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Abstract—During CAD development and any kind of design design are encoded. This has the great advantagethid
optimisation over years a huge amount of geometries number and distribution of parameters is decoufrie the
accumulate in a design department. To organize anstructure  geometrical  description.  State-of-the-art free  form
these designs with respect to reusability, a hierahical set of yaformation (FFD), which was originally developed §oft
components on different scalings is extracted by éhdesigners. obiect animation. has been successfully appliedaim
This hierarchy allows to compose designs from sewr parts J ] ! : ) L u ully appli
and to adapt the composition to the current task. Bvertheless, €Volutionary design optimisation framework to aatdlade
this hierarchy is imposed by humans and relies onheir Of a jet turbine [4], [5]. However, despite of tharious
experiences. In the present paper a computational ethod is advantages of this technique, the search spacehef t
proposed for an unsupervised extraction of designomponents  g|gorithm is quite restricted to the area in which initially
from a large repository of geometries. Methods know from the chosen design is located. In particular topologitanges to
field of object and pattern recognition in images ee transferred the desian like hol tically i iblecali T
to the 3D design space to detect relevant feature§ geometries. e design li ? o.es are practically Impossi 'Ze'_ 0
The non-negative matrix factorization algorithm (NMF) is overcome this disadvantage a parts-based représenta
extended and tuned to the given task for an autonoous €embedded in the FFD environment has to be developed
detection of design components. The results of th&IMF  which allows exchanging components of the desigrindu
additionally provide an overview on the distribution of these the runtime of the optimisation. Consequently, guestion
components in the design repository. The extractecomponents arises of how to establish a repository of comptem
sum up in a parts-based representation which servess a base . Lo .
for manual or computational design development or Wh'Ch_ the optimisation aIgc_mthm can rely On'_ Nally, a
optimisation respectively. repository of components is not only helpful in amized

processes but also in manual design development.
[. INTRODUCTION Assuming a given large database consisting of 8ths,
HEN designing products for the automotive orWhich have been created during CAD developmentesigh

aerospace domain it is crucial to find geometrigh w OPtimisation, in a straightforward way an experemhaiser

optimal properties. Traditionally, manual desigtimsation ~ €ould try to scan through it, select representadiesigns and
is a resource and timeconsuming process performeairge decompose them into meamngful (-:omponents. manually.
teams of engineers and designers. While physistl tmn be Consequently, this process is very timeconsuming tue
partially replaced by computational simulation telich as results depend highly on the experience of the asevell as
Finite Element (FE) or Computational Fluid Dynamicdlis definition of a component. To decouple thisgess from
(CFD) solvers, design optimisation makes up a fignit (e USErs experience, in the present paper a frarkeis
part of the development process, hence substantiaf"oPOsed which originates from the field of object
increasing the development costs. Therefore, ieisirable €cognition and pattern detection in images. .Thehmb
to devise fully autonomous design optimisation esinents  Strives for a fully autonomous and unsupervisedcese
supporting design development and, ideally, evgivihe delivering a repository of components in a partseda
final shape of a product with no or minimal humad€Presentation [6].
interaction. In the field of object recognition various algorith have

A crucial aspect is the choice of the represemmatif the P&€n proposed that can extract the building blotkeage
object that is the target of optimisation. Recentlgr S€tS. These components are used to representdivelial
complex designs deformation methods have receivé@ages more effectively and their presence helpsréalict
considerable attention [1], [2], [3]. Instead ofgmmeterising 2" image’s content (object label). Depending onctirecrete
the design directly, e.g. by spline curves/surfaceSCenaro, the algorithms can be constrained to lmk

transformations that are applied to an initiallosén base Components with more global or more local charaeme
local methods, like the non-negative matrix facation

(NMF) [7], find components that directly reflect eth
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constituent parts of an object and are therefolledt@arts-
based methods. Because these methods usually doaket
assumptions on the dimension of the data and beazubke
obvious analogy between a rigid object and a 30gdes



these methods can be directly applied to the ifleation of number of clusters must be known in advance, thaldng it
the relevant parts of a 3D design in a pixel-likainsuitable for unsupervised problems. Furthermdhe
representation. result of the clustering algorithm strongly deperus the
The paper is organized as follows. In section breef choice of the correct metric for calculating thenigrity
literature review is given on state-of-the-art aitjons for between the shapes.
shape analysis and decomposition. Section Il deser  The Principal component analysiPCA, is a well
thoroughly the non-negative matrix factorizationdaits established and widely used statistical technique f
variations in the field of object recognition. Aafmework for discovering the main features, @rincipal components
the unsupervised extraction of components is ptedeim within complex data sets. The method is closelgtesl to
detail in section IV, followed by concluding remark singular value decomposition. PCA has been suadfssf
applied to various fields such as statistical asialjjossy and
[I. REVIEWING ALGORITHMS FOR3D SHAPEANALYSIS AND  lossless data compression, and face recognitiorera set
SHAPE DECOMPOSITION of N-dimensional points the PCA aims to re-expressitia

The process of extracting meaningful design paxsnf by finding a linear transformation of the coordmatystem
3D shapes is not trivial. This is partly due to taet that no Which results in an optimal representation of tagadset in
universal definition of a design part exists. A lams idea of €igenvectors. Noise and redundancy are filtered out
salientfeatureswhich make up a part might strongly differrevealing hidden structure or features within tlagad If all
depending on the problem being evaluated. Comyhatsed eigenvectors are used, a lossless reconstructiagheotlata
systems, on the other hand, derive completely rdiffie Set can be performed. However, if only the eigetorsc
notions of a part. In the following, a brief oveswi of corresponding to the largest eigenvalues are tedumber
common 3D shape analysis and feature extractidmigees Of dimensions required to represent the data set b
is presented. For further details the reader irrefl to [8].  9reatly reduced, at the cost of introducing ongyrell error.

A. 3D Shape Descriptors C. Segmentation of 3D Designs

The definition of adequate shape descriptors arel th For our application it is necessary to analyse sitpoes
extraction of design features which encapsulater¢heired based not only on overall shape similarity, butoatn
characteristics of a design is the main challengafialyzing SPecific features or parts contained within objects
a repository of 3D designs. Design features mayuite AN approach calledconvex decompositioninitially
statistical design properties such as momentsylaiity or  developed for two dimensional polygons, has beeul disr
compactness. Alternative methods that use histograf decomposing three dimensional shapes. The aim is to
geometric statistics or statistics of frequencyoegosition segment the shape into a minimal number of convex
of shapes are mainly used for shape retrieval tasksan Polygons. The method has been studied extensivel2D
example, in [9]harmonic shape descriptors are suggestéioblems and optimal solutions have been suggesied.
which use the amplitudes of spherical harmonic fagefts theoretical framework for the 3D case has beerinadtlin
to generate a rotation invariant shape representa®elated [11]. Unfortunately, the use of exact convex decositgon
to the task such representations are tuned foctasputing is only feasible for relatively simple shapes doehigh
but miss the representation of details of the desigcomputational costs. For shapes containing holes th

Furthermore, the resulting coefficients are hardnterpret Problem is nondeterministic polynomial-time (NP)rda
for human beings. Moreover, for complex polyhedrons, the decompositio

) typically results in a vast number of componentsictv are

B. Clustering 3D Shapes practically unmanageable. To alleviate this prohlem

For partitioning a design repository it is oftersulable to  approximate convex decomposition schemes have been
classify the content into a set of groups or chssbased on proposed in [12] and [13], which decompose shapés i
the similarity of feature vectors or shape desorgtThis is polygons which are allowed to exhibit a limited amb of
useful for determining distinct types of designsitained in concavity or group convex sub-components iterativel
a set as well as analyzing the distribution thereof Geometrical skeletonsan be used to represent geometries

A popular method which performs this type of clust® using a set of line segments. A graph-based repiatien
is the K-Means algorithm [10]. Given a number of can then be extracted from the skeleton. If a langmber of
N-dimensional data-points this iterative algorithiteapts to  skeletons are available, methods from graph theargy
separate the data int6 distinct clusters. The method is Notapplied to find matching sub-graphs, which represen
guaranteed to converge to a global optimum. In fhet individual components present in multiple geometfid].
results of the algorithm strongly depend on thgéahvalues. An approach for shape decomposition that ulesy
However, since the algorithm is very fast, it ismenon to  clustering for object segmentatiamdcutsto extract regions
execute it multiple times and select the resultisfthe best corresponding to features called patches is predent[15].
run. A major drawback of the algorithm is the fHwat the Based on facet distance information, a probabiligy



calculated that two facets belong to a certaintpadince the features. A major advantage is that the algoritlenegates
method is computationally expensive, a decompasitd additional information about the distribution oftiparts in
large models is accomplished by generating a siipli the database. As a drawback the number of desasd br
model on which the decomposition is performed anfiature vector§ must be specified beforehand.

projecting the resulting patches onto the originatel.

D. Image-based Feature Extraction

Due to the similar target of detecting patterns eatevant
features in the field of object recognition and gma
processing, in the present paper we focus our sisaby the
non-negative matrix factorization (NMF). NMF proesl
several characteristics that are also important
decomposing 3D objects into components. Based [pired
representation, the NMF scans a database of imagds
decomposes the data set into relevant non-negiatares
and a coefficient matrix. The objective is to restonct the
given database by these two matrices with a mininadr.
Hence, this method fulfils two requirements fomsterring
it to the 3D object space. It allows an unsuped/iseecution
of the algorithm and results in non-negative fesduri.e.
interpretable parts of the designs. The basic qunotthe
algorithm is described in detail in the next sattio

[ll.  THE NON-NEGATIVE MATRIX FACTORIZATION FOR
OBJECTDETECTION AND PATTERN RECOGNITION

A. Non-negative matrix factorization

The NMF algorithm is a powerful
decomposing large image repositories into theiestparts.
The method gained popularity after it was presetief¥]
for parts-based face recognition (see Fig. 1). dd= set of
faces is decomposed into relevant parts, like diffekinds
of noses, eyes, eyebrows etc. The activation matitains
detailed
features to reconstruct the original face imagé witninimal
error.

Original
- =

NMF

Fig. 1. Non-negative matrix factorization appliedface image data [7].
The feature and coefficient matrix allows the restauction of a face image
which is contained in the original data set witmimial error.

information of how to combine the extrdcte

The NMF objective is formulated as follows: given a
non-negative matriX ¢ &' which contains in each column
one of theN-dimensional images of the data set, find two
non-negative matriced/ ¢ £ andH ¢ & in such a way

that the product of both reconstructs the origidata set
with minimal square Euclidean distanc&/ denotes the

fg?ature matrix antt the coefficient matrix.

X =WH, [X-WH[. - min (1)
Initially two multiplicative algorithms for computg the
NMF were proposed in [16] which have become a
benchmark for the performance of all subsequergiyvdd
NMF variations. These algorithms are closely relate the
method of gradient descent. In this paper, we foidus on
the NMF based on the minimization of the squarelileian
distance between the original image set and
reconstruction which can be understood as a meé&sutke
quality of the factorization or the reconstructiemor (RE).
Since it is not possible to compute a solutionéand H
simultaneously, the objective function is solved by

alternately applying the update rules (2) until\engence is

the

technique forreached. The elements of the matrices are iniidliwith

random positive values. This initialization comldngith the
multiplicative nature of the algorithm guarantebattnon-
negativity is enforced. The multiplication in thpdate rule
and the division are performed element-wise.

(WTX)ij

H < H.  — 70 L (XHT)”
J ] (WTWH)IJ ]

ij T (2)

(WHH T),

To avoid divisions by zero, a small numbef°i8 usually
added to the denominator of the update rules. Whéecost
function (1) is convex in eithai/ or H alone, it is not convex
for both variables together. Therefore, the faettion
produced by the NMF algorithm is not unique but barany
kind of stationary point, e.g. a local optimum orsaddle
point.

B. Alternative NMF Formulations and Extensions

Several extensions have been derived from the NMF
which are now explained in more detail. Enforcing
orthogonality of the NMF base vectors, by introagcihe
constrainfV'W = |, results in theDrthogonal NMF (ONMF)
which targets to extract non-overlapping featufédse data

Similarly to PCA, NMF can be used to reveal lateniet is decomposed into distinct parts which aresishayly

features in complex data sets. Unlike other radkicgon or
matrix factorization techniques, such as PCA, irhelent
component analysis (ICA) or vector quantization V&
non-negativity constraint is imposed on the factatrices.
For many applications this facilitates the intetatien of the

interpretable. An extension of the NMF algorithmieth
incorporates this constraint has been presentg¢ti7in The
constraint is imposed either in the feature or ficieht
matrix or simultaneously in both.



An algorithm called Local NMF (LNMF) has been

introduced in [18] which focuses on an improvemeithe
extraction of localized features. This extension tbe

A. Scenario: Decomposition of a Virtual Turbine

To evaluate the performance of the existing NMF
algorithms in the context of design optimisation,test

standard algorithms became necessary because tt® pacenario has been used. In this scenario turbieedesigns

based character of the base vectors postulatedebyahnd
Seung is rarely achieved in practice. The algoritangets
three additional goals. Firstly, in order to mirzei the
number of feature vectors required to reconstrhet data
set, the features should not unnecessarily be hradksvn.

have been generated consisting of a central cylipties a
variation of up to seven blades attached to it eites
possible distinct positions. Two types of bladesenereated,
a straight and a bend one. All geometries werenginethe
standard STL-file format containing a triangulat@&D

Secondly, in order to minimize redundancy among thrface. Three example designs are depicted ir2Fig.
feature vectors maximum orthogonality of the basgtars is

required. The last constraint, maximum expressisgnams
at enhancing the detection of features which coutei most
to the reconstruction.

To improve the quality of detected featuresNAF with
Sparseness Constraint®s been proposed in [19] and [20].
The activation of sparse vectors follows a probighilensity
which is “highly peaked at zero and has heavyt§ll8]. In
other words the vector elements contain mostly z@alaes
and only a few non-zero values. Enforcing sparsenesults
in a decomposition which uses only a few activenelets to

represent the entire data set and facilitatesrttezgretation embedded in a free form deformation control volumigch
of the derived features. For 3D design decompasitiohigh allowed small shape variations of the blades irgeatial
degree of sparseness prevents the emergence @llpartdirection. From each base turbine 100 designs were
activated feature vector elements which do not have generated by applying small random modificationstte
physical interpretation. Similarly, sparseness dfe t plades. All 500 turbines were presented to the rilgo
coefficient matrix will result in nearly binary aations of which had to calculate the optimal decompositionthod
the base vectors. Several methods have been detdseddesigns, i.e. the minimal number of parts whicteiguired to

introduce a degree of sparsity on top of the oalgiNMF  reconstruct the database with a minimal RE.
formulation, which usually involve penalty coefficits

which must be set manually. In [20] a desired degoé
sparseness is enforced by augmenting the origiNgF Mith
a projection step. r“w

A simple and yet very effective method for introthgc ey
sparsity in both the feature and the coefficientrivas was "
suggested in [21]. The original NMF factorizatios i
extended taX ~ WSHby a constant, symmetrical mati$
which strongly depends on a smoothness faater[O, 1].
For w= 0 the method equals the standard NMF describ{
above. Becaus8is constant the factorization can be writte
asX = (WS)H = W(SHYepending on whether the feature o
coefficient matrix is currently being evaluated. eDto the
multiplicative nature of the NMF, smoothing the tiga
vector will require the coefficient matrix to conrmsaite the
introduced error. This can only be achieved by agldiero
values to the row vectors of the coefficient matiix other

Fig. 2. Samples of base turbine designs.

To generate a large database of differently shaped
turbines, five base turbines were defined. Eachirter was

Fig. 3. Transformation of 3D designs into voxehcp.
words H must become sparse. Conversely, smoothing the
coefficient matrix will enforce sparsity in the faee vectors.

In order to apply image based feature recognition
techniques to the 3D domain, polygon mesh baseidjrdes
IV. A FRAMEWORK FOR THEUNSUPERVISEDEXTRACTION are converted to a voxel based representation.r@hdting

OF COMPONENTS IN THE3D DESIGN SPACE voxel model can be interpreted as a binary 2D imbge

This section focuses on the development of a fraomlew "€Shaping the 3D voxel matrix into a series ofesliand

for extracting relevant components from 3D objeBsfore cOnnecting them as depicted in Fig. 3. Thereaftae
discussing the problem of determining the optimahher of ~aPPplication of 2D NMF algorithms becomes straigivwiard.

features, the turbine test scenario is introduced.



B. Optimal Number of Features

The number of base vectors greatly influences tradity
of the extracted features, as well as the featsilafiapplying
the NMF algorithms to a specific task in generahcg the
method proposed in this paper aims at achievingilly f
unsupervised design decomposition, it is essental
eliminate the need of a user interaction to spabénumber
of parts which should be extracted as it is reguire the
standard NMF algorithm [7].

One approach that we tested consists of finding
correlation between the RE and the specified nundier
features. Given a sufficiently large number of basetors,
the NMF algorithm should reconstruct the data si#h an
RE close to 0. Therefore, the idea is to executdipie
NMF runs, incrementing the number of feature vectach
time. It is expected, that the RE will improve sfgantly
after each run until the optimal feature numbereiached.
After this point, adding more feature vectors shoul
contribute only slightly for a further improvemesttthe RE.

As a result a drop in the RE/feature curve shoudd gn

noticeable which corresponds to the optimal featwraber.
Unfortunately, tests showed that implementing thisthod
for complex data sets is difficult. The curves ayeite
smooth, making an unsupervised estimate of theurfeat
number nearly impossible [6].

It has been observed that when specifying a |laugeber
of base vectors many of the tested NMF algorithroslpced
duplicate features containing only minor variatiorithe
phenomenon occurs because all unconstrained N
algorithms attempt to minimize the RE by fully igihg all
available base vectors. This observation motivitesdea to
scan for similarityA = W'W between the base vectors durin
the execution of the algorithm and reduce the nundfe
features when redundancy is detected. The featahection
step is either applied when the algorithm convenyester a
predefined iteration number. For valuesfgf which exceed
a predefined similarity thresholdy, the features are
considered redundant, corresponding features arbiced
and the corresponding coefficient row is deletedhisT
method produces acceptable results, however sonidepns
remain. Firstly, the optimal time at which the faat
reduction step is performed is difficult to detemmi If the
reduction step is performed too early, too manytosc
might be removed limiting the number of featuresin.
Naturally, a suitable similarity threshold mustdpeecified.

An alternative method for finding the optimal fe@u
number is to incorporate strong sparsity constaimto the
used algorithm. Ideally, the penalty added to gesparse
coefficient matrix should prevent features whiclke arot
absolutely necessary from being activated, i.ectredficient
rows corresponding to these base vectors shoulgicoonly
zero values. Experiments showed that theNMF [21]
approach for enforcing sparsity produces very gasilts.
The smoothing matrix can be easily incorporated atvide

simultaneously to the coefficient matrix and thedaectors
preventing the generation of partially activateatfiee vector
elements. It is possible to adjust the amount dbrerd

sparseness by varying the parameteHowever, for the 3D
model decomposition task at hand, a valueuvsf 0.5 was
found to produce very good results for a wide raofjdata
sets. As a consequence, only an upper limit offélagure

number must be selected. Base vectors which are
necessary to reconstruct the data set are aut@ihatet to

zero by the algorithm [6].

not

C. Dilation of 3D Designs to reduce Misalignments

A problem arises when dealing with voxel imagesl|avhi
using the Euclidean distance as a similarity meaddue to
the nature of the data set which includes a largaber of
voxel images with numerous minor deformations, maans
of the design may not overlap. While a human oleerv
would classify two features translated by seveiaélp in
respect to each other as belonging to the samepgrou
athematically they have a similarity value closezero.
The problem is depicted in Fig. 4.

N N

I\}ﬂg 4. Misaligned voxel designs and effect oatidn.

To ensure that similar features are detected aisghes
module by the NMF algorithm, a 3D morphologicakatiibn

gstep is applied to the voxel data set by iterayiwdilating

each design with a 3x3x3 kernel until a user spatif
maximum dilation number is reached. The dilatiomber is

reduced during runtime when the algorithm convergéss

reduction process is repeated several times, irerotd

extract thin features. As a consequence, the gualit

extracted features improved. Nevertheless, it shbalnoted
that the dilation number is highly task dependtntas to be
adapted according to the occurring design variationthe

database and the chosen resolution of the voxekd6&

D. Method Prerequisites

In this section, an NMF based algorithm for analgzi
large repositories containing geometrical dataresented.
The proposed algorithm aims at extracting a mininuathber
of distinct sub-components present within the degh The
base vectors are not segmented more than absolutely
necessary. By imposing an orthogonality constramtthe
base vector set, the extracted features are umiqdelo not
overlap, resulting in a minimal degree of redunganithin
the feature-set.

As physical parts cannot be represented usingafigrti
activated voxels, ideally the extracted featureoukh

range of NMF algorithms and sparseness is adde@dntain only binary values. This attribute is atsacial for



the transformation of the extracted features from woxel
domain back to a polygon based representation birtaity
constraint is enforced by requiring sparsity of fleature
vectors and intermediate normalization steps.

Similarly, a very high degree of sparseness is Bedoon
the coefficient matrix in order to eliminate partgtivated
features. Moreover, this way the number of usee bastors
is minimized.

Several algorithms satisfy one or more of the negoents

mentioned above. The LNMF method [18] and feature

orthogonal NMF algorithms in [17] enforce orthoghiya
constraints while simultaneously minimizing the foen of
active values in the matrices. However, sparsitgnforced
only indirectly and not in the binary sense desilabove.
Sparsity constraints can be added to either theriea@r the
coefficient matrix using a projected gradient apmio as

Next, the derivative of with respect tdV is calculated
ande is set so that the additive components are eliiha

OL/OW = —2XH TS+ 2WSHH TS + 2WA
£=W/(WSHHTS+AW)

(%)
(6)

Substituting the equations above into equationsdlte in
the update rule fow.

T
w,oow,— “HS (7)

: "W (SHH 'S+ 1)

The Lagrangian multiplietd is approximated using the
Karush-Kuhn-Tucker (KKT) conditioridyL(WA) = 0. To
ensure the non-negativity of the update, the inkdgua

formulated in [20]. Although this approach produce$HH'S +4 20must hold, which is the case for:

adequate results, the constraints cannot be eaddgd to
both factors at the same time. Additionally, to fkethe
amount of human interaction to a minimum it is cedsie
that the number of parameters to be configurecefs ko a
minimum. Algorithms which for example require aingof
the step-size are therefore not feasible.

- XHTS+WSHHTS+WA =0
-WTXHTS+W'WSHH"S+W'™WA =0
with WTW = |
WTXHTS-ISHH 'S =)

(8)

Summarizing, based on numerous experiments [6] oursypstituting A into (7) results in the final form of the
proposed method uses the orthogonal NMF [17] auggden ypdate rule. Additionally, the square root of thght hand
by a smoothing matris, as it has been suggested in [21] fogjde of (7) is taken in order to ensure convergéhp

the original NMF. It was found that this combinatio
produces results which are very close to the optiase. At
the same time, the implementation and derivationthef
algorithms is straightforward.

E. Derivation of the Sparse Orthogonal NMF

(XHTS),

W, < W, \/ 9)
! ! (W(WTXH TS))ij

Because orthogonality of the coefficient matrix net

In the following we propose an algorithm for thereqyired, the standard NMF update stepHois utilized. W

unsupervised extraction of components of 3D desidios
begin the derivation of the update rule for thdudeamatrix,
we construct an extended objective function. Thigctive
function which results in equation 3 is construcbsthg the
Euclidean norm based NMF cost function extendedhiay
constant smoothness matBxthe orthogonality penalty term
W'W — | = 0and a Lagrangian multipliet. While the
derived approach bares similarity to the tri-fatation
proposed for clustering in [17], in our caSds a constant
matrix which is used to impose sparsenessMrand H.
Orthogonality is enforced only in the feature matind the
update step for the smoothing matrix vanishes. T
derivation is analogous to the approach in [17]naeigted by
a smoothing matri.

L =X ~WSH[ + ATrjw™w - 1]
=Tr|[(X ~WSH)T (X ~WSH) |+ ATrw W -1 |

3)

Using the gradient descent approach outlined bydree
Seung the update rule @/ is derived.

W « W—gdL/0W 4)

is substituted withWWSto incorporate the sparsity constraint.

(WS)" X);

L H, (10)
: L (WS)T (WS)H),

The initialization of the coefficient matrix andettbase
vectors has a strong influence on the resultseofNiF. The
effects of initialization have been summarized 22][ The
most basic approach is the initialization of bothtmneces
with random non-negative values. However, this meth

Hypically leaves traces of noise in the featuretmecwhen
case a

factorizing binary voxel images. For our
homogeneous initialization of the feature matrixivi; = 1
provides very good results. An even more suitalézrative
is to apply a fast clustering algorithm suclKasmeango the
input data, using each clusteroid to initializesattire matrix
column. As a consequence, all input voxel images ar
contained in one of the base vectors and therefoee
probability that a feature is missed is minimiz&h the
other hand, large portions of each feature imagehwto
not contain any information are fixed to zero, tepgeding
up convergence. The likelihood of premature corsecg to



a local optimum of the algorithm is greatly reducEdr the
coefficient matrix a random initialization with awrer bound
constraintH; > 0 was used. The complete algorithm used
this paper is outlined in the following. The symlatenotes

For each design group 100 slightly deformed versioare
generated using the standard FFD technique asiloedcr
inbove resulting in a total number of 500 desigrs.apply
our proposed framework two parameters have to beifggd

element-wise multiplication, the symbel denotes element- explicitly. The maximum number of feature vectorasw

wise division.

Algorithm 1: Sparse Orthogonal NMF Algorithm.

nz «—1x10%
D < maxDilation
load image-seX
Xp <« dilate3D,D)
L —(0(XXp)™
Xp —Xply
initialize feature matrixV columns usind<-means
initialize coefficient matrixd with random values
initialize smoothing matriXs according tay
repeat
Xp <« dilate3DK,D)
Ly —(10(X]X,))
Xp < X,L;!
repeat
W
H
Hs
w
Lz

— (W9’
—Ho (WeXp) @ ((Ww, )H +n2)
—H's
— WO ((XoH) @ (WW/(XHD) +n2)°®
(1o Ww)*®
H < LH
W —wL;!
until convergence
D «D-1
untii (D <0)

F. Feature Extraction Results of a Turbine Test Sdenar

The tests presented in this paper were conductefiven
turbine-like design groups. A cross-section showimg top
of a sample of each design group is depicted inF:ig

Fig. 5.

Cross section at the top of the five daseines.

initially set to 15 and as smoothing factor a vadfiev= 0.5
was used, as it indicated to provide robust restdts
different test setups. The convergence of Algorithnis

generally assumed when the RE ceases to decrease

significantly, e.g. the first 3 digits do not chandpr 10
iterations. With respect to computation time, tgbicuns
took approximately 2 hours on an AMD Opteron 250,
2.4 GHz system with 4 GB memory. The 3D results
produced by the sparse orthogonal NMF combined with
multistage dilation are depicted in Fig. 6. Duringtime of
Algorithm 1 the initial number of 15 features has
automatically been reduced to 5. All 5 orthogoredtfires
necessary to reconstruct the input data set witimamal RE
are extracted correctly. Moreover, the modules aant
almost no artefacts and no voxels with low actativhich
strengthens the interpretability of each featurke Eentral
cylinder is not extracted explicitly since it isegent in all
designs without any variation. As a result of thmrsity
constraint only a minimal number of features isvated in
the coefficient matrix partially shown in Fig. 7.

Fig. 6. Extracted features resulting from the Sparthogonal NMF.

Fig. 7. Coefficient matrix corresponding to théragted features in Fig. 6.

In Fig. 7 each activated pixel in each 15 pixekdiz
column indicates which features are used to reogctse
certain design. The level of activation is given the
brightness of the pixel colour. Hence, e.g. desginslar to
base turbine 1 are composed of features b anddethase
close to turbine 3 of features a and e. To confiha
independency of the algorithm from random initiatisns
the scenario has been run multiple times. In atktéhe same



features were found underlining the good reliapibf the
proposed method.

V. CONCLUSIONS

In the present paper, we focused on a transferedtfioals
which have been developed in the field of objecognition
to the field of 3D design development. The simdpproach
of an unsupervised detection of meaningful patténnD
image data sets motivated our proposed method
decomposing 3D designs. The NMF characterised
creating a parts-based representation consisting

non-negative components has been favoured. We geopo

sparse orthogonal NMF algorithm, an augmentatiorhef
orthogonal NMF with a constant smoothing matrix,ickh
results in slightly modified update rules. Thisheifjue has
been applied to voxelized 3D models. It has beemsththat

for
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[3] E.C. Perry, S. E. Benzley, M. Landon and R. John%®hape
Optimization of Fluid Flow Systems,” iAroceedings of ASME
FEDSM'00. 2000 ASME Fluids Engineering Summer Gent=
Boston, Massachusetts, 2000.

S. Menzel, M. Olhofer and B. Sendhoff, “ApplicatiohFree Form
Deformation Techniques in Evolutionary Design Oggiation,” in
Proceedings of the 6th World Congress on Multigiieary and
Structural OptimisationRio de Janeiro, 2005.

S. Menzel, M. Olhofer and B. Sendhoff, “Direct Mpniation of Free
Form Deformation in Evolutionary Design Optimisatibin Int.
Conference on Parallel Problem Solving From Nat(RE€SN)
edited by T.P. Runarsson et al.. Springer-Verlag 352-361, 2006.
Z. Bozakov, “Unsupervised Component ExtractionDesign
Optimisation using Feature Analysis,” Master TheSisntrol Theory
and Robotics Lab, Institute for Automatic Contfbl) Darmstadt,
2007.

D. D. Lee and S. H. Seung, “Learning the partshpécts by
non-negative matrix factorizationNature vol. 401, no. 6755,

pp. 788-791, 1999.

T. Funkhouser, M. Kazhdan, P. Min and P. Shilaséape-based
Retrieval and Analysis of 3D Models,” @ommunications of the

(4]

(5]

of

[7]

(8]

this method allows an unsupervised and autonomous ACM Vol 48, No.6, pp.58-64, June 2005. .

" . E)? M. Kazhdan, T. Funkhouser and S. Rusinkiewicz, &foh Invariant
decomposition of large numbers of 3D models staned Spherical Harmonic Representation of 3D Shape Dgscs,” in
data repository into salient components. As pararaet Symposium on Geometry Processing, 167-175, June 2003.
maimy the maximum number of features and the Shi[)gt [10] J. B. MacQueen, "Some Methods for classificatiot Analysis of

i . Multivariate Observations", Proceedings of 5-thigéey Symposium
factor w have to be SpeCIfled. Fapowe suggest 0.5 which on Mathematical Statistics and Probability, Berigeléniversity of
has proven a good reliability. In addition to the  california Press, 1:281-297, 1967.
decomposition of salient components, the presemetthod [11] E- M. Cg_aze"e% ;‘Eom{e? detchompositlicxlc?\; polyheUf_ﬂ.ﬁSFEOC ’8#1

. . . . . roceedings o e thirteentnh annua symposia eory o
ggngrates also |nforma_t|on about thg dlst_rl_butl_bthe parts computingNew York, NY, USA: ACM Press, pp. 70-79, 1981.
within the database which allows an identificatidroutliers.  [12] J.-M. Lien and N. M. Amato, “Approximate convex deposition of

Furthermore, some constraints that are vital feoaect

and meaningful decomposition are highlighted. Theﬁ%]

include feature vector orthogonality and a high rdegof
sparseness in both the feature and coefficienticeatrAs a
result, the problem of determining the correct nambf
parts is largely eliminated and only an upper limit the
number of desired features must be specified. Fintie
importance of voxel model dilation was emphasizedhie
context of module extraction which minimizes thentner of
features necessary for a complete representatiardafa set.

Some aspects of the methods presented in this paper

remain to be evaluated in future works. The poktsibdf

incorporating rotation and position invariance dfiet
extracted features [24], the handling of outliersd ahe
coupling of local real world performances to lockdsign
features are some of them. Finally, the autominéehration
of components into an FFD design optimisation fraom

remains the main target.
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