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Abstract— The Self-Organising Map is a popular unsupervised
neural network model which has successfully been used for
clustering various kinds of data. To help in understanding the
influence of single variables or components on clusterings, we
introduce a novel method for the visualisation of Component
Planes for SOMs. The approach presented is based on the
discretisation of the components and makes use of the well-
known metro map metaphor. It depicts consistent values and their
ordering across the map for discretisations of various components
and their correlations in terms of directions on the map. In
our approach Component Lines are drawn for each component
of the data, allowing the combination of numerous Component
Planes into one plot. We also propose a method to further
aggregate these Component Lines, by grouping highly correlated
variables, i.e. similar lines on the map. To show the applicability
of our approach we provide experimental results for two popular
machine learning data sets.

I. INTRODUCTION

The Self-Organising Map (SOM) is a prominent data mining

method for clustering and data projection. Part of its popularity

can be attributed to the various visualisation methods which

summarise the characteristics of the underlying data set. One

well-known method to get a better understanding of the

characteristics of certain areas on the map and the rationale for

mapping certain data points onto specific regions is the visual-

isation of Component Planes, i.e. the colour-coding of single

components or variables. This visualisation thus partitions the

SOM into projections of single variables, which, however,

are hard to make sense of in case of high-dimensional data

sets. Part of this complexity is usually overcome by clustering

Component Planes to obtain groups of common characteristics.

In this paper, we go one step further by proposing a novel

method for the presentation of the mutual relationships of

the various components. We propose an intuitive metaphor

of maps of metro lines, which aims at showing a simplified

representation of the components in a single illustration. Each

variable is represented by differently coloured and connected

line segments, called Component Lines, which are designed to

connect the areas of the Component Planes from the lowest

to the highest component value with several steps in between.

Metro maps introduced the concept of skewed distances, as

opposed to geographically correct distances, which is also used
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in our visualisation. This concept was originally developed for

the maps of the London Underground transport network.

In a further aggregation step, we propose a technique that

groups these Component Lines in case they are highly corre-

lated, further simplifying the result and reducing the amount

of redundant information displayed. Many of the steps involve

a trade-off between the detail and amount of information and

the clarity of the representation. We sometimes deliberately

choose to sacrifice accuracy in order to communicate the

data in an intuitive manner and to summarise only the most

dominant characteristics of a data set. The resulting visualisa-

tion allows to intuitively communicate relationships between

multiple variables and tendencies on a SOM in a single

visualisation, capturing both positive and negative correlations.

It can be overlaid onto any colour-coded visualisation of the

SOM, abstracting from spurious details and focusing on the

dominant attribute value distributions on the SOM.

The remainder of this paper is organised as follows: Section

II describes related work, with a short introduction to the

SOM algorithm, a survey of the most important and relevant

SOM visualisations, and the origins of metro map based

visualisations. Section III introduces our method for com-

puting the metro visualisation. In Section III-A, we describe

how the most basic line segments can be calculated from

a SOM. Section III-B introduces an important measure of

similarity, which is used in later aggregation steps to combine

lines of correlating Component Planes. Section III-C describes

how the final representation is calculated and several visual

improvements that make the output more comprehensible. In

Section IV, we apply our approach to the Iris and Boston

Housing data sets. Section V concludes our findings and

provides an outlook on future work.

II. RELATED WORK

In this section, we introduce the Self-Organising Map and

related concepts and visualisation techniques based thereon.

A. Self-Organising Map

The Self-Organising Map [4] is a well-known and widely

used neural network model based on unsupervised learning. It

provides a mapping from a high-dimensional input space to a

lower-dimensional, often two-dimensional, output space. In the

process of this mapping input patterns that are located close

to each other in the input space will also be located closely

in the output space, while dissimilar patterns will be mapped

on opposite regions of the map. The SOM therefore provides



(a) Component Plane (b) Connected region centres

Fig. 1. Component Plane and its discretisation (map size is 12 × 18 units, discretisation is done for three regions)

a sort of clustering of the data, however, without explicitly

assigning data items to clusters.

Basically, a Self-Organising Map is a low-dimensional lat-

tice, in this work assumed to be two-dimensional, consisting

of M neurons or units. The map lattice can have different

topologies, in this paper we use rectangular maps. We further

assume the feature or input space to be the vector space over

the real numbers (RN ). For each unit in the output space, a

codebook vector mi of the dimensionality of the input space

is linked to a position on the two-dimensional map lattice,

denoted as ξi = (ξx
i , ξ

y
i ). The codebook M is the set of all

codebook vectors. In the training phase, the best matching

codebook vector is identified for all input vectors by using a

distance function, the Euclidean distance in our case. Once the

best matching unit is identified, its codebook vector and the

codebook vectors of neighbouring units are shifted towards the

input vector. This results in a topology-preserving mapping of

input vectors onto units of the map. Self-Organising Maps

have been applied to a wide range of tasks, ranging from

control interfaces for industrial processing plants and other

engineering problems [5] to document organisation in digital

libraries [9].

B. Self-Organising Map Visualisations

SOM visualisations can utilise the map lattice as a visual-

isation platform [13], where quantitative information is most

commonly depicted as colour values or as markers of different

sizes. More advanced approaches exploit e.g. the analogy to

geography [10].

Component Planes are projections of single dimensions

of the codebook. By plotting the Component Planes for

all dimensions, all information about the codebook vectors

is revealed. However, as with other methods in statistics,

with increasing dimensionality it becomes more difficult to

perceive important information such as clustering structure and

underlying dependencies.

The unified distance matrix (U-Matrix [12]) is a visu-

alisation technique that shows the local cluster boundaries

by depicting pair-wise distances of neighbouring prototype

vectors. It is the most common method associated with Self-

Organising Maps and has been extended in numerous ways.

The Gradient Field [7] has some similarities with the U-

Matrix, but applies smoothing over a broader neighbourhood

and uses a different style of representation. It plots a vector

field on top of the lattice where each arrow points to its

closest cluster centre. This is used to contrast different groups

of Component Planes [8] with a similar goal as our method

introduced in this paper. Similarly, [14] applies clustering

of and projection techniques on the Component Planes with

the aim of visually ordering them such that similar ones are

grouped together making them more easily identifiable by

users.

The second category of visualisation techniques take into

account the distribution of the data. The most simple ones

are hit histograms, which show how many data samples are

mapped to a map unit, and labelling techniques, which plot

the names and categories, provided they are available, of data

samples onto the map lattice. More sophisticated methods

include smoothed data histograms [6], which show the clus-

tering structure by mapping each data sample to a number of

map units, or graph-based methods, showing connections for

units that are close to each other in the feature space. The

P-Matrix [11] is another density-based approach that depicts

the number of samples that lie within a sphere of a certain

radius around the codebook vectors. The radius is a quartile

of the pair-wise distances of the data vectors.

C. The London Underground Map

The principle of metro map visualisations as used in this

approach was first introduced and designed by Harry Beck in

1931 [2], and is with only slight modifications still used for

today’s London metro maps. At the time of its introduction,

the concept of the map was revolutionary. Contrary to previous

metro maps, the one designed by Beck disregarded geographic

aspects. The geometric representation of the river Thames is

the only link between the map and the actual landform of the

area it represented. Furthermore, distances in the map did not

correlate to geographic distances anymore.

These days, this kind of schematic representation of trans-

portation networks has become familiar to a great number

of people. Therefore, this representation becomes a highly

attractive metaphor for map visualisations. Furthermore, it is

common knowledge that the distances on metro maps are

skewed and do not conform with real-world distances, which is

also true for the metro map visualisations of Component Lines



(a) Measure of distances between lines

(b) Snapping of region centres to units of the
SOM

Fig. 2. Computation of distances between metro lines and snapping of region
centres

we describe in this paper. Its prime attraction, however, lies in

its simplicity, abstracting from spurious details and resulting in

a more abstract representation that is more easily memorised

and compared across different variations.

III. COMPONENT LINE VISUALISATION

A. From Component Planes to the Metro Visualisation

Our method starts with the vector representation of the

variables of the codebook. Its j − th component is denoted

as cj ∈ RM .

The classic Component Plane visualisation is shown in Fig-

ure 1(a). In order to achieve discretisation of the Component

Planes, each component is split into a number n of disjoint

ranges. In our experiments, this division is performed by

calculating the threshold values as equidistant points between

the lowest and highest values in the particular Component

Planes. This results in n partitions of the SOM. The upper

limit l for region k can be computed for every component cj

as follows:

lk(cj) =
k · (max cj − min cj)

n
+ min cj (1)

where max cj and min cj denote the maximum and minimum

values for a particular component, respectively. Alternatively,

this division into regions could also be done in other ways

such as by using percentiles as delimiters.

The resulting limits [lk−1, lk] for all n possible values of k

are therefore set so that the components are represented as the

number of instances in each range. The set of units that fall

within these intervals are denoted as:

Θj,k = {ξi | mi,j ∈ [lk−1, lk]} (2)

where j is an index over the dimensions/components, k an

index over the number of regions, i over the number of code-

book vectors. Therefore, mi,j denotes the j − th component

of codebook vector mi.

Region centres ωj,k for component j and region k are

computed as the centres of gravity for individual groups of

components as follows:

ωj,k =
1

|Θj,k|

∑

ξi∈Θj,k

ξi (3)

Further, Ωj denotes the entire tuple of centres {ωj,k | 1 ≤
k ≤ n} and implicitly represents the n − 1 lines, which

are obtained by linking all centres of regions of a specific

component ordered by their value, henceforth referred to as

Component Lines.

B. Measuring Distance between Component Lines

Figure 1(b) depicts the centres marked by black dots.

Adjacent centres are linked by lines. Note that the coordinates

obtained for ω do not necessarily coincide with the integer

unit coordinates, as they can take continuous values. In order

to perform the subsequent computational steps, we need to

introduce a metric that measures the distance between two

component lines Ωj1 and Ωj2 . This function d introduces

a concept of dissimilarity, such that pairs of lines that are

mutually more similar than others can be identified. We define

this measure as

d(Ωj1 , Ωj2) = min

( n
∑

k=1

‖ωj1,k − ωj2,k‖,

n
∑

k=1

‖ωj1,k − ωj2,(n+1−k)‖

)

(4)

where ‖ · ‖ denotes the Euclidean norm. The idea behind this

is that the lines are a simplified representation of the gradient

of a single variable, which should be visually similar in case

the variables are correlated, be it negatively or positively, as

denoted by the two parts of Equation 4. Thus, Component

Lines which share approximately the same path are assigned

a low distance. Figure 2(a) illustrates the computation of

distances between Component Lines as the sum of the dis-

tances between the pairs of centre points of the same indices.

Inverting the indices of Ωj2 as in the second argument of

min in Equation 4 stems from the fact that Component Planes

can be negatively correlated, i.e. the lines point in opposite

directions. For similarity, however, only the absolute value of

the correlation is of interest.



Fig. 3. Component Planes (six regions) and U-Matrix in the Iris data set

C. Visual Enhancements

1) Snapping: For a more intuitive and smooth representa-

tion, and to more closely resemble the metaphor of an actual

metro map, the locations of the region centres are adjusted in a

way that the lines Ωj are drawn only horizontally, vertically, or

diagonally. In order to achieve this kind of representation, we

compute new Component Lines Ω∗

j where the centres ωj,k are

restricted to the discrete unit positions on the map. Formally,

this is performed by minimising the energy function

min
Ω∗

j

d(Ωj , Ω
∗

j ) | Ω∗

j ∈ S (5)

where S is the set of valid candidate Component Lines

as defined above, i.e. with integer positions for the map

coordinates and only adjacent lines with multiples of 45

degrees. We solved this by a heuristic optimisation algorithm

that compares several candidates. First, a number of possible

‘snapping points’, i.e. the coordinates of the closest unit on the

map, is computed for each region centre. Then all remaining

centres are aligned to unit coordinates too, with the constraint

of only considering lines in an angle of multiples of 45 degrees

to each other. The the best solution in terms of an overall

lowest distance to the actual region centres out of the resulting

set of candidate alignments is chosen. Figure 2(b) illustrates

the process of aligning the original Ωj to candidate lines Ω∗

j

and Ω∗∗

j . The small crosses represent the discrete positions of

the map units. In this example, the candidate with the smallest

distance to the initial Component Line would be Ω∗∗

j .

2) Metro Stations and Intersections: The centres ω, which

represent the centres of gravity of single components, are

indicated by markers on the Component Lines, intuitively

mimicking metro stops. To even more emphasise the metaphor

of real-life metro maps, certain intersections of Component

Lines are displayed as metro stations (white circles with

black borders). These stations clearly point out the meaning

of parallel lines, namely their homogeneity with respect to

a certain local similarity. They might furthermore provide a

useful reference point for comparing different SOMs trained

on the same data.

3) U-Matrix: As described in Section II-B, the U-Matrix

can be utilised to visualise cluster boundaries. We use this

technique in our map to show distinct boundaries between

(a) Connected region centres for the Iris data set

(b) Snapped region centres and intersections

(c) Aggregated Component Lines

Fig. 4. Metro visualisation for the Iris data set (map size 12 × 18, four
regions)

clusters as representational rivers or lakes. This again resem-

bles the metaphor of rivers or lakes, which are often featured

in the background of real-world metro maps. Analogously to a

city being divided into different areas, our visualisation divides

data into clusters. For this visualisation we only visualise very

high values of the U-Matrix on a two-coloured palette.

D. Aggregation of Component Planes

With an increasing number of dimensions in the input

space, and therefore an increasing number of Component Plane

visualisations the perception of this visualisation becomes

increasingly difficult. Component Lines can combine the Com-

ponent Plane information in one plot, but even this only makes



(a) Snapped region centres forming the Component Lines

(b) Aggregated Component Lines

Fig. 5. Metro map visualisation for the Boston Housing data set (map size is 8 × 18, six regions)

sense up to a certain dimension. In order to further summarise

the information communicated through our illustration, we

propose an optional step of aggregating similar Component

Lines into representative prototypes. This works by clustering

the Component Lines. With the distance measure between two

such lines defined in Equation 4, a matrix of pair-wise dis-

tances can be calculated. Subsequently, hierarchical clustering

with any of the common linkage metrics can be performed.

In our approach, we use Ward’s clustering, and the (fewer)

aggregated Component Lines are computed by averaging over

the Component Line centres within each cluster. A threshold

value for the Ward’s clustering can be used to influence the

level of aggregation and to suit user’s subjective information

needs or desired levels of aggregation. Examples are given in

the next section.

IV. EXPERIMENTS

In this section we apply the preceding methods to standard

machine learning benchmark data sets to demonstrate the

characteristics, benefits, and the applicability of the metro

visualisation. We chose the Iris and Boston Housing data

sets from the UCI machine learning repository as well-known

examples.

A. Iris Data Set

The Iris data set [1] is a well-known standard reference

data set, containing three classes of 50 instances each, where

each class refers to a type of Iris plant. One class is linearly

separable from the remaining two (see the upper region of the

Component Planes visualisation in Figure 3), while the latter

are not linearly separable from each other. The data consists

of four features: sepal length, sepal width, petal length, and

petal width.

For this experiment, we trained a map of size 12 × 18
units and discretisation into eight regions. Figure 3 depicts the

U-Matrix of the map, which visualises the above mentioned

linear separation of one of the classes from the other two. It



moreover shows visualisations of the four Component Planes

of the data set, each grouped into four regions.

Figure 4(a) depicts the metro map after the first step of the

division of Component Planes into regions and connecting the

centres of the regions from the same Component Plane with

lines. The black circles on the Component Lines denote the

centres of the regions. The next step is shown in Figure 4(b),

where the centres are snapped onto unit locations to simplify

the visualisation and to more closely resemble a metro map.

Besides that, the intersections between two or more lines are

added.

Finally Figure 4(c) shows the aggregation of the four

Component Lines grouped into three remaining ones. The

components petal length and petal width have been aggregated

to one Component Line, indicating that the components are

highly correlated. Also, sepal length is somewhat correlated to

the petal length and petal width, while sepal width has clearly

no correlation to the other components. These correlations can

be conveniently displayed and overlaid in a single visualisation

on top of other colour code clusterings, such as e.g. the U-

Matrix.

B. Boston Housing

To evaluate our method, and to demonstrate the effect of

aggregation techniques, we also performed experiments on a

data set having a higher input dimensionality. The Boston

Housing data set [3] consists of 506 instances containing

information collected by the U.S Census Service concerning

housing in the area of Boston, Massachusetts. The data is

described in thirteen continuous and one binary attributes.

The trained map consists of 8 × 18 units, discretisation is

done for six regions. The Component Lines, already snapped

onto units, are shown in Figure 5(a). With the higher number

of dimensions in this data set, the visualisation becomes more

crowded. However, it still gives some hints about correlated

Component Planes. For example, the components ’Median

value of owner-occupied homes’ (’medv’ in the map legend)

and ’average number of rooms per dwelling’ (’rm’) both run

from the lower left to the upper right corner of the map.

Consequently, these two components are grouped together to

one Component Line in Figure 5(b). As another example, the

components ’proportion of residential land zoned for lots over

25,000 sq.ft.’ (’zn’) and ’weighted distances to five Boston

employment centres’ (’dis’), both running from the lower

right corner to the centre of the map, are grouped into one

Component Line.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel and intuitive method

for the visualisation of Component Planes and their corre-

lations, by using Component Lines as a metaphor of metro

maps. Driven by the problems arising when trying to plot all

components, namely the resulting high number of plots, this

is achieved by the discretisation of single components of the

input data. This subsequently allows to highlight these compo-

nents by a user-chosen level of aggregation. Parameter settings

include the number of regions over a component’s range. For

higher-dimensional input vectors, grouping the Component

Lines can reduce the complexity of the visualisation. The

experiments presented show that our method is feasible for

visualising both low and higher-dimensional feature sets. We

showed that the proposed aggregation technique for compo-

nents is capable of covering the variance within Component

Lines.

As future work, we want to investigate using different

distance functions between Component Lines, focusing on

local distance functions and edit distances, which are used

for snapping and aggregation. We therein plan to put the

emphasis of future research on the conjunction with the

aggregation. Further, we will work on improving the coherence

of the visualisation (e.g. metro lines not being intertwined

after intersections). We also want to investigate the robustness

and usefulness of our method on very high-dimensional data

sets, for example from the text mining or music information

retrieval domains, particularly concentrating on aggregation

issues.
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