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Abstract— An analog VLSI hardware architecture for the

distributed simulation of large-scale spiking neural networks

has been developed. Several hundred integrated computing

nodes, each hosting up to 512 neurons, will be interconnected

and operated on un-cut silicon wafers. The electro-technical

aspects and the details of the hardware implementation are

covered in a separate contribution to this conference. This paper

focuses on the usability of the system by demonstrating that

biologically relevant network models can in fact be mapped to

this system. Different network configurations are established on

the hardware by programmable switch matrices, repeaters, and

address decoders. Systematic routing algorithms are presented

to map a given network model to the hardware system. Routing

is simulated for several network examples, proving the system’s

practical applicability. Furthermore, the routing simulations are

used to fix values for yet open hardware parameters.

I. INTRODUCTION

O
NE of the challenges in simulating large neural net-

works in a parallel, distributed manner is to ensure

sufficient communication bandwidth between the computa-

tion nodes. Depending on the neural connection densites and

the actual spike rates, communication can in fact constitute

the major bottleneck limiting the gain in simulation speed

achievable by parallelization [1]. In an accompanying paper

[2], a parallel VLSI hardware architecture for the simu-

lation of large-scale pulsed neural networks is presented,

being developed within the European Union research project

FACETS [3]. It features an integrate-and-fire neuron model

with current-injecting synapses, and built-in synaptic plas-

ticity, all implemented in mixed analog/digital integrated

circuits. The basic elements of the hardware architecture

are 10mm×5mm network chips, each implementing 131,072

synapses which can be dynamically partitioned to up to 512

neuron bodies. The neurons operate on a typical time scale

which is 10, 000 times faster in comparison to biological real-

time, enabling long-term learning experiments or extensive

parameter searches. At the same time, space and power

consumption are way lower than with conventional computer

systems of comparable computing power.

The connectivity problem is approached by wafer-scale

integration: The silicon wafers on which approx. 450 chips

are produced side-by-side are not cut apart into separate

chips but left as a whole. Additional metal layers, deposited

onto the wafer in a post-processing step, allow to interface
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and inter-link the network chips with sufficient connection

density and thus to operate large-scale networks consisting

of several ten thousand neurons. Larger networks are possible

by combining multiple wafer modules.

Two communication protocols are developed especially for

this hardware architecture: First, a continuous-time serial bus

system using on-chip and post-processing lines for intra-

wafer communication (“Layer-1”). Second, a packet-based

dynamic routing network implemented by separate custom

hardware components which interface the network chips via

contacts on the wafer surface (“Layer-2”). Layer-2 is used

mainly for inter-wafer communication and for connecting to

the control computer.
1

The communication layers as well as the network chips

themselves are configurable as to set up different network

topologies, neuron and synapse types, and connection densi-

ties. The task faced when employing the hardware system for

an actual simulation is to configure its various components

to realize the desired network model. Whether or not such

a configuration exists, and if yes, how it looks like, is not

obvious a priori. The present paper solves this question for

network topologies set up using the Layer-1 communication.

Model parameters other than the net topology (e.g., electrical

neuron and synapse parameters) are not covered here.

The hardware architecture is reviewed in section II. In

section III, routing algorithms are outlined for configuring

the Layer-1 bus system to realize a given network topology.

Section IV presents routing simulations for several example

network topologies. The results are also used to fix open

parameters of the actual hardware. The paper closes with

final remarks and a discussion in section V.

II. HARDWARE ARCHITECTURE

A comprehensive description of the hardware system,

including electronic implementation details, is given in the

accompanying paper [2]. Here we review the system on a

more abstract level from the view points of configuration

and operation as described further below.

A. General Concepts

The network chips, hosting the synapses and neuron bod-

ies, are laid out in a regular grid on the wafer, as shown in

Fig. 1. Between the network chips, the buses of the Layer-1

communication system run in horizontal and vertical bundles

of 64, respectively 256, single bus lanes. Repeaters at the

border between network chips can be configured for each

1
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Fig. 1. System overview (not to scale). 1) Circular silicon wafer; 2)

Network chip (upper and lower half); 3,4) Vertical and horizontal Layer-1

buses; 5) Cross bar switches; 6) Select switches; 7) Configurable repeaters

at chip boundaries; 8) Incomplete network chips at the wafer border, or

defect ones, are not used.

lane separately to relay the signal in either the one or the

other direction, or to be off, in which case signal propagation

is interrupted at this border. The repeaters and the crossbars

which connect the horizontal and vertical buses allow to route

signals across the wafer.

Each bus lane carries the spike signals of up to 64 neurons.

A spike is indicated by an asynchronous serial 6-bit packet

encoding the address of the source neuron. The spike time is

inferred from the actual moment the packet is received. The

network chips insert generated spikes into the horizontal bus

crossing at their center. If a chip implements 64 neurons or

less, it fills one bus lane, else, for each new group of 64

another lane is filled. Each group of neurons firing to the

same lane is arbitrated by a priority encoder: if two neurons

fire at the same time, the one with the lower priority is

delayed, or it is discarded if the buffer is full. Care must

be taken by the routing logic that no more than one network

chip is sending on the same lane.
2

At the borders between network chips, the bus lanes are

shifted by one as shown in Fig. 2. The twisting allows for

network chips to insert signals to the same local horizontal

lane and to use the same cross bar configurations while

largely avoiding global signal collisions. As a consequence,

the point of signal insertion does not need to be configurable,

but it is done for all network chips according to the same

scheme: Chips implementing up to 64 neurons insert their

output signals into horizontal lane no. 0. This way, only after

a horizontal routing distance of 64 network chips, two chips

will write to the logically same lane (which is in fact way

longer than the maximum distance within one wafer). If a

chip has 64 up to 128 neurons, lanes 0 and 32 are used,

which allows for a horizontal collision-free routing distance

2
A technical solution for the same lane being filled by multiple network

chips has been provisioned, but it will not be implemented in the first

prototype system.

Fig. 2. At chip boundaries, the bus order is shifted by one to facilitate

routing. The 256 vertical bus lanes are treated in two groups of 128 in order

to avoid having wires twisting across the chip border.

Fig. 3. Schematic of the network chip. 1) Synapse array; 2) Synapse

drivers; 3) Neuron bodies; 4) Neuron builder switches; 5) Synapse driver

mirror switches.

of still 32 chips (after 32 steps, lane no. 0 will run on the

32th lane and vice versa). In general, with more neurons per

network chip, the order by which the bus lanes are filled is 0,

32, 16, 48, 8, 24, 40, 56, keeping the routing distance always

at the maximum possible value. More than eight lanes are

never filled since the maximum number of neurons a chip

can implement is 512(= 8 · 64).

B. Network chips

The 131,072 synapses of a network chip are laid out in

two regular arrays of 256×256 synapses each, referred to as

the upper and the lower half, shown in Fig. 3. 512 neuron

body circuits reside in the area between the two halves,

beneath the horizontal bus lanes. All 256 synapses of an array

column belong to the same neuron body. This constitutes the

minimum configuration of 256 synapses per neuron. Using

the configurable neuron builder switches (Fig. 3, item 4), the

membrane potentials of adjacent neurons can be shortcut,

effectively forming neurons with a multiple of 256 inputs.

The maximum reasonable number of synapses per neuron is
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16,384 since this is the maximum number of different input

signals possibly being fed into the network chip.

The synapses receive their inputs from circuits located to

the left and to the right of the synapse matrix, called synapse
drivers (Fig. 3, items 2). A synapse driver is connected to

a vertical bus lane via a select switch matrix and relays

the signal of this lane to two adjacent rows of synapses.
3

The synapses are equipped with individually programmable

address decoders which make them selectively attentive to

one of the 64 presynaptic neurons.

Since a synapse driver operates two matrix rows, each

neuron can chose two of the 64 addresses of a bus lane

(assuming no combined neuron bodies). If a neuron is to re-

ceive more than two addresses from a given bus lane, one can

either combine N array columns to one neuron, which would

allow to choose 2N neuron signals. This method can be a

waste of hardware synapses. As a more efficient alternative,

one could connect the same lane to multiple synapse drivers.

However, a direct feeding of a bus lane to many synapse

drivers via the select switch is electrically difficult because

of signal attenuation. As a technical substitution, a synapse

driver can mirror the signal of its upper or lower neighbor

instead of relaying the direct signal from the select switch.

This is indicated by the switch positions u and d in Fig. 3,

item 5. With a chain of M mirrored synapse drivers, each

synapse column can select 2M addresses from the respective

bus signal.

III. ROUTING ALGORITHMS

In this paper we assume that a particular hardware-

independent neural network description (the “model”) is

given in terms of a list of neurons and a list of individual

connections between them. (However, this is not the only

possible starting point for setting up hardware simulations;

see Discussion.) The mapping of a model to the hardware

comprises two steps: placing and routing. The former is

concerned with assigning neurons to network chips and

deciding how many hardware synapses are reserved for each

neuron. The latter, which is the focus of this paper, addresses

the realization of the synaptic connections. Surely, a clever

placing strategy can facilitate routing. In the experiments re-

ported below, however, placing is done trivially by assigning

groups of neurons to network chips one by one in the order

they appear in the model description. More elaborate placing

approaches and a higher-level view of the entire mapping

process are developed by project partners [4].

Routing a network via the Layer-1 bus system comprises

the configuration of the repeaters, the cross bars, the select

switches, the synapse driver mirror switches, and the synapse

address decoders. The task is performed in two stages from

coarse (A) to fine (B):

A. Inter-Chip Routing

The first, coarse, routing stage encompasses the chip-to-

chip routing via the bus repeaters and the cross bars. In this

3
Technically, the synapse driver amplifies and decodes the serial packets

and provides a combination of parallel address and strobe signals. See [2].

Fig. 4. Routing strategy for connectivity on chip-to-chip level. Dark: source

chip; Light: target chips.

stage it is ensured that, for each network chip, every signal

required by at least one of its neurons is available on one

of the vertical bus bundles left or right adjacent to it. The

general routing strategy adopted is to use the horizontal buses

as “backbones” from which the target chips are accessed via

the vertical buses (see Fig. 4). Note that, since network chips

can access bus lanes running on either side, only one lane

per two vertical bus bundles needs to carry the same signal.

This routing strategy is both simple to implement and

effective: Each chip-to-chip connection is optimal in terms of

crossed chip borders, and a maximum of one crossbar switch

must be passed. Moreover, in case of the targets constituting

a convex, simply connected region (as in the example in the

figure), the available bus lanes are used very efficiently. Also,

the choice for having more vertical than horizontal lanes

becomes apparent. Each signal occupies only one horizontal

lane but many vertical ones. In the examples shown later,

the condition of convex connection areas is always met

since the networks are either fully connected (every chip is

connected to every other), or a local connection scheme can

be established by arranging the chips appropriately. However,

for other topologies, different routing strategies might be

more suited.

The cross bars by which the horizontal and vertical buses

are connected are sparse switch matrices of the type shown

in Fig. 5. Making all 64×256 possible junctions switchable

would consume a lot of of chip area, and also, from an

electrical point of view, each additional switch (even if it

is not closed) adds extra impedance to the wires which

complicates signal transmission. A tradeoff between hard-

ware design effort and routing flexibility must be made.

Reasonable values of the parameters S and T are determined

in the routing simulations.

For the first routing stage, a simple greedy implementation

proves to produce good results and still leaves resources

available for detouring defect network chips. For each source

chip, the convex hull spanned by the target chips is supplied

with its signal according to the scheme in Fig. 5. In each

step, used bus segments are marked as used. If, at any point,

a target cannot be reached because of a lack of unused

bus segments or available cross bar switches, the affected

synapses are discarded as not implementable.

B. Intra-Chip Routing

The second routing stage which is a little more complex is

concerned with routing the signals from the Layer-1 bus to

972 2008 International Joint Conference on Neural Networks (IJCNN 2008)



Fig. 5. Sparse switch matrix connecting two bundles of wires. The layout is

defined by the parameters S and T . Only every Sth
junction is switchable.

The cross bars and the select switches (Fig. 1, items 5 and 6) are of this

type. T = 1 is chosen for the select switches. At first glance T > 1 seems

to restrict connectivity, since some vertical wires cannot make a connection

at all, but in fact T = 4 seem to be optimal for the crossbars (section

IV-A). The S for both switch matrices are left as parameters fixed in the

simulations (section IV).

the synapses via the the select switches, the synapse driver

mirrors, and address decoders in the synapses.

1) Preconditions: The 512 vertical bus lanes which a

network chip can access run in two bundles of 256 to the

right and to the left. Thus, half of the synapse drivers can

access lanes 0...255 only, the other half lanes 256...511.
4

For

the sake of simplicity, it is assumed in the routing simulations

reported below that the bus lanes a network chip needs to

access are distributed equally across the two bundles, such

that 50% of the input signals are on the left and 50% on the

right. This distribution can be quite well approximated by the

first routing stage by using a random scheme in occupying

the bus lanes. The 50-50 ratio is ideal in terms of utilization

of the synapse drivers; in contrast, in the worst case which

is a 100-0 ratio, effectively only the synapse drivers of one

side can be used.

It is further assumed that the number of synapses per

neuron is constant within a network chip, and that this

number can be written as 256 · 2K
, with the combine factor

K = 0, 1, ... . The combination scheme is as follows: For

K = 0, no neuron bodies are combined. For K = 1, each two

opposite neuron bodies from the upper and lower synapse

array are combined. For K > 1, horizontally adjacent neuron

bodies are combined in addition to the opposite. Combining

opposite neurons first maximizes the number of synapse

drivers innervating a neuron. This increases the system’s

routing flexibility.

Having all neurons in a network chip of equal size is not a

general restriction of the routing algorithms but it makes their

implementation simpler. Moreover, this condition is easily

met when placing a network on the hardware resources by

choosing K appropriate for the largest neuron of the chip.

For the smaller neurons, the weights of superfluous hard-

ware synapses are simply programmed to zero. Of course,

ease of implementation must be paid for by a sub-optimal

hardware utilization. In principle, the routing algorithms can

be expanded for irregular neuron builder configurations.

2) Layer-1 to Synapse Drivers: The Layer-1 buses are

connected to the synapse drivers via the select switches. The

4
Lanes 0-127 run on the left-neighboring chip, the lanes 384-511 on the

right-neighboring chip. However, since the select switch matrices extend

across the borders, this detail is transparent for the routing process

synapse drivers play the role of a limited resource here, so

one can picture the bus lanes to “compete” for connections

to the synapse drivers. Since the synaptic address decoders

are programmable, all synapse drivers are largely equivalent.

Therefore, it is initially most important to specify how many
synapse drivers each Layer-1 lane should connect to, but not

yet which of them. So, for each lane i, the following algo-

rithm will determine the desired number of synapse drivers

Ad(i).
5

The goal is to minimize the synapse loss which

measures the proportion of model synapses not realized on

the hardware. The procedure is done separately for each of

the two vertical lane bundles 0...255 and 256...511.

1. Count how many synapses in the chip require a connec-

tion from each of the 256 lanes (this can be done without

having yet assigned the synapses to array positions). The

result is a histogram S(i) with i = 0...255.

2. Assign the 128 (resp 64, if K = 0) synapse drivers

to the lanes, such that the number of synapse drivers

for each lane is proportional to the respective histogram

entry, thus Ad(i) := cS(i) for all i with a constant c. As

a special rule, each lane whose histogram entry is larger

than 0 receives at least one synapse driver: Ad(i) ≥! 1
for S(i) > 0. As another special rule, a lane gets at

most as many synapse drivers as are needed to feed all

64 signals of that lane to the neurons.

3. In step 2, due to rounding errors and the first special

rule, more synapse drivers can be assigned than actually

exist. Therefore, the Ad(i) are decremented until the

total number amounts to
∑

i
Ad(i) = 128 (resp. = 64

for K = 1). Specifically, the Ad(i) with the greatest

ratio Ad(i)/S(i) is iteratively chosen, and decreased by

1.

4. In step 2, due to rounding errors and the second special

rule, less synapse drivers can be assigned than actually

exist. Therefore, the Ad(i) are increased until either∑
i
Ad(i) = 128 (64) or each bus lane has enough

synapse drivers to feed all its 64 signals to the neurons.

Due to the limited number of synapse drivers and for

reasons explained in paragraph 3) below, some connections

might be not routable. The corresponding model synapses are

lost. In this case, the described algorithm tends to discard

connections from lanes of which only a small number of

signals are needed, for this results in the minimum absolute

synapse loss. This corresponds to setting sparse regions of

the network’s connection matrix to zero. Sometimes, this

might be not desired, for example when two sub-populations

of neurons with a dense connectivity within themselves

are interconnected by only a few but functionally essential

synapses. Therefore the routing algorithm can optionally

ensure that Ad(i) ≥ 1 for each i with S(i) > 0. For this,

in step 3, if the bus lane with the greatest ratio Ad(i)/S(i)
already has only one synapse driver, instead the lane with the

largest absolute value of Ad(i) is chosen for decrement. This

approach preserves sparse regions of the connection matrix

5
Due to hardware restrictions, possibly not all of the desired connection

might be realized later.
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Fig. 6. The two fixed bits of the address decoders can be pre-set in

an efficient checkerboard pattern. A=00, B=01, C=10, D=11. Both, the

mirroring of two synapse drivers (1), as well as the combination of two

neuron bodies (2) covers the entire range of possible addresses. Accordingly

for the synapses driven from the right (small, dotted).

at expenses of losing synapses in densely populated areas

and usually a larger total number of lost synapses. Note that

this routing option requires that the total number of lanes

carrying input signals for the network chip does not exceed

the number of available synapse drivers. This requirement is

generally met for networks of less than 16,384 neurons and

for larger networks of certain topology (c.f., section IV-C).

Finally, it is examined whether there is an actual configura-

tion of the select switch and the mirror switches which realize

the desired Ad(i). The select switch is a sparse switch matrix

according to Fig. 5 with T = 1 and S left as a parameter to

be determined in the routing simulations. Moreover, as said

before, only one synapse driver can be connected directly

to a given bus lane. All other synapse drivers which are to

relay the same signal must be adjacent to the first one. The

faced problem is equivalent to disk defragmentation where

the synapse drivers are a one-dimensional array of storage

bins, the lane indices i are the file labels, and the Ad(i)
are the file sizes. Once more, a greedy approach produces

satisfactory results. The algorithm takes the Ad(i) as input

and outputs the realized number of synapse drivers Ar(i)
with Ar(i) ≤ Ad(i) for each i:

Each of the 128 synapse drivers of one side is marked

as either ”free” or ”occupied”. At the beginning, all drivers

are free. The lanes i = 0...255 are successively processed

ordered by their Ad(i), starting with the highest value. In

the disc fragmentation view this corresponds to placing the

largest files first. Due to the sparse select switch matrix,

each lane can be switched only to a small subset of synapse

drivers. For each possible switch point it is examined whether

there is a connected block of free synapse drivers of length

Ad(i). If yes, the search stops and Ar(i) is set equal to Ad(i).
If there is more than one way to place the new block of

occupied syndrivers, it is placed to touch an already occupied

driver, if possible. This is to leave no fragmented small free

areas which can possibly not be used later any more. If

none of the possible positions exhibits a sufficient number of

free synapse drivers, the search is repeated with Ad(i) − 1,

Ad(i)− 2, ...,0, until enough free drivers are found. Ar(i) is

then set to the actual number of connected synapse drivers.

3) Programming the address decoders: After the bus

signals have been routed into the synapse array via the select

switches and the synapse drivers, the task left to do is to

program the synapses’ address decoders. For minimizing the

chip area consumed per synapse it was chosen to make only

4 of the 6 address bits freely programmable and to have

the other two pre-determined by a global scheme (details

in [2]). So, a given synapse can choose only from a range

of 16 of the 64 addresses. The architecture allows to assign

the two pre-set bits according to the checkerboard pattern

shown in Fig. 6, which has the nice property that any

combination of four synapses covers the entire address range.

The 22 = 4 possible values of two bits are labeled A–D. The

checkerboard scheme makes two vertically or horizontally

neighboring synapses cover a different 16-range of addresses.

So either by feeding a bus lane into two synapse drivers or

by combining two neighboring neuron bodies, a neuron can

have access to all 64 signals.

In the routing simulations presented below it is first deter-

mined for each lane i how many synapses s(i) of the same

neuron it is connected to. This value is s(i) = m ∗ Ar(i),
where m = 2, 4, 6, ..., depending on how many matrix

columns are combined to one neuron body. So, a neuron

can select a total of s(i) signals from bus lane i, however

not arbitrarily, because each synapse can address only a

range of 16 of the 64 signals. In the routing simulation it

is assumed that different synapses of a neuron can reach

different 16-ranges. More specifically: s(i) is split into a

part divisible by 4 and into the division remainder. The

synapses in the first part are distributed evenly on the four

possible 16-ranges, for the remainder, 16-ranges are assigned

by random. For the remainder, this approach does not exactly

reflect the address pattern given in Fig. 6. However, the

routing simulation is only to estimate the expected routing

quality (in terms of synapse loss), and since the connections

in the biological network models are usually set up with

randomness, statistically the correct results are produced.

IV. EXPERIMENTAL RESULTS

It was evaluated for several network types how well they

can be mapped to the hardware system. The simulations were

done, firstly, in order to prove the practicability of the system,

and secondly, in order to figure out sensible values for open

hardware parameters, in particular the layout of the sparse

switch matrices.

As a rough measure of the routing quality we take the

fraction of connections in the original network model which

are actually realized on the hardware system:

routing quality =
# realized synapses

# model synapses
. (1)

Accordingly, the complement of this value

(1− routing quality) is the relative synapse loss. Like above,

“model network” refers to a specific network description

(e.g., a list of neurons and their interconnections) which is

to be mapped onto the hardware. The “realized network”,

or, “routed network”, is the network actually represented in

the configured hardware. Generally, the number of synapses

(connections) in the realized network is less than or equal
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Fig. 7. Homogeneously connected networks with 5,000, 10,000, and 16,384 neurons and connection probabilities (c.prob.) of 1%, 5%, and 10%, routed

with 2048, 1024, 512, and 256 hardware synapses per neuron. Upper curves: Routing Quality (percentage of model synapses realized); Lower curves:

Hardware Efficiency (percentage of hardware synapses utilized). By reserving more or less hardware synapses per neuron it is possible to trade off routing

fidelity for efficient hardware usage. When routing other instances of the same random models, the curves fluctuate by less than 0.002 on the shown y-scale.

to the respective number of the model network due to the

hardware restrictions.

Another objective aside from a high routing quality is

to use hardware resources efficiently. Usually, parts of the

hardware components (synapses, bus lanes, neuron bodies)

remain un-used due to architectural constraints. For example,

a network with 2,560 neurons and a connection probability

of 10% cannot generally routed with a configuration of only

2,560/10=256 hardware synapses per neuron. The fraction of

all hardware synapses which actually implement a connection

is regarded as a good measure since the synapse circuits

contribute most notably to resource consumption.

hardware efficiency =
# realized synapses

# hardware synapses
.

Usually only a subset of all network chips on the wafer are

used for a given setup. Only the synapses of those chips

do contribute to the computation of the hardware efficiency.

The other network chips can be switched off and thus do not

consume any power.

A. Homogeneous Random Networks

The basic characteristics of the system are explored with

a simple class of neural networks where each ordered pair

of neurons is connected with a given probability. Assuming

a connection probability of 1%–15% in typical biologically

realistic setups [6] and having 64–512 neurons per network

chip, it is very likely that for two arbitrarily chosen network

chips A and B, at least one neuron from A receives input

from at least one neuron from B. For large networks, as a

result of the statistical law of large numbers, it is further

not possible to find a re-mapping of neurons to chips which

cancels this fact. Therefore an all-to-all connection between

network chips must be established for such networks. For

the same reason, the maximum number of neurons in a

homogeneous network is bound to 16,384 in the current

architecture: a network chip needs to receive every signal

in the network, and the maximum number of signals it can

be fed with is limited by the 256 synapse drivers each

carrying 64 signals (256x64=16,384). For four neuron builder

configurations (256, 512, 1024, and 2048 hardware synapses

per neuron, corresponding to 512, 256, 128, and 64 neurons

per chip), the first routing stage succeeds up to a crossbar

sparseness of S = 32 (see Fig. 5), which is feasible from

an electronic design view. A crossbar offset of T = 4,

although preventing some of the vertical bus lanes from

being reached at all, allows for this maximum sparseness.

The lack of the number of connectible vertical lanes seems

to be outperformed by the gain of connections per remaining

vertical lane. Also, due to the shifting of bus lanes at chip

borders (Fig. 2) missed vertical lanes can be used by signals

originating at other grid positions on the wafer.

Except for the configuration with 512 neurons per chip,

less than 50% of vertical and horizontal bus lanes and less

than 10% of all cross bar switches are used, leaving enough

resources to detour defect chips on the wafer. With 512

neurons per chip, 100% of the vertical and 50% of the

horizontal lanes are used; however, this configuration would

probably not be used frequently because it features only 256

input synapses per neuron and only half of a chip’s synapse

drivers per neuron.

The second routing stage is simulated for a single network

chip only since, due to the homogeneous network structure,

the task is statistically the same for the other ones. Fig. 7

shows the results for three network sizes and three connection

densities. The parameter varied on the x-asis is the number

of hardware synapses reserved for each neuron. Assigning

more hardware synapses to each neuron obviously increases

the number of mapped model synapses by making routing

easier, but on the other hand, more hardware synapses remain

un-used, decreasing the hardware efficiency. With the two

larger networks, the hardware efficiency saturates at some

point even if less hardware synapses are assigned per neuron.

This is mainly because a certain fraction of synapses has

access to the “wrong” 16-ranges of addresses (prescribed by

the two fixed address bits) and can thus not be used. This

problem vanishes for the small networks, because signals

can be fed in by multiple synapse drivers, covering enough

synapses with the “correct” 16-ranges. Another reason for

the efficiency saturation and also for the bad routing quality

with 256 hardware synapses per neuron is the fact that with
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Fig. 8. Decrease of routing quality with sparser select switch for the setups

from Fig. 7.

Fig. 9. Routing a model of the Cortical Column with 10,000 neurons as

used by project partners [6]. Connection matrix of model (left) and after

routing (right). For the specific placing (numbers on the right), 93.6% of all

model connections are realized at a hardware efficiency of 38.0%. A, B, C:

Visible symptoms of routing difficulties (details in paper text).

this configuration, each neuron spans only one half of the

network block and thus has access only to half of the synapse

drivers.

Sparseness of the Select Switch Matrix: The sparseness

parameter S of the select switch matrix was not fixed above.

Routing experiments are conducted to determine a sensible

value. All experiments from Fig. 7 are repeated with S ∈
{1, 2, 4, 6, 8, 10, 12}. For each network it is determined how

much, in absolute values, the routing quality differs from the

run with S = 1 for higher values of S. Fig. 8 shows that the

decrease of routing quality is in fact moderate. The curves

are not generally monotonically decreasing since values of S
not dividable by the total height or width of the switch matrix

result in an uneven distribution of switches over the bus

lanes. The curves staying around 0 over the entire range of

S belong to the networks with 16,384 neurons. With 16,384

signals to be fed into each network chip, the synapse driver

multiplicities Ad(i) are equal to 1 for all i. These simple

multiplicities can be realized well almost independent of S.

For the final hardware specification, S = 6 was chosen

as a good compromise. It is reasonable from a hardware

designer’s point of view while decreasing the routing quality

by less than 3 percent points in most cases. The simulations

from Fig. 7 and 9 were done with S = 6.

Model After Routing

Fig. 10. Locally connected network with Gaussian connection profile routed

with 128 neurons/chip. Each pixel corresponds to a neuron. Checkerboard

cells mark groups of 16x8 neurons hosted by the same network chip.

Neurons sending signals to at least one neuron on the center network chip

are marked black. The routing quality is 0.86 at a hardware efficiency of

0.39. Routing with 64 neurons/chip yields 0.99 (routing quality) and 0.22

(hardware efficiency).

B. Model of the Cortical Column

Routing was simulated for a model of the cortical column

[5] as recently used in biologically relevant work by project

partners [6]. In the version used here, the model consists of

10,000 neurons (8,014 excitatory, 1,986 inhibitory). Fig. 9

shows the connection matrix of the model (left) and of the

routed network (right). More blackness indicates a higher

connection density. The gray values are scaled up for better

visual contrast. The actual densities are roughly 12 times

lower, corresponding to an average connection probability

of approx. 7%. The network is placed on 156 network

chips, where neurons with more inputs have been reserved

more hardware synapses (see labels right of routed matrix).

The overall routing quality for the chosen placement is

93.6% with a hardware efficiency of 38.0%. By reserving

more hardware synapses per neuron, the balance can be

shifted towards higher routing quality at the expense of lower

hardware efficiency.

Three symptoms of routing difficulties can be illustrated

in this example. The first one (labels A in figure) is an

overall decrease in connection density. The indicated section

of the routed connection matrix is slightly brighter than in

the model. Secondly (B, enlarged view), small patches of

completely erased synapses can be seen. This is because the

routing algorithm fails to reach some synapse drivers due

to the sparse switching scheme in the select switch matrix.

Finally (C), we see some small patches being darker than

the surrounding. Here, most patches are assigned only one

synapse driver which is in fact not sufficient to route all the

model connections (this is also the main reason for symptom

A). A few extra synapse drivers, however, are still available.

They are assigned to subsets of the matrix which thus appear

as the darker spots.

C. Locally Connected Networks

As argued before, network models in which each chip

needs input from every other chip are practically limited to

16,384 neurons. One class of networks where this restriction

does not apply are locally connected networks. Here, the neu-

rons are arranged in a 2-dimensional sheet and the connection
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probability between two neurons is expressed in terms of

their distance (many models of the cortex are like this, e.g.,

[7]). If the probability goes to zero fast enough for large

distances (e.g., a Gaussian connection profile), the average

number of connections a neuron receives is independent of

the total network size. If further the area around a neuron it

receives connections from does not include more than 16,384

neurons, such networks can be implemented on the hardware,

with the total number of neurons only restricted by the size

of a wafer, respectively the number of wafers which can be

interlinked with sufficient bandwidth.

In the following simulations, an infinite grid of both model

neurons and network chips is assumed. Rectangular regions

of neurons are mapped to one chip. e.g., in a configuration

with 128 neurons per chip, a patch of 16x8 neurons in the

model is mapped to one chip. Fig. 10 (left) shows a section of

the neural grid, the partition into network chips indicated by

a checkerboard pattern. The first routing stage is conducted

for a square grid twice as large as the section shown in the

figure. This routing stage ensures that each network chip

can receive signals from all chips within a local circular

region centered around itself consisting of 85 chips (=10,990

neurons). For the chip shown in the center of the figure this

circular region is marked with a brighter background. Each

neuron is randomly assigned 500 input connections from a

Gaussian distribution of 17 neurons width. The chosen inputs

for all 128 neurons of the center chip are marked black. On

average, two connections per neuron lie outside the bright

region and must be discarded or realized by Layer-2 com-

munication. In the right (routed) picture, some connections

from the dense region of the model are missing. The second

routing stage has been done with preserving regions of sparse

connectivity (see section III-B.2), otherwise the algorithm

would have favored the dense region in expense of sacrificing

the few long-distance connections. The routing quality in the

shown example is 0.86 and the hardware efficiency 0.39.

When the routing is repeated with a configuration of 64

neurons/chip the values change to 0.99 (routing quality) and

0.22 (hardware efficiency).

V. DISCUSSION

The practicability of the hardware architecture [2] is

plausibly demonstrated by providing routing algorithms and

evaluating them for realistic network models. Moreover,

sparse layouts of the select switch matrices and cross bars

are determined which are feasible from both the engineering

and usability point of view.

The high speed, small form factor, and low power con-

sumption compared to numerical simulations with digital

super-computers must be paid off by certain restrictions

in flexibility. When mapping given neural models to the

hardware, these restrictions translate to losing some of the

inter-neuron connections, typically only a few percent in the

covered examples. It is not entirely obvious what impact such

small “brain-damages” will have on neuro-computational

results, but the authors claim that certainly some relevant

experiments will be possible. Moreover, to some extent,

the routing algorithms allow to trade off efficient hardware

usage for a better mapping fidelity. It should be noted here

that all examined networks are instances generated from

probabilistic models. Instead of chosing a specific instance

and mapping it synapse-by-synapse to the hardware, one

could also include the hardware specification in the genera-

tion process and produce only model instances which are

100% routable. Whether or not such an approach affects

the statistical outcomes of the experiments remains to be

evaluated. In order for the hardware to get accepted by

experimentors in the first place the former approach has been

chosen as a start.

The hardware efficiency is around 40% in the reported

experiments. Of course, networks with 100% hardware uti-

lization can be set up, but, again, only for model instances

which are designed especially for the hardware system. Since

inactive synapses do not consume any power, a low hardware

efficiency does not constitue a major issue except for more

network chips may be necessary to map a given network.

Critical factors limiting the routing capabilities have been

identified in the experiments: It’s not the number of available

bus lanes but rather the limited number of signals which

can be fed into one network chip and the design choice of

only four programmable bits in the synapse addresses. These

findings can be incorporated in the design of further hardware

versions, e.g., by providing more synapse drivers per chip,

and by making the full address space programmable in the

synapses. However, the general idea, to route continuous-

time serial address signals over a multi-lane bus system, thus

combining temporal and spacial multiplexing, proves being

correct.

Due to typical manufacturing characteristics, some dies or

parts of them will be defect. When dealing with separate

dies, affected chips are normally sorted out and discarded,

only lowering the production yield. In a wafer-scale system

the defective components remain on the wafer and have

to be dealt with. It has been argued in this paper that

presumably enough resources are available to detour signals

around defect cells. Actual concepts will be developed and

practicability remains to be proven in further work.
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