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Abstract— The research on unsupervised feature selection is
scarce in comparison to that for supervised models, despite
the fact that this is an important issue for many cluster-
ing problems. An unsupervised feature selection method for
general Finite Mixture Models was recently proposed and
subsequently extended to Generative Topographic Mapping
(GTM), a manifold learning constrained mixture model that
provides data visualization. Some of the results of a previous
partial assessment of this unsupervised feature selection method
for GTM suggested that its performance may be affected by
insufficient sample size and by noisy data. In this brief study,
we test in some detail such limitations of the method.

I. INTRODUCTION

THE fields of machine learning and statistics coexist with
data analysis as a common target and they overlap in

what has come to be defined as Statistical Machine Learning.
An example of this can be found in Finite Mixture Mod-
els, which are flexible and robust methods for multivariate
data clustering [1]. The addition of visualization capabilities
would benefit these models in many application scenarios,
helping to provide intuitive cues about data structural pat-
terns. One way to endow Finite Mixture Models with data
visualization is by constraining the mixture components to
be centered in a low-dimensional manifold embedded into
the multivariate data space, as in Generative Topographic
Mapping (GTM) [2]. This is a manifold learning model for
simultaneous data clustering and visualization.

The interpretability of the clustering results provided by
GTM becomes difficult when the analyzed data sets con-
sist of a large number of features. This limitation can be
overcome with methods to estimate the ranking of the data
features according to their relative relevance, leading to
feature selection (FS). The research on unsupervised FS is
scarce in comparison to that for supervised models, despite
the fact that FS becomes an issue of paramount importance
for many clustering problems, regardless the unavailability
of class labels. The interpretability of the clusters obtained
by unsupervised methods would be improved by their de-
scription in terms of a reduced subset of relevant variables.

An important advance on unsupervised FS for Finite
Mixture Models was presented in [3] and recently extended
to GTM in [4] and to one of its variants for time series
analysis in [5]. This method was preliminarily assessed in
[6], where some of the results suggested that the performance
of the method may be degraded by characteristics of the data
such as insufficient sample size and the presence of noise.
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In this brief study, we provide far more detailed evidence of
the limitations of the method through controlled experiments
using synthetic data.

The remaining of the paper is organized as follows. First,
brief introductions to the standard Gaussian GTM and its
extension for Feature Relevance Determination (FRD) are
provided in section 2. This is followed, in section 3, by a
description of the experimental settings and, in section 4, by
a presentation and discussion of the results. The paper closes
with a brief summary of conclusions.

II. FEATURE RELEVANCE DETERMINATION FOR GTM

A. The Standard GTM Model

The neural network-inspired GTM is a manifold learn-
ing model with sound foundations in probability theory. It
performs simultaneous clustering and visualization of the
observed data through a nonlinear and topology-preserving
mapping from a visualization latent space in �L (with L
being usually 1 or 2 for visualization purposes) onto a
manifold embedded in the �D space, where the observed
data reside.

For each feature d, the functional form of this mapping
is the generalized linear regression model yd (u, W) =∑M

m φm (u)wmd, where φm is one of M basis functions,
defined here as spherically symmetric Gaussians, generating
the non-linear mapping from a latent vector u to the manifold
in �D. The matrix W of adaptive weights wmd explicitely
defines this mapping.

The prior distribution of u in latent space is constrained to
form a uniform discrete grid of K centres. A density model
in data space is therefore generated for each component k of
the mixture, which, assuming that the observed data set X is
constituted by N independent, identically distributed (i.i.d.)
data points xn, leads to the definition of a complete log-
likelihood in the form:

L(W,β|X)=
∑ N

n=1
ln

{
1

K

∑K
k=1(

β
2π )D/2

exp{−β/2‖yk−xn‖2}} (1)

where yk is a reference or prototype vector consisting of ele-
ments (ydk =

∑M
m φm (uk)wmd), which are an instantiation

of the generalized linear regression model described above.
From Eq. (1), the adaptive parameters of the model, which
are W and the common inverse variance of the Gaussian
components, β, can be optimized by maximum likelihood
(ML) using the Expectation-Maximization (EM) algorithm.
Details can be found in [2].

B. The FRD-GTM

The problems of feature selection and feature relevance
determination are commonly understood as one of the pos-
sible strategies for data dimensionality reduction, usually
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for supervised problems. In such setting, a data feature is
said to be relevant (and it is eventually selected) only if its
absence (or its absence in combination with the absence of
others) worsens significantly the classification or predictive
performance of the defined model. Feature selection and
feature relevance determination for unsupervised learning,
even if sharing the dimensionality reduction objective of their
supervised counterparts, are far less investigated problems.
Here, the relevance is not longer related to a label or
target variable, and various feature ranking criteria can be
considered, including, but not limited to, saliency, entropy,
smoothness, density and reliability [7].

In this paper, unsupervised feature relevance is understood
as the likelihood of a feature being responsible for generating
the data cluster structure. Therefore, relevant features will
be those which better separate the natural clusters in which
the data are structured. Moreover, we are interested in
unsupervised feature selection methods that are suitable for
clustering models that also provide data visualization. With
that in mind, the FRD technique was defined for the GTM
model in [4]. For the unsupervised GTM clustering model,
relevance is defined through the concept of saliency.

The FRD problem was investigated for GTM in [4].
Feature relevance in this unsupervised setting is understood
as the likelihood of a feature being responsible for generating
the data cluster structure. In this unsupervised setting, rele-
vance is defined through the concept of saliency. Formally,
the saliency of feature d can be defined as ρd = P (ηd = 1),
where η=(η1, . . . , ηD) is a set of binary indicators that can
be integrated in the EM algorithm as missing variables. A
value of ηd = 1 (ρd = 1) indicates that feature d has the
maximum possible relevance. According to this definition,
the FRD-GTM mixture density can be written as:

p(x|W,β,w0,β
0
,ρ)=

∑ K
k=1

1

K

∏D
d=1

{ρdp(xd|uk;wd,β)+(1−ρd)q(xd|u0;w0,d,β0,d)} (2)

where wd is the vector of W corresponding to feature d
and ρ ≡ {ρ1, . . . , ρD}. A feature d will be considered
irrelevant, with irrelevance (1 − ρd), if p (xd|uk; wd, β) =
q (xd|u0; w0,d, β0,d) for all the mixture components k, where
q is a common density followed by feature d. Notice that
this is like saying that the distribution for feature d does
not follow the cluster structure defined by the model. This
common component requires the definition of two extra
adaptive parameters in (2): w0 ≡ {w0,1, . . . , w0,D} and
β0 ≡ {β0,1, . . . , β0,D} (so that y0 = φ0 (u0) w0). For fully
relevant (ρd → 1) features, the common component variance
vanishes:(β0,d)

−1 → 0. The parameters of the model can,
once again, be optimized by ML using the EM algorithm.
Detailed calculations can be found in [8].

III. EXPERIMENTAL SETTINGS

The results of statistically principled models for proba-
bility density estimation, such as GTM and its variants, are
bound to be affected, in one way or another, by sample size
and by the presence of uninformative noise in the data. Here,
we assess such effects on the FRD-GTM model described
in the previous section. For that, data with very specific
characteristics are required. We use synthetic sets similar to
those in [3] for comparative purposes.

The first synthetic set (hereafter referred to as synth1) is a
variation on the Trunk data set used in [3]), and was designed
for its 10 features to be in decreasing order of relevance.
It consists of data sampled from two Gaussians N (μ1, I)
and N (μ2, I), where:

(
μ1 = 1, 1√

3
, . . . , 1√

2d−1
, . . . , 1√

19

)

and μ1 = −μ2. We hypothesize (H1) that the feature
relevance ranking estimated by FRD-GTM for these data
will deteriorate gradually as sample size decreases. Samples
of synth1 of different sizes, from 100 to 10,000 points, were
used in this study to test H1. It is also hypothesized (H2) that
the feature relevance ranking will deteriorate in proportion to
the level of noise. In order to test H2, four increasing levels
of Gaussian noise, of standard deviations 0.1, 0.2, 0.5, and 1,
were added to the 10 original features of synth1, for a given
sample size.

The second dataset (hereafter referred to as synth2) con-
sists of a contrasting combination of features: the first two
define four neatly separated Gaussian clusters with centres
located at (0, 3) , (1, 9) , (6, 4) and (7, 10); they are meant to
be relatively relevant. The next four features are Gaussian
noise and, therefore, rather irrelevant in terms of defining
cluster structure. Similar experiments to the ones devised for
synth1 were designed to further test H1 and H2.

The FRD-GTM parameters W and w0 were initialized
with small random values sampled from a normal distri-
bution. Saliencies were initialized at ρd = 0.5, ∀d, d =
1, . . . , D. The grid of GTM latent centres was fixed to a
square layout of 3 × 3 nodes (i.e., 9 constrained mixture
components). The corresponding grid of basis functions φm

was fixed to a 2 × 2 layout.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The experiments outlined in the previous section aim to
assess the effect of sample size and the presence of noise on
the performance of FRD-GTM in the process of unsupervised
feature relevance estimation.

A. The Effect of Sample Size

The FRD ranking results for synth1 are shown in Fig. 1,
for sample sizes from 10,000 down to 100 points. Further
sample sizes were tested, conforming to a similar pattern;
their results are not included for the sake of brevity. A
deterioration of the results is clearly observed for datasets of
less than 1,000 points. This deterioration takes two forms:
Firstly, a breach of the expected monotonic decrease of
the mean feature saliencies. Secondly, a neat increase of
uncertainty in the results, illustrated in Fig. 1 in the form
of bigger bars of the standard deviation of the estimated
saliencies. As a result, the confidence on the validity of
the results for small sample sizes decreases considerably.
According to these results, H1 is at least partially supported.

The FRD ranking results for synth2, again for sample sizes
from 10.000 down to 100 points, are shown in Fig. 2. This
is an easier problem for the model, and this is reflected by
the fact that the saliency estimated for the two first features
is higher than that estimated for the rest of the features, even
for a sample size as small as 100 points.
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Fig. 1. Experiments with different synth1 sample sizes (indicated in the plot titles) Mean saliencies ρd for the 10 features. The bars span from the mean
minus to the mean plus one standard deviation of the saliencies over 20 runs of the algorithm.
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Fig. 2. Experimental results for different synth2 sample sizes (indicated in the plot titles). Representation as in previous figures.

526 2008 International Joint Conference on Neural Networks (IJCNN 2008)



A deterioration of the saliency estimation is nevertheless
evident for the smallest of the sample sizes investigated. This
is consistent with the results for synth1 and, again, H1 is
partially supported.

B. The effect of Noise

In the experiments reported in Fig. 3, four levels of
Gaussian noise of increasing level were added to a sample of
1,000 points of synth1. The FRD-GTM is shown to behave
robustly even in the presence of a substantial amount of
noise, although its performance deteriorates significantly for
noise of standard deviation = 1, as reflected in the breach
of the expected monotonic decrease of the mean feature
saliencies. H2 is, therefore, partially supported by these
results.

Fig. 4 displays the results of a similar experiment for
synth2. They are fully consistent with those obtained with
synth1. The model again behaves robustly in the presence of
noise and clearly deteriorates at the highest level of added
noise, for which the model struggles to distinguish the first
two features from the purely noisy ones. Hypothesis H2 is,
again, at least partially supported.

This support for hypothesis H2 is, even if partial, certainly
not unexpected. As robust as it may be, the FRD-GTM
model is still prone to data overfitting. That is, at some
point, the model will start learning the noise as much as
learning the underlying signal distributions. The resulting
FRD-GTM model will be over-complex and, if the noise
is uninformative (i.e., in this case, if the noise affects all
data features equally), the method of relevance determination
will eventually start struggling to provide correct saliency
estimations. One way around this problem is to endow the
model with regularization capabilities to effectively control
complexity [9], [10], [11]. FRD-GTM is thus likely to benefit
from the definition of extensions of the model encompassing
adaptive regularization.

V. CONCLUSIONS

In this paper, the effects of sample size and the presence
of noise on a method of unsupervised feature relevance
determination for the manifold learning GTM model, have
been investigated in some detail. The FRD-GTM has been
shown to behave with reasonable robustness even at small
sample sizes and in the presence of a fair amount of noise.
Even though, performance deterioration has been observed
at very small sample sizes and in the presence of high level
of noise.

This relative weakness of the method in the presence of
noise makes it convenient to consider possible strategies for
model regularization and, therefore, future research will be
devoted the design of methods for automatic and proactive
model regularization to prevent or at least limit the negative
effect of data overfitting on the FRD method for GTM. Some
of such methods have already been designed for the standard
GTM formulation [9], [10] and could be extended to FRD-
GTM. Alternatively, regularization could be accomplished
through a reformulation of the GTM within a variational
Bayesian theoretical framework [11]. Again, this could be
extended to accomodate FRD.

Future research should also extend the current experimen-
tal design to include a wider variety of artificial data sets of
different characteristics, as well as to include comparisons
with alternative unsupervised feature relevance determitation
and feature selection techniques.
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Fig. 3. Experiments with a sample of 1,000 points from synth1, to which different levels of Gaussian noise (indicated in the plot titles) are added.
Representation as in Fig. 1.
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Fig. 4. Experimental results for a sample size of 1000 points from synth2, to which different levels of Gaussian noise (indicated in the plot titles) are
added. Representation as in previous figures.
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