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Fast Training of Self Organizing Maps for the Visual Exploration
of Molecular Compounds

Antonino Fiannaca, Giuseppe Di Fatta, Riccardo Rizzo,
Alfonso Urso, and Salvatore Gaglio

Abstract— Visual exploration of scientific data in life science
area is a growing research field due to the large amount of
available data. The Kohonen’s Self Organizing Map (SOM) is
a widely used tool for visualization of multidimensional data.
In this paper we present a fast learning algorithm for SOMs
that uses a simulated annealing method to adapt the learning
parameters. The algorithm has been adopted in a data analysis
framework for the generation of similarity maps. Such maps
provide an effective tool for the visual exploration of large and
multi-dimensional input spaces. The approach has been applied
to data generated during the High Throughput Screening
of molecular compounds; the generated maps allow a visual
exploration of molecules with similar topological properties.

The experimental analysis on real world data from the
National Cancer Institute shows the speed up of the proposed
SOM training process in comparison to a traditional approach.
The resulting visual landscape groups molecules with similar
chemical properties in densely connected regions.

I. I NTRODUCTION

A crucial step in drug discovery remains the so-called High
Throughput Screening (HTS) and the subsequent analysis of
the generated data. In this screening, hundreds of thousands
of potential drug candidates are automatically tested for a
desired activity, such as blocking a specific binding site or
attachment to a particular protein. This activity is believed
to be connected to, for example, the inhibition of a specific
disease. Once all these compounds have been automatically
screened, a large amount of data have to be analyzed and ex-
plored in order to select a few hundred promising candidates
for further, more careful and cost-intensive analysis. This
step is critical for the success of the entire drug discovery
process. Recent approaches based on data mining techniques
focus on the analysis of the molecular structure and the
extraction of pieces of molecules that are correlated with
activity. Such fragments can be used to directly identify
groups of promising molecules (clustering). They can also be
used to predict activity in other compounds (classification)
[1] and to guide the synthesis of new ones. The number of
these relevant molecular fragments is often very large and
they cannot be directly visualized nor exhaustively explored
by the biochemists. However, these fragments can be used
to identify groups of molecules with similar characteristics.
In this context, visualization and indexing techniques for
large data spaces can provide a powerful tool for the overall
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HTS analysis process. A general data mining framework to
generate similarity maps of molecular compounds has been
introduced in [2]. The approach uses the frequent molecular
fragments to define a high-dimensional feature space and
adopts the SOM for a 2-dimensional representation. In the
present work, we introduce a new training algorithm based
on the simulated annealing technique in order to speed up
the unsupervised SOM learning process. The overall data
analysis process has been applied to a well-known set of
real molecular compounds, the NCI HIV screen dataset.
The resulting map has produced distinct clusters of similar
compounds. In order to verify the quality of the map we have
adopted a publicly available classification of a small subset
of the compounds.
In the next section, we briefly discuss some related works in
the field of the visual exploration of biochemical data and
in field of the training of Self Organizing Maps. In section
III, we describe the overall framework for the generation of
maps of molecular compounds. In section IV, we present the
proposed learning algorithm. In section V, we present and
discuss the experimental results. Finally, in the last section
we provide conclusive remarks.

II. RELATED WORK

Self-Organizing Maps have been used extensively in chem-
istry [3], [4] and biology applications, with analysis and
classification purposes, in the field of Quantitative Structure-
Activity Relationships (QSAR) [5], [6], [7]. In other cases
(e.g., [8]), the SOM have been used to select the best subset
of features to carry out a subsequent QSAR analysis. In some
application related to the gene expression clusterizationand
visualization ([9], [10]) the SOM neural network was used
as a tool for clustering and visualization in order to obtain
an ”executive summary”of a massive gene expression data
set.

Several approaches for improving performances of SOM
have been described in the literature. The key issue is
to determine which parameters and conditions need to be
considered, in order to obtain a well trained map. In this
context a SOM is well trained if clustering is achieved in
a short time and, at the same time, it creates a projection
of data into the map strongly related to the distribution of
data in the input space. One such attempt was done in auto-
SOM [11], where Kalman filters have been used to guide the
weight vectors toward the center of their respective Voronoi
cells in input spaces. Using this method, it is possible
to automatically estimate the learning parameters during
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the training of SOMs. Indeed the introduction of Kalman
filters leads the network to a good training, but it is more
computationally expensive than the classic SOM. In [11]
the authors confirm that the batch-learning SOM algorithm
needs fewer learning steps than the auto-SOM during training
process, but they also assert that batch-learning techniques
get stuck more often in local minima. Our work aims to
improve the batch-learning SOM algorithm in order to avoid
local minima. A recent approach to obtain a well trained
map is the parameterless SOM (PLSOM) [26]: this technique
is based on the ordinary SOM algorithm and revises both
classic learning rate function and neighborhood size function.
Usually these functions are decreased over time and do not
take into account the adaptive capabilities of the network
during learning process. PLSOM calculates previous values
based on the local quadratic fitting error of the map to the
input space. This way only the previous local error is used
during the evolution of the map. That means both the first
data inputs and the initialization of the map, play a funda-
mental role in map evolution and, moreover, the selection
of the learning rate is modified without evaluating most of
neurons. To avoid this drawback, in our work we preserve
the basic idea of a learning rate depending both on time and
on organization of neurons in the map, but we also use a
global quantization error rather than a local quadratic fitting
error. An adaptation of habituation mechanism in SOMs was
proposed in [28]. In this method the learning is conditioned
by the frequency of input stimuli over several neurons of
the map, so that the neuron that is habituated to a frequent
input pattern will not learn on behalf of another neuron unit.
Although the algorithm adds a new parameter, the global
computational complexity is not expensive, because it avoids
the distance calculation between input and the most used
neuron unit in the map. The parameter habituation is a
function of a local error so that the habituation is increased
when the network is not ordered. Unfortunately the previous
characteristic leads to deceleration of the training during the
refinement phase of the learning. In the present work we
introduce a variation of the standard batch-SOM that does
not reduce speed in the last epochs of learning, according to
clustering requirements.

III. F RAMEWORK FOR THE VISUAL ANALYSIS OF

MOLECULAR COMPOUNDS

The overall process of knowledge discovery for the visual
exploration of molecular compounds [2] is shown in Figure
1. Input data, undirected labeled graphs representing the
molecular compounds, are first processed to extract and
select features that might be relevant to the application
domain. The frequent molecular fragments are adopted as
features of the molecules because they are likely correlated
with the chemical activity and, thus, can be used to identify
groups of similar compounds.
The selection of molecular fragments in a set of molecules
can be formulated in terms of Frequent Subgraph Mining
(FSM) in a set of graphs, in analogy to the Association
Rule Mining (ARM) problem [13], [14]. Molecules are

represented by attributed graphs, in which each vertex rep-
resents an atom and each edge a bond between atoms. Each
vertex carries attributes that indicate the atom type (i.e.,
the chemical element), a possible charge, and whether it is
part of an aromatic ring. Each edge carries an attribute that
indicates the bond type (single, double, triple, or aromatic).
Frequent molecular fragments are subgraphs that have a
certain minimum support in a given set of graphs, i.e.,
are part of at least a certain percentage (minSupp) of the
molecules. To find frequent molecular fragments we have
adopted an algorithm based on a depth-first search strategy
[15].
However, the set of all frequent fragments is enormous even
for relatively small datasets: a single molecule of averagesize
can already contain in the order of hundreds of thousands
of different fragments. We, then, adopt the closed frequent
subgraphs that more efficiently carry equivalent information
as the frequent ones. A closed frequent subgraph is a frequent
subgraph whose support is higher than the support of all its
proper supergraphs.
Nevertheless, the set of features is still very large and defines
a high-dimensional space of the input data, making the
analysis process very difficult. Techniques from statistics,
machine learning and data mining, can be applied to provide
a model of the data that can be more conveniently interpreted
by the user. We adopt a multi-dimensional scaling technique,
the Truncated Singular Value Decomposition (TSVD) [17],
to cope with such a problem.
Our ultimate goal is a visual summary of the set of com-
pounds that provides information on their similarity. Thus,
the dimensionally-reduced space is further projected intoa
two-dimensional gray scale bitmap by means of the Self-
Organizing Map. The efficiency of the SOM training process
is the object of the present work. We refer to [2] for further
details of the general framework and its components.

IV. SOM ADAPTIVE LEARNING RATE ALGORITHM

In this section an adaptive training algorithm for SOMs
is introduced. Although the SOM learning procedure is well
known it is necessary to briefly highlight some points of the
original algorithm to better understand the proposed one.

A. Self-Organizing Map basic algorithm

Self-Organizing Maps [18] are neural structures capable
of building maps of the input data, which preserve neighbor-
hood relationships. These maps can be used as a visualization
tool that allows to identify clusters or structures in input
data [19]. In the following the main formulas of the SOM
algorithm are reported; see [18] for further details.

At each step of the learning stage an input vectorx is
submitted to the neural network and the winner unit, called
best matching unit (bmu) is selected according to:

bmu = arg

(

min
i∈N

‖x − wi‖

)

. (1)

Neural weights are updated using the following rule:
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Fig. 1. Framework for the generation of the molecular compounds map

wi(t + 1) = wi(t) + α(t)hci(t) [x − wi(t)] , (2)

wherehci is the neighborhood kernel around the best match-
ing unit. One of the most common shapes of the kernel is
the gaussian shape:

hci(t) = exp

(

d (rbmu, ri)

2σ2(t)

)

, (3)

where the termd (rbmu, ri) stands for the distance between
the bmu unit and the generic uniti on the SOM lattice.

The learning parameterα(t) in eq. (2) is the learning rate
factor and makes the ”movement” of the units toward the
input patterns less effective during time. At the end of the
learning stage the network is ”frozen” in the input space.
The parameterα(t) is typically given by the formula:

α(t) = αMAX

(

αMIN

αMAX

)( t
tmax

)

. (4)

These equations can be used in two ways: the on-line
or the batch learning. Advantages and drawbacks of these
implementations has been discussed by [27]; algorithm intro-
duced in this work can be applied to both learning methods.
In this paper the so-called batch learning algorithm is used,
a SOM trained with the batch-algorithm is referred as batch-
SOM. A SOM with more units than clusters is often referred
as Emergent-SOM (E-SOM) [20].

B. The simulated annealing learning algorithm

In this section, we present a variant of the training algo-
rithm based on simulated annealing. The algorithm has been
developed in order to both improve the quality of learning
and speed up the training process of the SOM. The proposed
algorithm uses an heuristics process to reach the above goals,
thus we do not have an objective measure against which we
can compare different weight configurations. To solve this
issue, a study about transformation of learning rule to some
kind of gradient descent has been carried out by [21], in
which an energy function during the learning phase has been
introduced.

Simulated annealing (SA) is an optimization method that
performs well with non-linear functions. It is typically used
for large scale problems, especially the ones where a desired
global minimum is hidden among many local minima. At
each step the SA algorithm replaces the current solution
by a random nearby solution, chosen with a probability
depending on two factors that will be explained below. This

heuristic offers good chances of finding configuration with
lower internal energy than the initial one. The simulated
annealing uses the Metropolis algorithm [24], where a slowly
decreasing temperature makes the system to converge into a
ground state. SA was used as an alternative training algorithm
for topographic map in [16], where it was replaced by
deterministic annealing. The work in [16] is not focused on
a speed up technique, but to substitute the selection of the
winning neurons, solved in SOM in a simple way, with a
more sophisticated technique. In the present work, we use SA
to speed up the training process of the SOM, preserving its
unsupervised characteristic. The adopted approach provides
an adaptive learning rate factorα(t, QE), steered by the
simulated annealing heuristic over the current resolutionof
the map.

Using the batch-SOM, at the end of each learning epoch,
the Quantization Error (QE) can be identified with the
parameter “temperature” T and the evolution of the network
can be identified with a perturbation of the system. TheQE

of a SOM is defined as the expectation euclidean distance
between a data vector and its best matching unit according
to:

QE = E{‖x − mc(x)‖}, (5)

wherex is the data vector input andmc(x) is thebmu. The
system evolution can be delineated by theQE progression
because, if theQE at the end of each learning epoch is
smaller than theQE computed in previous epoch, then the
projection of the samples on the SOM map is closer to the
original positions in the input space.

Thus we obtain a linear cooling schedule asQEnew =
QEold − ∆QE, where∆QE is the variation of the total
energy of the system.

The pseudocode of the algorithm is given in table I. In this
algorithm the termTraining(SOM)refers to a learning epoch
of the batch training process; the result of the training is a
candidate SOM that is tested usingQE. At the beginning
all parameters, including the range of the learning rate, are
initialized and the first epoch of the batch-SOM algorithm
is executed (steps 1,2). At the end of each learning epoch
the QE is calculated and if the difference between the
QE calculated at the end of current epoch and theQE

calculated at the end of previous epoch is under a threshold
δ then the learning process stops (steps 5,5.d). Each learning
epoch generates a perturbation of the status of neurons in
the map. If this perturbation satisfies low-energy criteria



according to the simulated annealing (step 5.f), then the
current configuration is accepted and a new perturbation is
calculated. Otherwise, if the perturbation does not satisfy
low-energy criteria, then the first perturbation will be used for
the next epoch (step 5.g.i.A). If the previous configurationis
better than the current one, then the previous one is restored
(step 5.g.ii.A). The size of perturbations depends on the
evolution of network resolution or, in other words, by the
ratio of the currentQE and the maximumQE (step 5.f.2).
The values of the learning rate factor are adapted according
to this ration (steps 5.f.iii, 5.f.iv).

TABLE I

ALGORITHM

1) Initialize theSOMcurrent with random weights, the SOM param-
eters:αMAX , αMIN , and the epoch counterp = 1

2) Start with first learning epoch:
SOM(p) = Training(SOMcurrent)

3) SetQEMAX = QE(p)
4) Initialize ∆QE(p) = QEMAX

5) While ∆QE(p) ≥ δ

a) p = p + 1
b) Run a new learning epoch:

SOM(p) = Training(SOMcurrent)
c) CalculateQE(p)
d) Calculate∆QE(p) = QE(p) − QE(p − 1)
e) Get a random value0 < rand < 1
f) if the configuration satisfies low-energy criteria (i.e.

e
−

∆QE
QE < rand ), or the configuration is better than the

one of previous epoch
(∆QE(p − 1) > ∆QE(p))
i) use current state i.e. setSOMcurrent = SOM(p)

ii) Calculateαinc(QE) = ∆α ∗

∣

∣

∣
1 −

QE(p)
QEMAX

∣

∣

∣

iii) Set αMAX = αMAX + αinc(QE)
iv) Set αMIN = αMIN + αinc(QE)

g) Else

i) if ( e
−

∆QE
QE > rand) )configuration does not satisfy low-

energy criteria
A) Use the initial vales ofαMAX andαMIN in eq. 4

ii) if ( ∆QE(p− 1) < ∆QE(p) ) previous configuration is
better than the current configuration
A) Set SOMcurrent = SOM(p − 1)

6) End of learning afterp epochs

V. EXPERIMENTAL RESULTS

The proposed fast training algorithm is evaluated against
the original procedure in order to appreciate the quality ofthe
approximation and the “smoothness” of the lattice. Moreover
the evaluation of the whole framework is carried out using
a molecular compounds dataset.

A. Quality Criteria

Two evaluation criteria are used to measure the quality of
the map resulting by the SA training algorithm: “quantization
error” and regularity degree [25].

The former measures the resolution of the map and the
latter the local distortion. The regularity degree can be
calculated at the end of each learning epoch and is useful for
evaluating the topological organization of the lattice during
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Fig. 2. Quantization error versus number of epochs. The SA algorithm
reaches the stop condition at the epochp = 13 in 68.6s, while the standard
algorithm reaches the stop condition at the epochp = 17 in 91.3 s.

the training. Distortions are easily calculated as the position
of neurons with respect to their neighbors. According to this
criterion, an ideal value of the regularity degree should be
close to zero (true for a quite flat map). In real applications
configurations with lower degree of regularity are considered
better.

B. Evaluation of the proposed Algorithm

The approach is evaluated using two E-SOMs: one with
the standard SOM algorithm and one with the adaptive
learning rate algorithm. Both maps have a80 × 80 square
lattice and the training phase for each epoch is done with
αMAX = 0.75, αMIN = 0.15, σMAX = 7, σMIN =
2, δ = 0.15. In the adaptive algorithm the values of
the learning parameters are dynamically increased up to
αMAX = 1 andαMIN = 0.75.

Figure 2 shows the evolution of quantization error during
the training process of both maps. The chart clearly shows
the effectiveness of the adaptive algorithm.

The adaptive algorithm provides a lowerQE value and
reaches the stop condition (∆QE < δ) in a smaller number
of epochs, although for adaptive algorithm pseudo-epochs
have also been taken in account, i.e. estimated execution
time of adaptive algorithm is about25% less than standard
algorithm.

Figure 3 shows the evolution of the degree of regularity
during the training process of both maps. Once again the
algorithm based on SA works better than the classic one.
The experimental results confirm the good performance of
the proposed approach in terms of the degree of regularity
and quantization error.

C. Validation of the proposed framework

The validation of the proposed framework has been carried
out using a set of real molecular compounds. We have used
the publicly available DTP AIDS Antiviral Screen dataset
[22] from the National Cancer Institute. The screen measures



TABLE II

COMPOUNDS CLASSIFICATION USED TO TEST THESOM TRAINING

Chemical Groups
Azido Natural Products Benzodiazepines, Pyrimidine Dyes and Heavy Metal Purine

Pyrimidines or Antibiotics Thazolobenzimidazoles Nucleosides Polyanions Compounds Nucleosides
and related compounds

(P) (NA) (BT) (Y) (DP) (M) (PN)
10 8 10 11 13 3 2

compounds compounds compounds compounds compounds compounds compounds
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Fig. 3. Degree of Regularity versus number of epochs. The SA algorithm
reaches the stop condition at the epochp = 13 while the standard algorithm
reaches the stop condition at the epochp = 17.

the protection of human CEM cells from HIV-1 infection
[23]. In particular, we used the 325 compounds belonging to
the confirmed active class.
The feature vectors are obtained by means of the frequent
subgraph mining process (see section III) with minimum
support of 10%. The feature generation and selection phases
provide 640 molecular fragments. Consequently, each of the
325 compounds is represented by means of a vector of 640
binary components.
In order to obtain a data model that can be better interpreted
and exploited, a multidimensional scaling technique (see
section III) has been applied. The original vector space has
been reduced, using theTruncated Singular Value Decompo-
sition, in the vector space defined by means of the 20 most
significant singular values over the total 640.
The SOM used for visualization is a80 × 80 square lattice,
the parameters value are the same of the section V-B.

The result is shown in Figure 4 using the U-Matrix
representation [12]. A partial classification of the active
compounds in the dataset is available at [22]. The classi-
fication identifies 7 chemical groups (table II) for only 57
compounds of the 325 used in the training. In order to verify
the correctness of the unsupervised learning process, in the
map of figure 4 we have shown in the map the labels of these

57 compounds. Several clusters of compounds with the same
labels appear.

In the center of Figure 4(a), the area with the three labels
”P” has been highlighted; this area is made by many neurons
and represents a cluster of 14 compounds (Figure 4(b)),
partially overlapped. Only 7 of the 14 compounds have been
assigned to the class of Azido Pyrimidines (label P). The
others have no apriori classification, while it is evident from
their chemical structure that they do belong to this class. In
particular, the compound602670 is the Zidovudine, a.k.a.
the azidothymidine (AZT) group, which is a well known
antiretroviral drug, the first one approved for treatment of
HIV.

To test consistency of fast learning algorithm, another map
has been realized with standard SOM. Both maps show same
results.

VI. CONCLUSIONS

We have presented an architecture for the visual explo-
ration of molecular compounds. The overall knowledge dis-
covery process is based on the generation of features, multi-
dimensional scaling and self-organizing maps to generate a
visual and interactive representation of the feature spaceand
the similarity among molecules.

The SOM was trained using a technique that modify
the learning rate factor in an adaptive way. This technique
uses the simulated annealing as a method to select a candi-
date SOM during a batch training procedure. This training
techniques is faster than the standard batch training. The
produced maps were compared to the ones obtained with
the standard training by using two evaluation parameters.
Further research efforts will focus on the analysis of the
topological distortion in the generated maps, on different
features selection approaches and on the evaluation of the
processing time of the overall data analysis framework.
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