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Large Developing Axonal Arbors Using a Distributed and

Locally-Reprogrammable Address-Event Receiver

Simeon A. Bamford, Alan F. Murray, David J. Willshaw

Abstract—We have designed a distributed and locally re-
programmable address event receiver. Incoming address-events
are monitored simultaneously by all synapses, allowing for
arbitrarily large axonal fan-out without reducing channel ca-
pacity. Synapses can change input address, allowing neurons
to implement a biologically realistic learning rule locally, with
both synapse formation and elimination.

I. INTRODUCTION

Neuromorphic engineers create integrated electronic cir-

cuits which mimic neural computation in biological ner-

vous systems, both to inform computational neuroscience

and in pursuit of superior engineering solutions for classes

of problems where biology currently outperforms artificial

devices [1]. There is a need to form interconnects between

many integrated neuron circuits to create neural networks. In

many applications such as topographic map development [2],

reconfigurability in the connections is essential to underpin

map formation and maintenance. In a topographic map, one

(typically 2D and sensor-driven) layer of neurons maps its

connections to another layer such that neighbouring relation-

ships between neurons in one layer are preserved in the other.

In order for such a mapping to develop, neurons gradually

change their patterns of connections according to both innate

preferences and feedback induced by network input [3].

Time-division multiplexing facilitates massively-parallel

connection between spiking neuron circuits across multiple

chips. Specifically, spikes are treated as address-events; the

unique address of a neuron within a neural array is transmit-

ted on an address bus. This approach was first used in the

theses of Sivilotti and Mahowald [4] and [5] and has since

been extended and improved. Boahen [6] gives a good sum-

mary of this still-evolving technique. Within this Address-

Event Representation (AER) protocol, the number of wires

required to connect N neurons scales as log(N), such that
the number of pins and wires necessary to interconnect

chips is achievable. The development of word-serial AER

reduces the number of wires required still further [7]. AER

exploits the large difference in frequency between the spiking

behaviour of biological neurons (on the order of 10-1000Hz)

and the capability of digital electronic communication (many

MHz). Approximately 100,000 neurons can share a single

bus [6] if biological spike rates are desired.

AER was originally conceived as a point-to-point protocol.

If each neuron in one neural layer has a unique connection

to only one neuron in a corresponding neural layer in a topo-

graphic map arrangement, the outgoing bus can be decoded

directly by a row-and-column decoder on a receiving chip,

and spikes are delivered correctly to the same location on

a corresponding chip (as in [4] [5]). Simplistically this type

of one-to-one connectivity can be observed in some places

in the nervous system, for example the connections from

cone receptors to bipolar cells, at least in the fovea ([8] ch.

26). More commonly however neurons make connections to

many other neurons (i.e. they have a large “fan-out”) and

receive large numbers of incoming connections (“fan-in”).

As two examples, Xiong et al [9] found an average fan out

of 167 for retinal ganglion cells in the tectum of the hamster,

whilst Palkovits et al [10] found an average fan-in of 85,000

onto the Purkinje cells of the cat. In order to implement

arbitrary many-to-many network connectivity, address-events

are commonly received not directly by a neural array chip

but rather by a microcontroller and are then compared to a

look-up table in memory in order to find out which outgoing

address-events should be sent (e.g. [11]). These are then sent

sequentially to one or more receiving neural arrays. This

approach reduces the capacity of the bus in the presence

of large fan-out. If an average fan-out of 1000 is desired for

example, a bus can only support about 100 neurons.

The use of a microcontroller and a look-up table in

memory has also been used to implement synaptic rewiring,

where the connectivity between neurons changes with time

according to a biologically inspired learning rule [12]. In

the scheme of Taba and Boahen [13], information from

the receiving synapse is transmitted off-chip back to the

microcontroller where it is used to modify the look-up table.

This is part of a trend of using the microcontroller to

implement more of the neural network model. This trend has

been extended by Vogelstein et al [14] where other synaptic

variables (number of release sites, probability of release and

quantal post-synaptic response — the product of these is

essentially the synaptic weight) are also held in the look-

up table, allowing each neuron to have a single “general

purpose” synapse circuit which acts as a number of virtual

synapses.

II. PROPOSED SYSTEM

In order to overcome the bottleneck on channel-capacity

as fan-out increases, we have taken an alternative approach in

which more information is stored in synapse circuits within

the neural array. Details of incoming connectivity are stored,

along with synaptic variables such as an analogue voltage

representing synaptic weight. Address events from a sending

chip are directly received by a receiving chip and broadcast

across the receiving chip’s neural array. Simultaneously, all

synapses compare that address to a locally-stored address

to establish whether the address-event was intended for it.



Many synapses can store the same desired address and thus

arbitrarily large axonal arbors can be implemented without

reducing bus capacity. Synapses do not acknowledge receipt

of an event, rather the chip-wide broadcast is timed to last

long enough for all synapses to receive it. We compare our

approach to the “look-up table” approach in which source

neuron addresses are mapped to target synapse addresses

using a look-up table, an example of which is Mitra et al

[15]. The look up table approach allows the use of receiving

circuitry as described by Boahen [6], which is shown in fig

1a. The receiving circuitry which implements our system is

shown in fig 1b. In our system, to ensure that communication

succeeds, each communication cycle is deliberately slower

than the average cycle speed which could be achieved if the

sender were allowed to proceed with the next event as soon

as a synapse acknowledges, as in Fig 1a. However as average

fan-out increases our solution outperforms any system which

implements fan-out serially.

III. SCALABILITY OF PROPOSED SYSTEM

Each synapse, in order to implement its address bus

monitor, must store as many bits in memory elements as

the width of the incoming address bus. The total area of the

monitoring circuitry across the chip (or across the system, for

a multi-chip system) then scales as SmaxNlog2(N), where
N is the number of neurons in the system and Smax is

the maximum fan-in, i.e. number of dendritic (or incoming)

synapses allowed per neuron. The SmaxN term represents

the number of synapse circuits in the system and the log2(N)
term represents the number of bits necessary to encode a

neuron’s address within each synapse. At first glance this

scales poorly compared to the look-up table approach, which

employs row and column decoders allowing the area of

the receiving circuitry to scale as
√

SmaxNlog2(SmaxN),
where the

√

SmaxN term represents the number of row

or column decoder elements necessary to decode a target

synaptic address and the log2(SmaxN) term represents the
number of bits necessary to encode a synaptic address (each

decoder element must store one dimension (i.e. half the

bits) of the synaptic addresses it encodes for). Importantly

however the look-up table approach requires that an external

memory chip is used, in which area is required which

scales as SavNlog2(SmaxN), where Sav is average fan-

out. The SavN term is the number of axonal (or outgoing)

synapses in the system and the log2(SmaxN) term is the
number of bits necessary to encode a dendritic (or incoming)

synaptic address. The costs of microcontrollers and RAM

are not normally considered, whether in terms of chip area

or power consumption. This is acceptable for test systems,

however if total power budget and space are considered

(for a hypothetical implantable system, for example) it can

be seen that in our approach the chip space necessary to

implement memory is simply being distributed throughout

the neural array, rather than stored in a separate dedicated

chip. Whilst chip area is much more expensive on trial ASICs

than on mass-produced memory, this may not always be

the case if neuromorphic circuitry comes into mainstream
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diately driven high and also a pulse generator (PG1) is triggered,
the output of which stays high for a precisely-timed (adjustable)
period thereafter. AckOut stays high until ReqIn and PG1 both
drop. ReqIn also triggers the local latching of the incoming address
bus. Once latched the address is broadcast across the chip and all
synaptic address-monitors simultaneously compare this address to
their own stored address to decide whether it is correct. From the
rising of ReqIn there is a short delay (implemented by PG2) to
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chip (implemented by PG3) triggering those synapses with correct
addresses to accept the event. The pulse generated by PG1 is timed
to be long enough to accommodate the joint delays of PG2 and PG3
before allowing AckOut to drop and the cycle to repeat.

(c) Example timing diagram for our response unit.

Fig. 1.



demand. The scaling equations above are summarised in table

I. Vogelstein’s approach [14] is also included for comparison;

this is included because it is a special case of the look-up

table approach in which there is only one target synapse

address per target neuron.

TABLE I

SCALING OF CHIP SPACE

System On-chip receiver area
scales as

Off-chip memory
space scales as

Ours SmaxNlog2(N) none required

Look-up table
√

SmaxNlog2(SmaxN) SavNlog2(SmaxN)

Vogelstein [14]
√

Nlog2(N) SavNlog2(N)
N = number of neurons in system.
Smax = maximum fan-in, i.e. number of dendritic synapses allowed
per neuron.
Sav = average fan-out (= average fan-in for a completely recurrent
system).

IV. LOCAL SYNAPTIC REWIRING

As the details of incoming connectivity are stored locally

to the synapse, neurons can take advantage of other informa-

tion stored locally at the soma and in the synapses in order

to change incoming connectivity. Specifically, by also storing

a binary variable at each synapse indicating whether or not

the synapse exists, we use the synaptic weight (an analogue

voltage stored on a capacitor) to inform the decision to

disconnect. This follows Miller [16], who gives evidence that

the decision whether newly sprouted synapses are stabilised

or retracted is guided by changes in physiological strengths.

The synapse circuit therefore becomes a circuit representing a

potential synapse, part of the neuron’s total synaptic capacity

(a concept explored in [17]). We supplement this with a

chip-wide mechanism for implementing synaptic connection,

where the probability of a synapse forming with a given

pre-synaptic neuron is influenced by the distance between

that neuron and the post-synaptic neuron, allowing receptive

fields to form according to 2D probabilistic distributions,

as if the axons were guided according to some version of

the chemoaffinity hypothesis [18]. (The details of the neural

learning algorithm we use are being published separately).

V. PROPOSED CIRCUIT

A. Address-event receiver circuitry

Our chip-level address-event receiver is compatible with

standard address-event transmitters. An incoming request is

acknowledged immediately and triggers local latching of the

address bus and a timed delay followed by a timed pulse to

synapses. A minimum cycle time is imposed. In our circuit

this is about 20ns, which also allows for the effect of parasitic

capacitances extracted from layout; this could be improved

if the synapse design was optimised for speed. The circuitry

which implements this is shown in fig 1b and a timing

diagram is given in fig 1c.

B. Synaptic address monitor circuitry

The total area of the synapse scales as the number of

bits necessary to encode a neurons address in the system.

It is therefore necessary to make the storage of each bit

and its associated circuitry as compact as possible. We

have used a static memory element with a transmission-

gate implementation of an XNOR gate for comparison with

the incoming address bit. The result of the comparison

contributes to a NAND gate for the whole monitor, the

output of which (“nAeCorrect”) indicates whether or not

the incoming address is correct. Additional circuits allow

for overwriting and read-out (though read-out may not be

necessary in a final implementation). Ultimately, we will

use floating gates for power-independent stable storage of

synaptic connectivity. The synaptic address monitor circuitry

is shown in fig 2, omitting read-out circuitry in the interests

of clarity.

C. Synaptic rewiring circuitry

Synapses can be individually targeted for rewiring by an

additional chip-wide mechanism, employing row and column

decoders in the periphery. This allows both for the explicit

setting and read-out of synaptic variables from an off-chip

control mechanism for the purpose of testing the circuit,

and for ongoing probabilistic rewiring, where synapses are

randomly selected at a given rate as candidates for rewiring.

The randomly chosen synapse addresses come from off-chip

in our test implementation but could come from an on-chip

random-number generator in a mature implementation.

When a synapse is selected as a candidate for rewiring

its behaviour depends on its state of connectedness, stored

in a static memory element. If it is connected then it is

considered for disconnection. Its analogue weight value is

compared to a voltage randomly chosen according to a

probabilistic distribution. If the weight is below the random

value then the synapse is disconnected. The random value is

common for all the synapses on the chip but is only used

at one synapse at a time and changes between each usage,

avoiding the possibility of correlation between synapses. In

our implementation the voltage is produced off-chip, but

could be produced on chip by a random number generator

and a DAC in a mature implementation. It is also possible to

generate analogue noise for use in this way [19] which could

then be profiled to match the probability of adaptation.

If the synapse is disconnected and it is selected as a

candidate for rewiring then the possibility of it taking a

new pre-synaptic partner is considered. The pre-synaptic

partner considered is the last address to have arrived on the

incoming bus. This is latched separately by the chip and

also broadcast across the chip at the point that a rewiring

consideration takes place. This allows a chip-wide calculation

to take place providing a value, available at each neuron,

of the geometric proximity of that neuron to the incoming

address. The synapse under consideration then compares this

proximity value to a random value, similar to the random

value for disconnection but separate, created according to a
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Fig. 2. Address monitor circuitry. The monitor is composed of a chain of bits; one bit is shown here (the zeroth bit). A bit of the address (“DesiredBit”)
is stored in a memory element composed of Inv1 and M1-2. An XNOR is continuously performed between DesiredBit and the incoming address bit
(“Addr<0>”) by means of T2-T3 (the incoming bit’s complement “nAddr<0>” is also required). The result of the XNOR contributes to a NAND gate
implemented throughout the monitor array by transistors M3-4. The result is nAeCorrect, indicating whether the full incoming address matches the full
stored address. When OverSig goes high (and its complement nOverSig goes low), this is the signal for the monitor’s address to be overwritten with the
address on the “OverAddr” bus, a separate bus latching a recently received spike for consideration. OverSig chokes off transistors M1-2 using transistors
M5-6 (these are common for all the monitor bits) while T1 opens, allowing DesiredBit to take the value of OverAddr<0>. Readout circuitry is not shown
for clarity; this is an additional choked inverter with the same design as M1-2 & 5-6, opened onto a common outgoing bus during the “Compare” signal
(see fig 3).

probabilistic distribution for synapse formation. If the prox-

imity value is higher than the random value then the synapse

becomes connected and it adopts the incoming address in

consideration as its new stored address. The circuitry which

implements the connection and disconnection algorithm is

shown in fig 3.

Regarding the proximity value, the incoming address may

be from a neuron in the same neural layer, even a recurrent

spike from the neuron itself, or it may be from a neuron

in an afferent layer. We are considering a model in which

there is a strong topographic mapping between successive

neural layers, but this assumption is not essential to the

system we describe. The effect of the proximity on the

probability of rewiring can be eliminated altogether if it is

not required, by reducing the probabilistic distribution to a

binary choice between an extremely high value (where the

synapse will not connect no matter how high the proximity)

and an extremely low value (where the synapse will definitely

connect regardless of proximity). The circuitry for creating

the proximity value will be published separately.

Whilst it is possible to impose an arbitrary network topol-

ogy by external programming, it is also possible to allow a

probabilistic topology to form and, if desired, to continue to

develop within the system according to biologically realistic

principles, without any details of the topology being made

available off-chip. In other words this system allows a black-

box approach to network wiring at the level of individual

synapses, allowing a system designer to concentrate on

higher-level building blocks. Rewiring probabilities can be

made arbitrarily low, even achieving biologically-realistic

rates of synapse formation and elimination, i.e. hours, days

or months between events [20].

VI. SIMULATION RESULTS AND LAYOUT

A simulation demonstrating the ability of a neuron to

rewire one of its synapses is shown in fig 4.

A high level neural network simulation implemented in

C++/Matlab has shown the ability of a system with these

capabilities and parameters to be capable of performing

biologically realistic topographic map formation, even when

mismatch ranges taken from Monte Carlo simulations of

circuits are applied to the simulation (results not shown here).

The chip is being fabricated in AMS 0.35u 4-metal 2-

poly process. The area of the synaptic address monitor bit

is 11.1umx15.95um. We are creating a test system with

512 neurons (spread across multiple chips), therefore each

synapse has a 9-bit receiver. This takes up 56% of the total

synapse area, which is 11.1umx256.75um. The remaining

area is dedicated to: storing the additional synaptic variables;
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Fig. 3. Circuitry for synaptic rewiring. The synapse’s “Connected” state is stored in a memory element composed of Inv4 and M4-5. This state can be
overridden by a disconnection signal from Nand2 and Inv2, using M2-3, or by a connection signal from Nand3 using M1 and M6. “Compare” is driven high
by the targeted conjunction of the CompareX and CompareY signal from row and column decoders, to indicate that rewiring is under consideration. While
Compare is high, the Connected state is latched in a separate memory element “ConnectedRetainer” (Inv 5 and M8-9). This ensures that only connection
or disconnection can occur, avoiding oscillations during the Compare signal. On connection, the override signal “Oversig” and its complement are sent to
the address monitor, allowing the address under consideration to override the monitor’s stored address; nWeight is also set to its strongest value (M11).

Fig. 4. Trace showing the rewiring of a synapse. The first synapse of a neuron (“Syn1x1y”) is initially connected (“Connected”=true=vdd) to pre-synaptic
address 000000000 (only the least significant bit is shown: “MonitorBit0/DesiredBit”). The incoming address starts as 000000000, switches to 000000001
at 150ns, and then switches back and so on every 100ns thereafter (only the least significant bit is shown: “Addr<0>”). “AeCorrect” is the (inverted)
output of the NAND gate composed of all monitor bits and this initially indicates that the incoming address is correct, until 150ns at which point the
incoming address changes. The random value for connection is initially lower than the “Proximity” value (i.e. nProbConnect is higher) thus “CloseEnough”
is false (= 0), until it they switch to respectively high values at 200ns. The random value for disconnection and the corresponding thresholded value
“WeakEnough” happen to mirror the aforementioned values (they are not shown here). nProbDisconnect is compared to “nWeight”. The two rewiring
consideration (“Compare”) events at 50ns and 150ns therefore fail to disconnect the neuron because WeakEnough is low. Once WeakEnough goes high the
next Compare event at 250ns causes disconnection. Now, although the incoming address matches the stored address, AeCorrect is false, thus the synapse
will not accept a spike. At the following Compare event at 350ns, CloseEnough is true and the disconnected synapse is free to connect to the currently
latched incoming address, 000000001. Thus DesiredBit goes high and AeCorrect now indicates that the incoming address 000000001 is correct. nWeight
is also driven to its minimum (= strong synapse) — a feature of the learning rule we have implemented.



implementing the connection and disconnection circuitry;

creating an increase in the neuron’s level of synaptic current

when a spike arrives; and implementing a synaptic weight

change algorithm (spike-timing-dependent plasticity). Each

neuron has 64 potential synapses, and the synaptic array takes

up 97.5% of the area of the neuron, where the remaining

area is dedicated to the storage of the neuron’s variables, its

central (integrate and fire) functions and its sending circuitry

(the neuron circuit is novel, using a switched capacitor

approach; this will be described in a separate publication).

The layout of the synaptic address-monitor bit is shown in fig

5, excluding upper metal signal and power rails for clarity.

Fig. 5. Layout of synaptic address-monitor bit, in AMS 0.35u 4-metal
2-poly. Two intermeshing signal layers M2 and M3, and the power layer,
M4, have been removed for clarity, though their pin labels and contacts
downwards to M1 (larger black squares) are shown. Signal names broadly
follow those in fig 2.

VII. CONCLUSION

We have designed a distributed and locally repro-

grammable address event receiver, which allows for arbitrar-

ily large axonal fan-out without reducing channel capacity.

Our approach has been mooted before e.g. [11]:

“Ideally each node should recognise its relevant

source events, but our present multi-neuron chips

use a DSP chip and lookup table to implement the

fan-out from source address to the individual target

synaptic addresses.”

To our knowledge, however, no such system has been

implemented. There is a precedent for simultaneous receipt

of events by multiple neurons, in which the same spike was

delivered to each neuron within a defined area on a chip, im-

plementing a geometrical projective field [21], but this con-

nectivity pattern is fixed and therefore cannot contribute to

learning. Our approach also allows for locally implemented

probabilistic synaptic rewiring according to a biologically

realistic learning rule. Future work will be on demonstrating

the abilities of the fabricated chip. Information-theoretic

analyses considering constraints of space and power con-

sumption are also anticipated.
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