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Learning encoding and decoding filters for data representation wh
a spiking neuron

Michael Gutmann Aapo Hyvarinen Kazuyuki Aihara

Abstract— Data representation methods related to ICA and investigations into neural representation on the celligeel.
sparse coding have successfully been used to model neuralFurthermore, it makes it difficult to link theory to experi-
representation. However, they are highly abstract methodsand ments on the single-cell level, see for example the study [7]

the neural encoding does not correspond to a detailed neuron Also. th | . " dt d
model. This limits their power to provide deeper insight into SO, theé neural respongels usually assumed to correspon

the sensory systems on a cellular level. We propose here datato the firing rate. There is however strong evidence that
representation where the encoding happens with a spiking individual spike timings bear important information [8].
neuron. The data representation problem is formulated as |n this article, we propose data representation by means of
an optimization problem: Encode the input so that it can 4 gpiking neuron, for which a relatively detailed dynamical
be decoded from the spike train, and optionally, so that del i d. Th ding is d by firi indl ik
energy consumption is minimized. The optimization leads to mo e_ IS used. € encoding 'S_ on_e y finng single Sp' E_}S'
a learning rule for the encoder and decoder which features Se€ Figure 1c. Data representation is based on the minimiza-
synergistic interaction: The decoder provides feedback &tcting  tion of a squared reconstruction error, and optionally veith

the p_Iast|C|ty of the encoder while the encoder provides ofinal  gdded penalty to minimize energy consumption during the
learning data for the decoder. encoding process. We derive an online learning rule based

. INTRODUCTION on minimization of the objective function. Learning of the

Learning a representation of the sensory input can be cofifcoder and decoder are synergistic: The encoder selects
sidered the fundamental functional task of a sensory neurdf€ !arning data for the decoder by triggering spikes at the
We model in Figure 1a neural representation by means §@httime, while the decoder provides error feedback fa th
a dynamical neural encoding system and a (hypothetic&ijicoder affecting in that way its plasticity. _
decoder. This paper is organized as follows. In section Il, we

Mathematical data representation methods such as prinfgrmulate the data representation problem of Figure 1c as an
pal or independent component analysis (PCA or ICA) [1]9pt|m|zat|on proble.m. In section III,_we provide the soduti
[2] show the same encoding-decoding structure. This {§ form of an online rule, and discuss the update rule.
illustrated in Figure 1b. The feedforward linear transforn{? Section IV, we show simulation examples and contrast
y = WTx models the neural encoding of the inputinto different ways to punish energy consumption. Section V
the neural response. A further linear transfornHy imple- discusses the relation to other work, and section VI coresud
ments the (hypothetical) decoder. These mathematical ddf§ Paper.
representat!on methods Ien(_j the_mselves to the stud.yloaheur . OPTIMIZATION PROBLEM
representation of natural stimuli. For the case of visidm, t
approach consists of taking samples of natural scenes ) )
their properties with properties of the visual cortex. Vil i closely related to the SRMmodel [9]. The equation for
PCA seems to be insufficient for learning relevant represeff€ membrane voltage is
tations, ICA adds a sparseness constraint which has both P min{t, T}

[ ] —i—/ x(t — s)w(s)ds
0

%'r Encoding and decoding

computational (Bayesian as well as information-theoyetic u(t) =70 exp
and metabolic justifications. This approach led to impdrtan I 1
insight of how the receptive fields in the primary visual +1n(t), @)

cortex could have been formed in order to represent naturghere I,(t) is a sufficiently smooth, and optional, noise
stimuli [3], [4], [S]. Related approaches have been madgurrent, i the last spike time before time, and w the
earlier for the LGN or retina, see [6] for a review. unknown encoding filter, to be learned, of length. The

However, the linear encoding transformation in ICA correconvolution of inputz with w produces the input currerdt
sponds to a rather abstract neuron model. This limits furth&pike timings{t/; f = 1,...} are defined byu(t/) = 6,
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Fig. 1. Modelling neural representation by means of dataesgmtation. (a) Input data is transformed by a dynamical neural system. This encoding
process should be such that the input can be decoded frometim@lresponse. The energy consumption during the encaaliogess could also be
required to be minimized. The encoder and decoder togetioeide data representation. (b) In PCA and ICA, the decoddremcoder are unknown linear
transforms, and the transform is found by minimization af the expected value ¢fx — %||2. ICA additionally maximizes the statistical independence
between the elements of the vectpr which is equivalent to maximizing the sparseness of thpaeses [2]. (c) Here, we encode by means of the spike
response neuron model [9], and decoding is done from theedjikingst/. Learning rules for the unknown encoding filter and decoding filtet, are
derived from the minimization of the mean squared reconstm error, optionally with an added penalty to minimizeesgy consumption during the
encoding process.

which introduces a dela¥y. For the reconstruction at time with the propagation of the action potential, is a dominant

t, spikes happening prior te — 7, are not considered. energy cost which accrues during signaling [10]. The total

The decoding filterh is unknown and to be learned. Thepostsynaptic ion load per timg is

arguments forh are in the rangg—T7,; 7T,]. The role of 17T

h(s) is different fors > 0 ands < 0. For s > 0, the input P, = —/ [Z(¢t)|dt. (5)

att is predicted from a spike event at < ¢. On the other T Jo

hand, fors < 0, the input is reconstructed from a later spike The outputI(t) of the convolution betweerr and w

event att! > t. satisfies (t)? < ||w||3]|x||3. Hence,P, < ||w||3]|z||3, and in
The neuron model in Equatiofil) has been related to order to minimize the average power consumptianduring

detailed biophysical quantities [9]. The encoding filiecan the encoding, we seek to minimize additionally.fo

be considered to model a physical time-invariant systers. Th Ty

decoding filterh, however, is of more abstract nature. It is Jo(w) :/ w(t)*dt

a hypothetical quantity and assigns meaning to each spike. 0

It implements the “homunculus”, which generates a runninglternatively, we can use the relatioR, < [[w|[}|z[|3/T,

(6)

commentary on the spike train, see e.g. [8]. where the squared; norm of w indicates the amplification
_ gain, i.e. the ratio between output and input power. Hence,
B. Cost functional in order to punish amplification, we could minimize addi-

Our cost functional consists of two parts: reconstructiofionally to J.
error and optionally, energy consumption. T, 2

The first part of the cost functional which is due to the Jis(w) = (/ |w(t)|dt> ) 7)
reconstruction error is 0

1 [T 5 For the second measure of energy consumptign
Je(h’w):ﬁ/o (&(t) — x(t))"dt, () we have due to properties of the convolutidd, <
[lw||1||z||1/T. Hence, in order to punish postsynaptic ion

whereT is a fixed time horizon. load, we minimize additionally to/,
We introduce two ways to measure the energy consump-

. . Tu
tion. First, we use the average powey, Ji(w) = /0 lw(t)|dt. 8)
T
P, = % / I(t)*dt. (4)  Alternatively, we could also take’, directly as additional
0 guantity to be minimized, i.e.
Itis the electrical power that is consumed in a unit resistan -
through which the currenf(t) flows. A second measure Jyp(w) = l/ |1(t)|dt. (9)
for energy consumption stems from the idea théat)d¢ is T Jo

proportional to the ion load that must be pumped out, din the following, we refer to the energy cost by , which
in, to restore the ion gradients in a neuron. This, togethean beJs, Jig, Ji, or Jp,.



The total cost to be minimized, due to the reconstructioB. Decoding filterh

error and the energy consumption, is given by For the learning ofh, we form from the spike timings
_ binary vectorp(n) by binning the spike timings into

—J. 10) & P : . = S .
J=Jetalp, (10) containers of size\t. If there is a spike in the bin centered

wherea weights the influence of the energy constraint. at ¢t = nAt, then p(n) equals one, otherwise zero. We
discretizeh(s) with the same bin size. The reconstruction
IIl. ONLINE LEARNING RULE in Equation(2) att = nAt becomes then

A. Encoding filterw i(n) = hp(n), (20)

Key to the update rule fow is the calculation of the |\ vo0 ) — [h(—=Ng)...h(N,)] and p(n) = [p(n +
functional derivatived.J/dw(s). In [11], we dealt in detail Ny)...pn — N,)T. We maypfurther search foh(n) in
: _ SR )
with the mathematical derivation d¥J./sw(s)!. Here, we the form of h(n) = 3=, cx Uk (n), for some given®;, and

summarize the approach. It goes via variational Calcu'”ﬁhknownck. The ¥, can for example be the Daubechies's
The encoderu(s) is perturbated tau(s) + dw(s), and the  pg \yavelet basis on Z (see e.g. [12]). Omitting wavelets

resulting change J. is calculated: The pgrtgrbz}tciohu(s) located in the highest frequency bands in that representati
leads to the perturbation of the spike timings' which  5,6,us for a reduction in the parameters to be learned for

in _turn changes the recon_structio& (1) to “%_(t) + 557@' _the decodefh.. With reference to [12], we are looking in that
This allows for the calculation of the functional derivativ case forh(n) in V_;, with e.g.j = 2
i 9.7 =2.

d.Jc/dw(s). It amounts to [11] Denoting by ¥ the matrix with  rows

A 1 - [Ui(—Ng)...Uk(N,)], we obtain for the reconstruction
Fule) ~ T &) (A1) 5(n) = ey(n), where
y = ¥p. (22)
where
T The row vectorc is to be determined such thaf. is
é(tf) _ / p(j(t) _ :c(t))h(t _ tf)dt (12) minimized. Calculation of the derivative of. with respect
T, to the row vectore, i.e. after discretization, gives
—z(tf —s) _ N
= — 2410 Yy _1(s)A3 6o 1 X
yr(s) ain t (", 7 )yp-1(s)(13) = = NZ(x(n)_x(n))yT(n)_ (22)
_ -7 tj o tffl n=1
re /=t = m(t(})eXP {—f : (14)  uUsing the stochastic gradient, the following least mean
square (LMS) like learning rule is obtained
The functional derivatives of/g are, depending on the A T
measurement of the energy consumption, Ac(n) = —pp [E(n) —a(n)]y~ (n), (23)
575 where p;, is the step size. The step size can be chosen
5w (s) = 2w(s) for Jg=J2, (15) optimally in each update step by using a recursive least
squares algorithm, see e.g. [13], for the learning:of
0JE )
sw(s) 2||wll1sign(w(s))  for  Jp=Jis,  (16) ¢ |nterpretation

0JE ) We discuss here the mutual influence between the encod-
sw(s) sign(w(s)) for —Jp=Ji, (17) jng and decoding filterss and k during learning.
The decoding filterh enters into the update rule fap
and in Equation(19) via e, defined in Equation12). Let us
0Jg 1 [T assume that the input is positive valued. The parametEr
Sw(s) T/O sign(I(t))a(t — s)dt (18) jn Equation(14) is also positive so thaj; in Equation(13)
is < 0. The quantitye can be positive or negative. In the
regime where the energy cost does not matter (because for
examplex = 0), it is the sign ofe which decides whethep
5Jg increasesd < 0) or decreasese(> 0). Figure 2 illustrates
5w—(5)) » (19) thate is an indicator for the reliability of the spike, which
] ] ] ] is calculated with the aid of the decoding filter
where i > 0 is the step size and weights the influence  The encoding filter exerts influence on the learning of the
of the energy constraint. The algorithm is mmahzgd W'thdecoding filterh in Equation (23). It produces the spike
yo = 0 and e.gwy = 0. If Jp = J,, we integrate in the timings which define the vectgy of Equation(21). Noise
update rule not from zero till” but from¢*~* ill ¢*. triggered spikes provide thus unstructured learning daité f
1in contrast to the present article, the focus in [11] is on filrectional while while spikes which were triggered over input currént

derivative: it includes neither simulations not the conplenline rule with by a characteristic feature in the Input prowde gOOd |ng‘n|
its discussion. data.

for Jg = J,. We propose the following online rule: After
spikek at t*, update the encoder by

wi(s) = wy—(s) + (e<tk>yk<s> “a



V. SIMULATIONS reconstruction. The weighting was called “analogue spike”
The online rule was initialized withv = 0 andh = 0. and measured the strength (.)f the spike happgnirﬁé.f?m
Figure 3 shows an overview of the setup of the simulatiofyl case, we are working with all-or-none spikes: elthgr_ a
and the result fory — J. sp|ke is h_appenlng_ or not. Furthermore, the decomposition
Figure 4 shows characteristic stages in the learning pmce\ga_matchmg pursuit is ac_ausal and does not correspond to a
pical neuron model while here, we have presented a data

of w andh, the associated currents and the reconstructiond, :
In stage 1and stage 2 the encoding filterw is so small representation meth_od that uses a standard, causal neuron
that the spikes are noise triggered. Compared to stage rrl19del for the encoding.

the decoding filter» shows in stage 2 some structure which

supports the learning ofv. Stage 3shows the situation  |n this article, we presented and discussed an online
wherew has strongly developed. The input currdntirives  rule for data representation with a formal spiking neuron.
now the neuron, and structured training data is provided fdgirst, we formulated the data representation problem as an
the learning ofh. Therefore, instage 4 h has reached a optimization problem in which reconstruction error and an
good decoding performance. From stage 3 on, the energptional energy cost are minimized. This enables learning o
constraint onw takes effect and the encoder converges to thye encoder and decoder. Then, we used variational calculus
attractor shown aginal stage The final form ofw reflects to derive an online rule for the learning of encoder and
the trade-offs in the learning. The main peak needs be largecoder. Simulations showed that the online rule can learn
enough to provide spikes in case of an input feature, but ke general shape of the input distribution.
cannot be too large due to the energy constraint mediated by
(68

We have performed simulations to assess the influence of | NiS research is partially supported by Grant-in-Aid for
a, which weights the influence of the energy cdst on the S_C|ent|f|c Resea_rch on Priority Areas - _System study on
total cost.J in Equation(10). The amplitude ofw, and also higher-order brain functions - from the Ministry of Educa-

h, becomes smaller for values aflarger than in the present tion, Culture, Sports, Science and Technology (MEXT) of
case, wherer = 10~%. Fora = 103, for example, we have Japan (17022012). MG is further supported by MEXT grant

VI. CONCLUSION
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w < 10 andh < 0.5 (results not shown). The general shap@40680-

of both kernels is however related.

Figure 5, upper left, shows the special case where 0, [
i.e. the case where energy consumption is not punished. The
main difference to the results witl; = J, lies in the larger

. . . 12]
main peak and sidelobes. The shape is however the same:.
There is also a negative primary as well as a secondary
sidelobe. The remaining subfigures show the encoding filter§!
which are obtained after learning with different measures o
energy consumptiog. The additional punishment of the [4]
energy consumption leads to encoding filters with different
characteristics. The case without energy constraint shows
however that this additional punishment is not needed te havs]
stability in the development af). The value ofe decreases
with increasing accuracy of the reconstruction, and makegg;
the update rule stable.

V. RELATION TO OTHER WORK [7]

We have related our work to ICA and PCA in the in-
troduction and Figure 1. Here, we discuss the relation witH®!
a method which, as our method but unlike ICA, includes[9]
time structure in the representation. The method works for
a population of neurons while the presented results in th%ol
article deal only with a single neuron. In [14], a decomposifi1]
tion that resembles our decoding formula in Equatidhis
done for natural sounds. The researchers iteratively apgich
the function dictionary which is used to decompose input [13]
by means of the matching pursuit algorithm [15]. Importani!4]
differences to our work are that in our approach, we args
working with spike timings only, while in [14], a further
scalar weighting of each shifteld(t — ¢/) is needed in the

[12]
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Fig. 2. The role ofe in case of perfect decoddr. (a) The reconstructiort leads the inputc. This happens if the spike is triggered too early. The
resulting errore = & — x is weighted withh and integrated to yiel@ (Equation(12)). In the regime where the energy cost does not maiter,0 leads

to a decrease iw. The decrease causes the next spike to happen later andctimestreiction matches the input better. (b) The opposite edwere the
reconstruction lags behind the input. (c) The spike is ntiggered: e is small so thatw is not affected byr to a large extent.
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Fig. 3. Simulation setup and resulting representation efittput after learning (foJg = J2). The time varying inputz(¢) is encoded with a formal
spiking neuron such that decoding of the neural responddsyien accurate reconstruction of the input: The inpuyields via convolution with the
encoding filterw the input current/. It forms together with the noise currer, and the recovery current. the membrane voltage. If « reaches the
thresholdd = 4 at ¢t = tf, the spike timingt! is recorded for the reconstruction and the voltage is resetd. The spike causes a recovery current
1. The decoding filteta implements the hypothetical homunculus which generatasaimg commentary: of the spike train. Comparison af with x
shows that the input is well represented by the neural spikimgs. Simulation parametersin total, we have run 300 rounds, whetehad in each round
length 50 - 1024. Discretization and integration step size wis 3 time units. Integration was done with a Simpson scheme. Hiercurrentl,, was
obtained by convolution of an i.i.d. Gaussian random predesean 11, standard deviation 8) with an exponential ketimak constantr,, = 0.05 time
units). Recovery time constamtwas 0.1 time units, step sizewas 1. The decodei was searched iV_s: 69 coefficients needed to be learned. For the
encoderw 200 points were learned. The energy punishment was weighitidor = 104,
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Fig. 4. The learning process fofz = J2. It can qualitatively be separated into different stagesarhing happening during stage 1 and 2 is noise driven.
As explained in Figure 2¢ is in that case small and the encoding filtergrows slowly. Noise triggered spikes provide unstructulestning data for the
decoding filterh so that the growth of the decoder goes slowly as well. In s®ge is still small but the input current can have influence on thikes
timings by providing, given the right amount of noise cutrehe additional amount of current needed to reach the flibids Then,w develops strongly
providing from stage 3 on good training data forwhich develops nearly to the final form (see stage 4 curveg difference betweem shown as stage

3 and 4 is that a negative front lobe develops and that thendacp lobe is reduced. The encoder attains then a smooth (fored stage). The role of the
negative front lobe ofv is to prevent too early spiking. The secondary sidelobe shdpovercome the refractory current for closely space irfpatures.
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Fig. 5. Comparison of encoding filters for different energysts. The upper left subfigure shows that the additionalggneonstraint is not needed for
stable learning. Punishment of energy consumptionijia or J; (Equations(7) and (8)) leads to filters of “ungraded” shape with clear zerds. has

a stronger suppressive effect in the initial phase of thenieg since a vector that is not related to the scalevoi subtracted in each update (compare
Equation$16) and (17)). For Jg = J,, defined in Equatior(9), the subtraction vector becomes input dependent, see iEquas). Compared to the
other cases, the learned features a new, negative, secondary sidelobe after the pesik.



