += twityd             (4) 

 
 Finally, the predictor models used here could be trained 
and adjusted: SONARX, SONARX-RBF, ANFIS and Echo 
State Network. 
 During both the training and testing periods of the ESN, 
the entries of W (the recurrent connection weight matrix) 
were scaled to have a spectral radius of 0.8, so that the 
outputs of echo states could be almost uniformly distributed 
within their dynamic range. 
 The dynamic reservoir was initialized empty, that is, with 
no activation. Considering that after some steps it achieves 
its steady-state, we have disregarded those first responses, 
avoiding the initialization contamination. 
 After some experimental evaluations, the number of 
hidden layer processing elements was defined as N = 36, 
which presented best results. 

Figure 2 shows the resulted “Echo States” from the ESN 
training with the training data. Each line (color) represents 
the behavior of the activation level of each PE. We note that 
ESN states have a wide dynamic range in this problem, 
when it would be necessary to cover the feature space 

during the whole training period. 
Those variety ESN states represent a set of functional 

bases constructed dynamically by the input, while the 
readout simply projects the desired response onto this 
representation space. 

We can see, at Figure 3, the result of the water inflow 
recovering for the training data. The blue line refers to the 
observed measures of this time series, and the red one refers 
to the “forecasted” amount of water inflow. 

Based on Figure 3, we can say the predictor model was 
able to learn and capture most of the behavior variability 
present on this time series, which seems but is not a easy 
task for any predictor. 

Figure 4 shows the water inflow forecasting to the period 
of 1972-1976. The ESN predictor presented a great result, 
where, we can see how similar was both time series. The red 
line, representing water inflow forecasting, shows a 
behavior very close to the blue one, observed measures. 

Even at the last year, 1976, we can see the ESN predictor 
was able to forecast a higher, wetter dry season at the middle 
of that year. 
 The performance of the forecasting models was evaluated 
according to 4 (four) error criteria: Mean Square Error 
(MSE), Root Mean Square Error (RMSE), Mean Absolute 
Error (MAD), and Mean Percentual Error (MPE), as 
follows: 
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where, T is the number of monthly samples, y(t) is the model 
output, and yd(t) the desired output. 
 Table I shows the forecasting errors obtained by the 

predictors used and compared in this paper: Echo State 
Network, SONARX, SONARX-RBF and ANFIS models. 
We can see that ESN, SONARX-RBF and ANFIS 
performed significantly better than SONARX model, which 
has an intrinsic error since it is based on Vector-Quantized 
Temporal Associative Memory (VQTAM). In addition, we 
note that SONARX-RBF and ANFIS models presented 
practically the same performance. 
 Moreover, the ESN model performed slightly better than 
all other models, even though it presents a significantly 
simpler, and faster, training algorithm. This fact prove how 
powerful and promising is this approach. 
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Fig. 4 – Testing Patterns (1972 - 1976): Water Inflow of Furnas Hydroelectric Power Plant 

 
 

Table I 
Forecasting Errors for Furnas Hydroelectric Power Plant 

Models Embedding MSE (x10 4 ) RMSE MAD MPE (%)
Echo State Network built-in 5.97 244.45 177.41 21.04

t,t-1,t-2 21.78 466.73 320.13 37.94
t,t-1,t-2,t-3,t-4,t-5 12.20 349.30 253.18 28.78
t,t-1,t-2,t-10,t-11,t-12 13.54 367.90 261.04 28.32
t,t-1,t-2 9.24 303.94 233.24 29.35
t,t-1,t-2,t-3,t-4,t-5 6.35 252.02 187.53 22.41
t,t-1,t-2,t-10,t-11,t-12 7.13 266.94 202.56 24.35
t,t-1,t-2 9.45 307.47 235.67 29.89
t,t-1,t-2,t-3,t-4,t-5 7.07 265.97 198.52 24.27
t,t-1,t-2,t-10,t-11,t-12 6.72 259.25 205.99 25.02

SONARX
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ANFIS

 
 

 



 
 

 

IV. CONCLUSIONS 
This paper presents a type of recurrent neural network 

called Echo State Network (ESN), which possesses a highly 
interconnected and recurrent topology of nonlinear 
processing elements. 

The ESN has two interesting properties: one is that only 
the memoryless readout is trained, whereas the recurrent 
topology has fixed connection weights; and another one is 
that ESN has internal built-in memory resulting from the 
feedback connections, it is not necessary to embed the input 
signal before further processing. 

Here, the ESN is used to forecast hydropower plant 
reservoir water inflow, fundamental information to the 
hydrothermal power system operation planning. A database 
of average monthly water inflows of Furnas plant, one of the 
Brazilian hydropower plants, was used as source of training 
and test data. 

The results of the ESN forecasting were compared with 
SONARX network, RBF network and ANFIS model. They 
showed that the ESN performed significantly better than 
SONARX, and slightly better than SONARX-RBF and 
ANFIS, even though it presents a significantly simpler, and 
faster, training algorithm. 

Further work shall consider any type of preprocessing of 
the data. It could transform the original time series in a 
simpler and easier one, so that we could achieve even lower 
forecasting errors. 
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