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Proceedings of International Joint Conference on Neural Networks, Orlando, Florida, USA, August 12-17, 2007

Fast Training of Self Organizing Maps for the Visual Exploration
of Molecular Compounds

Antonino Fiannaca, Giuseppe Di Fatta, Riccardo Rizzo,
Alfonso Urso, and Salvatore Gaglio

Abstract— Visual exploration of scientific data in life science HTS analysis process. A general data mining framework to
area is a growing research field due to the large amount of generate similarity maps of molecular compounds has been
available data. The Kohonen's Self Organizing Map (SOM) is  inroduced in [2]. The approach uses the frequent molecular
a widely used tool for visualization of multidimensional daa. . . . .

In this paper we present a fast learning algorithm for SOMs fragments to define a hlg_h-dlmgnswnal feature Space and
that uses a simulated annealing method to adapt the learning @dopts the SOM for a 2-dimensional representation. In the
parameters. The algorithm has been adopted in a data analysi present work, we introduce a new training algorithm based
framework for the generation of similarity maps. Such maps on the simulated annealing technique in order to speed up
provide an effective tool for the visual exploration of large and the unsupervised SOM learning process. The overall data
multi-dimensional input spaces. The approach has been apied - .

to data generated during the High Throughput Screening analysis process has been applied to a well-known set of
of molecular compounds; the generated maps allow a visual real molecular compounds, the NCI HIV screen dataset.
exploration of molecules with similar topological propertes. The resulting map has produced distinct clusters of similar

The experimental analysis on real world data from the compounds. In order to verify the quality of the map we have

National Cancer Institute shows the speed up of the proposed a4gopted a publicly available classification of a small stibse
SOM training process in comparison to a traditional approadh. " compounds

The resulting visual landscape groups molecules with sinar

chemical properties in densely connected regions. In the next section, we briefly discuss some related works in
the field of the visual exploration of biochemical data and
[. INTRODUCTION in field of the training of Self Organizing Maps. In section

A crucial step in drug discovery remains the so-called HigH'! we describe the overall framework for the generation of
Throughput Screening (HTS) and the subsequent analysis™8fPS of molecular compounds. In section IV, we present the
the generated data. In this screening, hundreds of thogsafjoPosed learning algorithm. In section V, we present and
of potential drug candidates are automatically tested for @Scuss the experimental results. Finally, in the lastisect
desired activity, such as blocking a specific binding site o€ Provide conclusive remarks.
attachment to a particular protein. This activity is bedidv I

to be connected to, for example, the inhibition of a specific o ] )
disease. Once all these compounds have been automaticallyp®!-Organizing Maps have been used extensively in chem-

screened, a large amount of data have to be analyzed and §%Y [3], [4] and biology applications, with analysis and
plored in order to select a few hundred promising candidat&&ssification purposes, in the field of Quantitative Suitet

for further, more careful and cost-intensive analysis.sThiACtivity Relationships (QSAR) [5], [6], [7]. In other cases
step is critical for the success of the entire drug discovedf-9- [8]), the SOM have been used to select the best subset
process. Recent approaches based on data mining technigefd§atures to carry out a subsequent QSAR analysis. In some
focus on the analysis of the molecular structure and tHPPlication related to the gene expression clusterizatiah
extraction of pieces of molecules that are correlated witdiSualization ([9], [10]) the SOM neural network was used
activity. Such fragments can be used to directly identif®S & tool f_or clustering and V|sua_l|zat|on in order tp obtain
groups of promising molecules (clustering). They can akso N "executive summary’of a massive gene expression data
used to predict activity in other compounds (classifica)tionset- ) )

[1] and to guide the synthesis of new ones. The number of S€veral approaches for improving performances of SOM
these relevant molecular fragments is often very large aftpveé been described in the literature. The key issue is
they cannot be directly visualized nor exhaustively exgdor 0 determine which parameters and conditions need to be
by the biochemists. However, these fragments can be useensidered, in o_rder to Obtaln a well tn_’:uned map. In th's
to identify groups of molecules with similar charactedsti cOntext & SOM is well trained if clustering is achieved in
In this context, visualization and indexing techniques fof Short time and, at the same time, it creates a projection

large data spaces can provide a powerful tool for the overdlf data into the map strongly related to the distribution of
data in the input space. One such attempt was done in auto-
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the training of SOMs. Indeed the introduction of Kalmarrepresented by attributed graphs, in which each vertex rep-
filters leads the network to a good training, but it is moreesents an atom and each edge a bond between atoms. Each
computationally expensive than the classic SOM. In [11yertex carries attributes that indicate the atom type,(i.e.
the authors confirm that the batch-learning SOM algorithrthe chemical element), a possible charge, and whether it is
needs fewer learning steps than the auto-SOM during trginipart of an aromatic ring. Each edge carries an attribute that
process, but they also assert that batch-learning tecésigundicates the bond type (single, double, triple, or aroo)ati
get stuck more often in local minima. Our work aims toFrequent molecular fragments are subgraphs that have a
improve the batch-learning SOM algorithm in order to avoidertain minimum support in a given set of graphs, i.e.,
local minima. A recent approach to obtain a well trainedre part of at least a certain percentage(Supp) of the
map is the parameterless SOM (PLSOM) [26]: this techniquaolecules. To find frequent molecular fragments we have
is based on the ordinary SOM algorithm and revises botidopted an algorithm based on a depth-first search strategy
classic learning rate function and neighborhood size fanct [15].

Usually these functions are decreased over time and do ridbwever, the set of all frequent fragments is enormous even
take into account the adaptive capabilities of the networor relatively small datasets: a single molecule of avesipe
during learning process. PLSOM calculates previous valuesin already contain in the order of hundreds of thousands
based on the local quadratic fitting error of the map to thef different fragments. We, then, adopt the closed frequent
input space. This way only the previous local error is usesubgraphs that more efficiently carry equivalent informrati
during the evolution of the map. That means both the firgs the frequent ones. A closed frequent subgraph is a frequen
data inputs and the initialization of the map, play a fundasubgraph whose support is higher than the support of all its
mental role in map evolution and, moreover, the selectioproper supergraphs.

of the learning rate is modified without evaluating most oNevertheless, the set of features is still very large andhdsfi
neurons. To avoid this drawback, in our work we preserva high-dimensional space of the input data, making the
the basic idea of a learning rate depending both on time aathalysis process very difficult. Techniques from statstic
on organization of neurons in the map, but we also use raachine learning and data mining, can be applied to provide
global quantization error rather than a local quadratimftt a model of the data that can be more conveniently interpreted
error. An adaptation of habituation mechanism in SOMs walsy the user. We adopt a multi-dimensional scaling technique
proposed in [28]. In this method the learning is conditionethe Truncated Singular Value Decomposition (TSVD) [17],
by the frequency of input stimuli over several neurons afo cope with such a problem.

the map, so that the neuron that is habituated to a frequedur ultimate goal is a visual summary of the set of com-
input pattern will not learn on behalf of another neuron unitpounds that provides information on their similarity. Thus
Although the algorithm adds a new parameter, the glob#he dimensionally-reduced space is further projected &to
computational complexity is not expensive, because itds/oi two-dimensional gray scale bitmap by means of the Self-
the distance calculation between input and the most uséitganizing Map. The efficiency of the SOM training process
neuron unit in the map. The parameter habituation is ia the object of the present work. We refer to [2] for further
function of a local error so that the habituation is increlasedetails of the general framework and its components.

when the network is not ordered. Unfortunately the previous

characteristic leads to deceleration of the training dytire IV. SOM ADAPTIVE LEARNING RATE ALGORITHM

refinement phase of the learning. In the present work we |n this section an adaptive training algorithm for SOMs
introduce a variation of the standard batch-SOM that dogs introduced. Although the SOM learning procedure is well
not reduce speed in the last epochs of learning, accordingifown it is necessary to briefly highlight some points of the
clustering requirements. original algorithm to better understand the proposed one.

[1l. FRAMEWORK FOR THE VISUAL ANALYSIS OF
MOLECULAR COMPOUNDS .

The overall process of knowledge discovery for the visual bee!}‘(—j(_)rgamzmg er?p?’ [18] dare neﬁril structures c_aﬁsble
exploration of molecular compounds [2] is shown in Figur uriding maps o the input data, which preserve neignbor-
1. Input data, undirected labeled graphs representing t god relationships. These maps can be used as a visualizatio

molecular compounds, are first processed to extract aﬁ%ol that allows to |dent|fy C'“Stefs or structures in input
ata [19]. In the following the main formulas of the SOM

select features that might be relevant to the applicatioq"Sg ith tod- 181 for further detail
domain. The frequent molecular fragments are adopted onthm are reéported, see [_ ] for fur er aetails. -
At each step of the learning stage an input veatois

features of the molecules because they are likely corlate

with the chemical activity and, thus, can be used to ider't“,gubmitted to the neural network and the winner unit, called
groups of similar compounds' ' est matching unitbimy) is selected according to:

The selection of molecular fragments in a set of molecules

can be formulated in terms of Frequent Subgraph Mining bmu = arg <min|3: - wi|> . 1)
(FSM) in a set of graphs, in analogy to the Association N

Rule Mining (ARM) problem [13], [14]. Molecules are Neural weights are updated using the following rule:

A. Self-Organizing Map basic algorithm



Closed
Frequent
Subgraphs

Reduced
Feature
Space

Frequent Molecular

Molecular i _ izi

Compounds |:> Subgraph :> SFTattl.re :> gmgular Ve_xtl_ue |:> Self C'\)Arganlzmg |:> Compounds
iy election ecomposition a

Database Mining p p 2D Map

Fig. 1. Framework for the generation of the molecular conmgsumap

Set of undirected Frequent
labeled graphs Subgraphs

heuristic offers good chances of finding configuration with
wi(t 4+ 1) = w;i(t) + a(t)hei(t) [x — w;i(t)], (2) lower internal energy than the initial one. The simulated
annealing uses the Metropolis algorithm [24], where a slowl
ecreasing temperature makes the system to converge into a
E‘round state. SA was used as an alternative training atgorit
for topographic map in [16], where it was replaced by
d (P, 73 deterministic annealing. The work in [16] is not focused on
hei(t) = exp (T(t)) ) (3) a speed up technique, but to substitute the selection of the
winning neurons, solved in SOM in a simple way, with a
where the termi (ryn., ;) stands for the distance betweenmore sophisticated technique. In the present work, we use SA
the bmu unit and the generic uniton the SOM lattice. to speed up the training process of the SOM, preserving its
The learning parameter(t) in eq. (2) is the learning rate ynsupervised characteristic. The adopted approach @svid
factor and makes the "movement” of the units toward thgp adaptive learning rate factor(t, QF), steered by the

input patterns less effective during time. At the end of thgimulated annealing heuristic over the current resolutibn
learning stage the network is "frozen” in the input spacehe map.

whereh,; is the neighborhood kernel around the best matc
ing unit. One of the most common shapes of the kernel
the gaussian shape:

The parametew(t) is typically given by the formula: Using the batch-SOM, at the end of each learning epoch,
(=) the Quantization Error §F) can be identified with the
o(t) = anrax (onuv ) e (4) Pparameter “temperature” T and the evolution of the network
OMAX can be identified with a perturbation of the system. The

These equations can be used in two ways: the on-lird @ SOM is defined as the expectation euclidean distance
or the batch learning. Advantages and drawbacks of theBgtween a data vector and its best matching unit according
implementations has been discussed by [27]; algorithm-intr tO:
duced in this work can be applied to both learning methods.

In this paper the so-called batch learning algorithm is used QF = E{||z — m.(2)|}, (5)
a SOM trained with the batch-algorithm is referred as batch-
SOM. A SOM with more units than clusters is often referredvherez is the data vector input an.(z) is thebmu The

as Emergent-SOM (E-SOM) [20]. system evolution can be delineated by Q& progression
. . . _ because, if theQE at the end of each learning epoch is
B. The simulated annealing learning algorithm smaller than theé) E computed in previous epoch, then the

In this section, we present a variant of the training algoprojection of the samples on the SOM map is closer to the
rithm based on simulated annealing. The algorithm has beeriginal positions in the input space.
developed in order to both improve the quality of learning Thus we obtain a linear cooling schedule @#,.c,, =
and speed up the training process of the SOM. The propos@i,.c — AQE, where AQE is the variation of the total
algorithm uses an heuristics process to reach the abovg, goahergy of the system.
thus we do not have an objective measure against which weThe pseudocode of the algorithm is given in table I. In this
can compare different weight configurations. To solve thialgorithm the ternilraining(SOM)refers to a learning epoch
issue, a study about transformation of learning rule to somaf the batch training process; the result of the training is a
kind of gradient descent has been carried out by [21], ipandidate SOM that is tested usiGgE. At the beginning
which an energy function during the learning phase has beaii parameters, including the range of the learning rate, ar
introduced. initialized and the first epoch of the batch-SOM algorithm

Simulated annealing (SA) is an optimization method that executed (steps 1,2). At the end of each learning epoch
performs well with non-linear functions. It is typicallyed the QF is calculated and if the difference between the
for large scale problems, especially the ones where a desirf@ E calculated at the end of current epoch and tH&
global minimum is hidden among many local minima. Atcalculated at the end of previous epoch is under a threshold
each step the SA algorithm replaces the current solutignthen the learning process stops (steps 5,5.d). Each Igarnin
by a random nearby solution, chosen with a probabilitgpoch generates a perturbation of the status of neurons in
depending on two factors that will be explained below. Thishe map. If this perturbation satisfies low-energy criteria



according to the simulated annealing (step 5.f), then th > o Simulated Annealing

current configuration is accepted and a new perturbation — © — Standard Algorithm
calculated. Otherwise, if the perturbation does not satisf |
low-energy criteria, then the first perturbation will be d$er
the next epoch (step 5.9.i.A). If the previous configuration
better than the current one, then the previous one is rektor S 20f
(step 5.g.i.A). The size of perturbations depends on th.g
evolution of network resolution or, in other words, by the%
ratio of the currenQE and the maximunQFE (step 5.f.2). 3|
The values of the learning rate factor are adapted accordir
to this ration (steps 5.f.iii, 5.f.iv).

TABLE |
ALGORITHM 5 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10 12 14 16 18
Epochs

1) Initialize the SO Mcyrrent With random weights, the SOM param- _ o .

eters:iansax, a1y, and the epoch counter= 1 Fig. 2. Quantization error versus number of epochs. The Srihm
2) Start with first learning epoch: reaches the stop condition at the eppck: 13 in 68.6s, while the standard

SOM (p) = Training(SOMeurrent) algorithm reaches the stop condition at the eppch 17 in 91.3s.

3) SetQEpmax = QE(p)
4) Initialize AQE(p) = QEnpax
5) While AQE(p) > 6

the training. Distortions are easily calculated as the tjposi
a) p=p+1

b) Run a new learning epoch: of.ne.urons W@th respect to their neighbgrs. According te thi
SOM (p) = Training(SOMcurrent) criterion, an ideal value of the regularity degree should be
¢) CalculateQE(p) close to zero (true for a quite flat map). In real applications

d) CalculateAQE(p) = QE(p) — QE(p—1) . . . . .
e) Get a random valué < rand < 1 configurations with lower degree of regularity are conseder

f) if tAth configuration satisfies low-energy criteria (i.e. better.

e QF < rand ), or the configuration is better than the

one of previous epoch B. Evaluation of the proposed Algorithm

(AQE(p —1) > AQE(p)) The approach is evaluated using two E-SOMs: one with

K UST C:J"e”t state L.e. < SitOMC“”‘e"g;f)OM(p) the standard SOM algorithm and one with the adaptive

I::)) ;:;cu ateairic(QE) —+ a* 1Q*E)QEMAX learning rate algorithm. Both maps haves@ x 80 square

V) Setomrim — aiiX, a(j;tzé)E) lattice and the training phase for each epoch is done with
g) Else amax = 0.75, amy = 015, opyax =7, omin =

i if({% > rand) )configuration does not satisfydo 2, 6 = _0.15. In the adaptive algo_rlthm _the values of

energy criteria the learning parameters are dynamically increased up to

A) Use the initial vales ofxy;4x andajsrn in €q. 4 apyax =1 andapyry = 0.75.
i) if ( AQE(p—1) < AQE(p)) previous configuration is Figure 2 shows the evolution of quantization error during
better than the current configuration the training process of both maps. The chart clearly shows
6) End of Iez)mizt fﬂoefegg :;’Z = SOM(p—1) the effectiver_1ess of the adaptiv_e algorithm.
The adaptive algorithm provides a lowé&E value and
reaches the stop conditioA@ E < §) in a smaller number
of epochs, although for adaptive algorithm pseudo-epochs
V. EXPERIMENTAL RESULTS have also been taken in account, i.e. estimated execution
The proposed fast training algorithm is evaluated againstne of adaptive algorithm is abo@6% less than standard
the original procedure in order to appreciate the qualitthef algorithm.
approximation and the “smoothness” of the lattice. Moreove Figure 3 shows the evolution of the degree of regularity
the evaluation of the whole framework is carried out usingluring the training process of both maps. Once again the
a molecular compounds dataset. algorithm based on SA works better than the classic one.
The experimental results confirm the good performance of

A. Quality Criteria the proposed approach in terms of the degree of regularity
Two evaluation criteria are used to measure the quality @hd quantization error.

the map resulting by the SA training algorithm: “quantizati o
error” and regularity degree [25]. C. Validation of the proposed framework

The former measures the resolution of the map and the The validation of the proposed framework has been carried
latter the local distortion. The regularity degree can beut using a set of real molecular compounds. We have used
calculated at the end of each learning epoch and is useful fitve publicly available DTP AIDS Antiviral Screen dataset
evaluating the topological organization of the latticeidgr [22] from the National Cancer Institute. The screen measure




TABLE Il
COMPOUNDS CLASSIFICATION USED TO TEST THEEOM TRAINING

Chemical Groups
Azido Natural Productg Benzodiazepines, Pyrimidine | Dyes and | Heavy Metal Purine
Pyrimidines| or Antibiotics | Thazolobenzimidazoles Nucleosides| Polyanions| Compounds| Nucleosides
and related compounds
(P) (NA) (BT) () (BP) (M) (PN)
10 8 10 11 13 3 2
compounds compounds compounds compounds| compounds compounds | compounds

0.35

57 compounds. Several clusters of compounds with the same
labels appear.

In the center of Figure 4(a), the area with the three labels
"P” has been highlighted; this area is made by many neurons
and represents a cluster of 14 compounds (Figure 4(b)),
partially overlapped. Only 7 of the 14 compounds have been
assigned to the class of Azido Pyrimidines (label P). The
others have no apriori classification, while it is eviderinfr
their chemical structure that they do belong to this class. |
] particular, the compound02670 is the Zidovudine, a.k.a.
the azidothymidine (AZT) group, which is a well known
] antiretroviral drug, the first one approved for treatment of
HIV.

To test consistency of fast learning algorithm, another map
has been realized with standard SOM. Both maps show same
results.

T T T
— © — Standard Algorithm
—=©6— Simulated Annealing
0.3F B

0.25

0.2+

0.151

Degree of REgularity

0.05

18

Fig. 3. Degree of Regularity versus number of epochs. The I§érithm
reaches the stop condition at the eppcr 13 while the standard algorithm
reaches the stop condition at the epgck: 17.

VI. CONCLUSIONS

We have presented an architecture for the visual explo-
ration of molecular compounds. The overall knowledge dis-
covery process is based on the generation of features,-multi
t(aimensional scaling and self-organizing maps to generate a
visual and interactive representation of the feature spade

. the similarity among molecules.
The feature vectors are obtained by means of the frequeH . . . .
subgraph mining process (see section Ill) with minimum Erhe SQM was trame_d using a _techmque Fhat mo_d|fy
§Q§ learning rate factor in an adaptive way. This technique

provide 640 molecular fragments. Consequently, each of s s the simulated annealing as a method to select a candi-

. te SOM during a batch training procedure. This training
325 compounds is represented by means of a vector of 6 g'e - . -
binary components, techniques is faster than the standard batch training. The

In order to obtain a data model that can be better interpret &oduced maps were comp_ared to the ones obtained with
the standard training by using two evaluation parameters.

and exploited, a multidimensional scaling technique (se rther r rch efforts will f n the analvsis of th
section Ill) has been applied. The original vector space h er research €tiorts ocus o € analysis of the
opological distortion in the generated maps, on different

been reduced, using tfi@uncated Singular Value Decompo- ) .
sition, in the vector space defined by means of the 20 mogqatures selection approaches and on the evaluation of the
. processing time of the overall data analysis framework.

significant singular values over the total 640.
The SOM used for visualization is & x 80 square lattice,
the parameters value are the same of the section V-B.

The result is shown in Figure 4 using the U-Matrix
representation [12]. A partial classification of the active '2'52'5';0'8?”6‘“0”3' Conference on Data Mining (ICDM'Q3)lov. 19~
compounds in the dataset is available at [22]. The classh) G 'pj Fatta, A. Fiannaca, R. Rizzo, A. Urso, M. R. Berthcld
fication identifies 7 chemical groups (table II) for only 57  S. Gaglio, Context-Aware Visual Exploration of Molecular Databases
compounds of the 325 used in the training. In order to verify Workshops |EEE International Conference on Data MiningDWC

) . ; 2006), dec 18-22, 2006, pp.136-141.

the correctness of the unsupervised learning processgin
map of figure 4 we have shown in the map the labels of these

the protection of human CEM cells from HIV-1 infection
[23]. In particular, we used the 325 compounds belonging
the confirmed active class.

support of 10%. The feature generation and selection pha
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