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Abstract— We present a method for building ensembles of
models in order to build proper classifiers. The main advantage
of our method is an automated model selection procedure
and an automated model parameter estimation. The method
is an extension of the classical bagging and the K-fold-cross-
validation approach.

I. INTRODUCTION

Ensemble building is a common way to improve the
performance of the resulting model for classification and
regression tasks. An ensemble of individual models performs
in general better than a single model in the average. This
was first introduced in the neural networks community
since it was discovered, that a combination of several
Neural Networks can reduce the variance of the average
regression model [1], [2], [3]. The extension to classification
problems was straightforward after the formulation of a
bias-variance decomposition for zero-one loss functions
[4], [5]. The key feature of the ensemble approach is the
introduction of model diversity [6], [7], [8] that helps to
reduce the variance of the resulting ensemble model. There
are several ways to achieve diverse models like the well
known bootstrap aggregating or ’bagging’ (see Breiman
[9]) where the models are trained on different subsets of
the training data or heterogeneous ensembles, that consist
of several different model classes like Neural Networks,
nearest-neighbor models, decision trees, etc [10], [11].
Sometimes it might be convenient to focus on a specific
model class, in particular if one has to deal with large
data sets and the time for model training or processing
is critical (linear models and trees). If we consider a
supervised learning problem with n training examples of the
form {(x1, y1), (x2, y2), . . . , (xn, yn)} from an unknown
function y = f(x). The x values are usually d-dimensional
vectors that are called ’input-features’ while the y values
are continuous in the case of regression and discrete ’class
labels’ in the case of classification. If y ∈ {0, 1} we call it a
’binary classification problem’. A ’classifier’ is a hypothesis
about the unknown function y = f(x) in the sense, that
given some new values x∗ it predicts the corresponding
class labels y∗. A classifier ensemble is a set of single
classifiers whose individual predictions are combined in
order to classify new data examples.
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II. ENSEMBLES

The average output of several different models fi(x) marks
the ensemble model

f̂(x) =
K∑

i=1

ωifi(x), (1)

where we assume that the model weights ωi sum to one∑K
i=1 ωi = 1. There are several suggestions concerning

the choice of the model weights (see Perrone et al. [3] or
Hashem et al. [12]). We decided to use uniform weights
with ωi = 1/K for the sake of simplicity and not to run
into over-fitting problems as reported by Krogh et al. [8].
The central feature of the ensemble approach is the gen-
eralization ability of the resulting model. It is related to
finding the right balance between model complexity and
generalization in order to avoid overfitting as depicted in
Figure 1.

Fig. 1. The balance between model complexity and generalization ability
of the final classification model.

In the case of regression models (with continuous output
values) it was shown, that the generalization error of the
ensemble is in the average case lower than the mean of
the generalization error of the single ensemble members
(see Krogh 1995 [6]). This holds in general, independent
of the model class, as long as the models constituting the
ensemble are diverse with respect to the hypothesis of the
unknown function. In the case of (binary) classification
models the situation was not so clear because the classical
bias-variance decomposition of the squared error loss in
regression problems (Geman et al. [2]) had to be extended
to the zero-one loss function. There are several approaches
dealing with this problem, see Kong and Dietterich [13],
Kohavi [4] or Domingos [5].
The zero-one loss function is not the only possible choice for



classification problems. If we are interested in a likelihood
whether a sample belongs to one class or not, we can
use the error loss from regression and consider the binary
classification problem as a regression problem that works
on two possible outcomes. In practice, many classifiers are
trained in that way.
Our ensemble approach is based on the observation that the
generalization error of an ensemble model could be improved
if the models on which averaging is done disagree and if
their fluctuations are uncorrelated [8]. To see this we have to
investigate the contribution of the single model in the ensem-
ble to the generalization error. We consider the case where
we have a given data set D = {(x1, y1), . . . , (xN , yN )}
and we want to find a function f(x) that approximates y
at new observations of x. These observations are assumed to
come from the same source that generated the training set
D, i.e. from the same (unknown) probability distribution P .
It should be noted that f depends also on D. The expected
generalization error Err(x, D) given a particular x and a
training set D is

Err(x, D) = E[(y − f(x))2|x, D], (2)

where the expectation E[·] is taken with respect to the
probability distribution P . We are now interested in

Err(x) = ED[Err(x, D)], (3)

where the expectation ED[·] is taken with respect to all
possible realizations of training sets D with fixed sample
size N . According to [2] the bias/variance decomposition of
Err(x) is

Err(x) = σ2 + (ED[f(x)] − E[y|x])2 (4)
+ED[(f(x) − ED[f(x)])2]

= σ2 + (Bias(f(x)))2 + V ar(f(x)),

where E[y|x] is the deterministic part of the data and σ2 is
the variance of y given x. Balancing between the bias and
the variance term is a crucial problem in model building.
If we try to decrease the bias term on a specific training
set, we usually increase the variance term and vice versa
[14]. We now consider the case of an ensemble average f̂(x)
consisting of K individual models as defined in Equ. (1). If
we put this into Equ. (4) we get

Err(x) = σ2 + Bias(f̂(x))2 + V ar(f̂(x)), (5)

and we can have a look at the effects concerning bias and
variance. The bias term in Equ. (5) is just the average of
the biases of the individual models in the ensemble. So we
should not expect a reduction in the bias term compared to
single models. The variance term of the ensemble could be

decomposed in the following way:

V ar(f̂) = E
[
(f̂ − E[f̂ ])2

]
(6)

= E[(
K∑

i=1

ωifi)2] − (E[
K∑

i=1

ωifi])2

=
K∑

i=1

ω2
i

(
E

[
f2

i

]
− E2 [fi]

)
+2

∑
i<j

ωiωj (E [fifj ] − E [fi]E [fj ]) ,

where the expectation is taken with respect to D. The first
sum in Equ. (6) marks the lower bound of the ensemble
variance and is the weighted mean of the variances of the
ensemble members. The second sum contains the cross terms
of the ensemble members and disappears if the models are
completely uncorrelated [8]. So the reduction in the variance
of the ensemble is related to the degree of independence of
the single models [7]. This is the key feature of the ensemble
approach.

III. CROSS-VALIDATION AND MODEL SELECTION

Our model selection scheme is a mixture of bagging [9]
and cross-validation. Bagging or Bootstrap aggregating was
proposed by Breiman [9] in order to improve the classifica-
tion by combining classifiers trained on randomly generated
subsets of the entire training sets. We extended this approach
by applying a cross-validation scheme for model selection on
each subset.
In K-fold cross-validation, the data set is partitioned into K
subsets. Of these K subsets, a single subset is retained as
the validation data for testing the model, and the remaining
K1 subsets are used for model training. The cross-validation
process is then repeated K times with each of the K subsets
used only once as the validation data. The K results from the
folds then can be averaged to produce a single estimation.
If we lack relevant problem-specific knowledge, cross-
validation methods could be used to select a classification
method empirically [15]. This is a common approach because
it seems to be obvious that no classification method is uni-
formly superior, see for example Quinlan [16] for a detailed
study. It is also a common approach to select the model
parameters with cross-validation [17]. The idea to combine
the models from the K cross-validation folds (stacking) was
described by Wolpert [18]. We suggest to train different
model classes on each CV-fold, to select the best performing
model on the validation set and to combine the models from
the K-folds. We call this a heterogeneous ensemble and
applied this method effectively to regression problems [19],
classification tasks [10] and in several modelling competi-
tions [20], [21].
Our model selection scheme works as follows: For the K-
fold CV the data is divided K-times into a ’training set’ and
a ’test set’, both sets containing randomly drawn subsets of



Fig. 2. For every partition of the cross-validation, the data is divided in a
training and a test set.

the data without replications. The ratio

R =
# training samples

# test samples
(7)

ranges from 70
30 up to 50

50 . In every CV-fold we train several
different models classes with a variety of model parameters
(see Section V for an overview of the models and the related
model parameters). In each fold we select only one model to
become a member of the final ensemble (namely the best
model with respect to the test set). This means, that all
models have to compete with each other in a fair tournament
because they are trained and validated on the same data set.
The models with the lowest classification error in each CV-
fold are taken out and added to the final ensemble, receiving
the weight ωi = 1

k (see Equation 1). All other models in this
CV-fold are deleted.
We can use this model selection scheme in two ways. If
we have no idea or prior knowledge, which classification or
regression method should be used to cope with a specific
problem we could use this scheme to look for an empirical
answer. In a recent study, we were able to show the superior-
ity of regression trees for predicting the aqueous solubility of
small organic compounds, an insight that perfectly correlates
with the ”chemical intuition” of the experts, working in this
field for decades.
The other way is the estimation of model parameters for the
different model classes described in Section V.

IV. DATA PREPROCESSING

In some cases it is useful to apply a kind of data prepro-
cessing. All data sets were normalized in the sense that we
substracted the mean from the features and divided them by
their variance.
In some cases we further balanced the data. If the distribution
of the two classes differ in the sense, that one class is
only represented with a small number of examples then
balancing can improve the the convergence of several training
algorithms and has also an impact on the classification error
[22]. We apply balancing in the way that we reduce the
number of samples in the one class until we have an balanced
ratio of the class labels. This will reduce the number of
training samples in each CV-fold, hence we have to enlarge
the number of CV-folds in order to make use of all available
samples. This could be forced by drawing CV-folds with a
small overlap.

V. CLASSIFICATION MODELS

In this section we give a short overview of the models
that we use for ensemble building. All models belong to
the canonical collection of machine learning algorithms for
classification and regressions so details can be found in the
references. The implementation of these models1 in an open
source toolbox together with a more detailed description can
be found in [23].

A. Linear Discriminant Analysis

The Linear Discriminant Analysis (LDA) is a simple but
useful classifier. If we assume that the two classes k = {0, 1}
have a Gaussian distribution with mean µk and they share
the same covariance matrix Σ, then the ’linear discriminant
function’ δk(x), k = {0, 1} is given by

δk(x) = xT Σ−1µk −
1
2
µT

k Σ−1µk + log(πk),

where πk denotes the frequency of occurrence of the class
labels. The predicted class labels are given by

f(x) = argmaxk=(0,1) {δk(x)} .

We also implemented two modifications: The Quadratic Dis-
criminant Analysis (QDA) and the Penalized Discriminant
Analysis (PDA) as described in detail in Hastie et. al [14].
The parameters of the letter two models are dealing with the
penalizing terms.

B. Linear Ridge Model

The linear ridge model is a simple multivariate linear
regression that takes the N features {xi}i=1,...,N as input
and the labels {yi}i=1,...,N as output variables while in-
troducing a penalty term λ to the regression coefficients
α = (α1, . . . , αd). The regression coefficients minimize a
penalized residual sum of squares

α = argminα


N∑

i=1

(yi − α0 − 〈xi|α〉)2 + λ

d∑
j=0

α2
j

 ,

where α0 denotes the constant term in the regression and
〈·|·〉 is the scalar product defined as

〈x|α〉 =
d∑

k=1

xkαk .

The ’linear discriminant function’ is given by

f(x) = sign (α0 + 〈x|α〉) .

The free parameter of the model is the ridge factor λ.

1The toolbox is an open source MATLAB Toolbox that allows the
integration of existing implementations of classification algorithms and it
contains more then the described model classes.



C. Nearest Neighbor Classifier

A k-Nearest-Neighbor Classifier takes a weighted average
over the labels zi of those observations zi in the training set
that are closest to the query point x. This denotes as

f(x) =
1∑
wi

∑
zi∈Nk(x)

wizi,

where Nk(x) denotes the k-element neighborhood of x,
defined in a given metric and wi is the related distance.
Common choices are the L1, L2 and the L∞ metrics. The
parameters of the model are the number of neighbors and
the choice of the metric.

D. Trees

Trees are conceptually simple but powerful tools for
classification and regression. For our purpose we use the
’classification and regression trees’ (CART) as described in
Breiman et al. [24]. The main feature of the CART algorithm
is the binary decision role that is introduced at each tree
node with respect to the information content of the split.
In this way the most discriminating binary splits are near
the tree root building an hierarchical decision scheme. It is
known, that trees have a high variance, so they benefit from
the ensemble approach [9]. The parameters of the tree models
are related to splitting the tree nodes (the impurity measure
and the split criterion, see [14] for a detailed description).

E. Neural Networks

We use a multilayer feed-forward Neural Network (MLP:
Multi Layer Perceptron) with the tanh(x) as activation func-
tion. The weights are initialized with Gaussian distributed
random numbers having zero mean and scaled variances,
following a suggestion of LeCun et al. [25]. The weights
are trained with a gradient descend based on the Rprop
Algorithm [26] with the improvements given in [27]. The
MLP works with a common weight decay with the penalty
term

P (~w) = λ

N∑
i=1

w2
i

1 + w2
i

,

where ~w denotes the N -dimensional weight vector of the
MLP and a small regularization parameter λ. The number of
hidden layers, the number of neurons and the regularization
parameter are adjusted during the CV-training.

F. Support Vector Machines

Over the last decade Support Vector Machines (SVMs)
have become very powerful tools in machine learning. A
SVM creates a hyperplane in a ’feature space’ that separates
the data into two classes with the maximum-margin. The
’feature space’ can be a mapping of the original features
(x, x′) into a higher dimensional space using a positive semi-
definite function

(x, x′) 7→ k(x, x′).

The function k(·, ·) is called the kernel function and the so
called ’kernel trick’ uses Mercer’s condition, which states

TABLE I
PREPROCESSING, BASE MODELS AND PARAMETER SETTINGS FOR THE

agnostic learning track.

Data set ADA GINA HIVA NOVA SYLVA
Features 48 970 1617 16969 216

Examples 4147 3153 3845 1754 13086
Normalizing yes yes yes yes yes

Balancing – – yes yes yes
CV-folds 51 51 51 21 101

R 7/3 1/1 1/1 1/1 1/1
Base All CART CART CART All

models listed listed

that any positive semi-definite kernel k(x, x′) can be ex-
pressed as a dot product in a high-dimensional space (see
[28] for a detailed introduction). The theoretical foundations
of this approach were given by Vapnik’s Statistical Learning
Theory [29], [30] and later extended to the nonlinear case
[31]. We use an implementation of SVMs that is based on
the libsvm provided by Chih-Jen Lin [32] with the standard
kernels:

k(x, x′) = (x · x′) linear
= (x · x′ + 1)d polynomial

= exp
(
− ||x−x′||

σ2

)
rbf

The parameters of the model are with respect to the kernel-
type the polynomial degree d , the width of the rbf σ2 and
the value concerning the cost of constrain violation during
the SVM training.

VI. APPLICATION TO THE AGNOSTIC LEARNING VS.
PRIOR KNOWLEDGE CHALLENGE

The Agnostic Learning vs. Prior Knowledge Challenge
[33] provides five data sets from different sources. The aim
of the challenge is to to obtain the best possible predictor
on five classification problems using either the raw data or
the preprocessed data. We took the agnostic learning track
where we had to use the preprocessed data. In this section
we will report, which preprocessing, parameter settings and
base models were used to build classifier ensembles for the
5 agnostic learning data sets (ADA, GINA, HIVA, NOVA
and SYLVA, see Table I). In the case of ADA and SYLVA
we used all model classes described in Section (V) and per-
formed an extensive search in the space of model parameters.
For the three remaining cases, we use only CART models
because they delivered the best trade-off concerning time-
consumption during the training and performance on the test
data sets. In four cases we used a train-test-ratio of 1/1 in
order to prevent overfitting effects.

VII. RESULTS AND CONCLUSIONS

The competition results with respect to the first submission
deadline were published on the challenge website [33]. The
ranking of our model with respect to the individual data
sets is listed in Table I. In overall ranking we reached the
6st position in the field of competitors. The best model



TABLE II
THE RANKING OF OUR MODELS FOR THE agnostic learning track.

Data set ADA GINA HIVA NOVA SYLVA
Rank 3 8 6 11 2
Model CART CART CART CART CART

we used was an ensemble of trees for all five data sets
with the parameter settings listed in Table II. The success
of tree based classification methods provided by R. Lutz
[34] in the WCCI Performance Prediction Challenge in 2006
[35] encouraged us to focus more on CART models and
the results show that this was a good decision. We further
improved our approach reported in [21] where we focused
to much on the performance on the validation set that was
provided on the challenge web-site. It turned out, that this
was a mistake, because we were trapped by overfitting. This
time we used the outcome of the cross-validation to guide
the model selection process and we further used a ratio of
R = 1/1 for the training/test splits (see Equ. 7 and Table I).
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