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Feature Selection Based on Kernel Discriminant Analysis
for Multi-Class Problems

Tsuneyoshi Ishii and Shigeo Abe

Abstract— We propose a feature selection criterion based on
kernel discriminant analysis (KDA) for an n-class problem,
which finds n—1 eigenvectors on which the projected class data
are locally maximally separated. The proposed criterion is the
sum of the objective function values of KDA associated with the
n—1 eigenvectors. The criterion results in calculating the sum of
n— 1 eigenvalues associated with the eigenvectors and is shown
to be monotonic for the deletion or addition of features. Using
the backward feature selection strategy, for several multi-class
data sets, we evaluated the proposed criterion and the criterion
based on the recognition rate of the support vector machine
(SVM) evaluated by cross-validation. From the standpoint of
generalization ability the proposed criterion is comparable with
the SVM-based recognition rate, although the proposed method
does not use cross-validation.

I. INTRODUCTION

In pattern recognition, inputs variables, i.e., features, usu-
ally include unnecessary or redundant features, which may
slow down classification speed or deteriorate the general-
ization ability. Feature selection is one of the approaches
to avoid this problem, in which from the original set of
features the minimum subset of features that realizes the
maximum generalization ability [1], [2] is selected. To re-
alize the maximum generalization ability, during the feature
selection process, we need to estimate the generalization
ability of feature subsets. This type of feature selection is
called a wrapper method. But it is time-consuming to directly
estimate the generalization ability. Therefore some selection
criterion, which well reflects the generalization ability, is
used. This method is called a filter method.

The filter or wrapper method usually uses the forward or
backward selection method [3]. In forward selection, we start
from an empty set of features and add one feature at a time,
which improves the selection criterion the most. In backward
selection, we start from all the features and delete one feature
at a time, which deteriorates the selection criterion the least.
We iterate procedure until the selection criterion reaches a
specified value. Usually, backward selection is slower but
is more stable in selecting optimal features than forward
selection.

With the advent of support vector machines (SVMs),
feature selection methods and selection criteria suitable for
SVMs are discussed. In addition to wrapper and filter meth-
ods, the embedded method, in which feature selection is
combined with training the SVM is developed [4], [5], [6].
For the wrapper method a selection criterion such as the
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recognition rate of the SVM with cross-validation is used
[1]. In [3], [7], to speedup feature selection, block deletion
of features in backward feature selection is proposed using
the generalization ability by cross-validation. As selection
criteria of the filter method the margin [8] is widely used,
and for linear kernels the absolute values of the coefficient
vector elements of the decision function are used [9]. In
[10], [11], kernel discriminant analysis (KDA) for two-class
problems [12] is used. The objective function of KDA called
KDA criterion is the ratio of the between-class scatter and
within-class scatter and is proved to be monotonic for the
deletion of features. If a selection criterion is monotonic for
the deletion or addition of a feature, we can terminate feature
selection when the selection criterion violates a predefined
value. Feature selection based on the KDA criterion was
shown to be robust for benchmark data sets.

In this paper, we extend the KDA criterion applicable
to multi-class problems and demonstrate usefulness of the
criterion as a filter method. The proposed KDA criterion
is the sum of the locally maximum values of the objective
function of KDA, which is the ratio of the between class
scatter and the total scatter. For an n-class problem, KDA
generates n — 1 eigenvectors on which the projected class
data are locally maximally separated. We show that the sum
of the n — 1 locally maximum values is equal to the sum of
the n — 1 eigenvalues of the generalized eigenvalue problem
of KDA. The KDA criterion expressed by the sum of the
n — 1 eigenvalues is proved to be monotonic for the feature
selection. This characteristic contributes in robust feature
selection by backward selection without cross-validation.
The stopping condition is specified according to the KDA
criterion evaluated using all the features and the feature
selection is terminated when the KDA criterion is lower than
the threshold.

By computer experiments we compare the proposed fea-
ture selection criterion and the selection criterion based
on the recognition rate of the SVM evaluated by cross-
validation, called SVM-based recognition rate.

In Sections II and III, we summarize fuzzy pairwise SVMs
used for evaluating multi-class problems and KDA for multi-
class problems, respectively and in Section IV, we discuss
the selection criterion, relationship between the locally max-
imum values of the objective function and the eigenvalues
and monotonicity of the selection criterion. In Section V, we
explain backward feature selection used and in Section V
I, we demonstrate the validity of the proposed method by
computer experiments.
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II. Fuzzy PAIRWISE SUPPORT VECTOR MACHINES

In this section we summarize fuzzy pairwise support vector
machines [1], [13], which are used to evaluate the proposed
selection criterion and are also used as the selection criterion,
namely the SVM-based recognition rate.

In a fuzzy pairwise SVM, we determine the decision
functions for all combinations of class pairs. Thus for an n
class problem the number of decision functions is n(n—1)/2.
To resolve unclassifiable regions occurred in pairwise SVMs,
we introduce the membership functions.

Let a set of m-dimensional data belonging to class i (i =
1,...,n) be X;1,...,Xin,, and data x be mapped into the I-
dimensional feature space by the mapping function g(x).
If the dot product in the feature space is expressed by
H(x,x') = g'(x)g(x’), H(x,x') is called the kernel func-
tion and we do not need to explicitly treat the feature space.

Let the decision function for class ¢ against class j be

Dij(x) = Wﬁjg(x) + bijs 1)

where w;; is the /-dimensional vector and b;; is the bias
term.

To avoid confusion of notations, let {Xi,...,Xn,n;} be
the training data for classes ¢ and j, where n; is the number
of the data in class ¢. To determine the optimal separating
hyperplane, we minimize

’IL7_+’ILJ

1
sIwil®+C > & @)

n=1

subject to the constraints
’IJn(ijg(Xn) + sz) <1- é.n forn =1, Ny My, 3)

where C' is the margin parameter that determines the tradeoff
between the maximization of the margin and minimization
of the classification error, y,, is the class label and 1 if x,,
belongs to class ¢ and —1 if it belongs to class j, and &,
is a nonnegative slack variable. Since the dimension of the
feature space is usually very large, we convert the original
problem into the dual problem. Namely we maximize

i+ 1 ni+n;
Qa) = ]; =g }g;l aroyryrH (Xk, x;) @

subject to the constraints

ni+mn;
Z yrap =0, C < <0 fork=1,....,n;+n; (5)
k=1

where o, is a nonnegative Lagrange multiplier and is a dual
variable associated with x;,.

We define the membership function in the directions
orthogonal to D;;(x) = 0 as follows:

1 for DLJ(X) S ].,

mij(x) :{ D;j(x) otherwise. ©
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We define the class ¢ membership function of x by the
minimum operation for m;;:

m;(x) = I_I;iﬁn mi;(x). 7
J K3
Jj=1,.,n

Because m;(x) = 1 holds for only one class, now unknown
datum x is classified into the class

arg max min  Dy;(x). 8)
=1,...,n J#
j=1..,n

III. KERNEL DISCRIMINANT ANALYSIS FOR
MULTI-CLASS PROBLEMS

In this section we summarize kernel discriminant analysis
based on [14], which finds, for an n-class problem, the n—1
vectors onto which the projections of the data of one class
is maximally separated from the remaining classes in the
feature space.

Now we assume that the center of all data is zero in the
feature space. Let Sy, Sp denote the total scatter matrix
and the between-class scatter matrix in the feature space,
respectively:

n o ng

1 t

Sr = M;;g(xkl)g (xn1), ©
1 n

Sp = M};nkmkm',z, (10)

where M is the number of training data and my, is the center
of the kth class:
1 &
G 7“:§E:g( ) (11)
=1

When samples in the feature space are projected onto vector
w;, the total scatter matrix and the between scatter matrix
on w; are given, respectively, by

n o ng

1
a7 2 2 (wiglw)? = wistwi,  (12)
k=11=1
1 n
i an(wfzml)2 = w!Spw;. (13)
k=1
KDA seeks vector w; (i =1,...,n — 1) that maximizes

the ratio of total scatter and between-class scatter for maxi-
mum class separation. Namely, we want to maximize

t
wiSpw;

T(wi) = (14)

wiSrw; '
But because w;, Sg, and St are defined in the feature space,
we need to use kernel tricks. Then w; is expressed as
n  ng
wi=>_ > algx),
k=11=1
where a; = (a®) (k € {1,...,n};1=1,...,ny). Substituting
(15) into (14), we obtain

5)

atKWKa;

16
alKKa; (16)

J(ai) =
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where K is the kernel matrix and W is defined as

1
— if both x; and x; belong to class k&,
Wi = nk

0 otherwise.

an

Taking the partial derivative of (16) with respect to w;
and equating the resulting equation to zero, we obtain the
following generalized eigenvalue problem

MNEKKa; = KWKa;, (18)

where \; are generalized eigenvalues.

Suppose the rank of K is  (r < M) and the eigenvector
decomposition of K is K = PI'Pt, where P and I' are
M x M matrices. Now we remove zero eigenvalues to avoid
singularity and redefine M x M P by M xr PP and M xM I’
by r x 7. Thus I'"! exists and P!P = I, where I is the
identity matrix.

Let 3, = ['Pta; and substituting K into (16), we get

_ BiP'WPB;, _ BiP'WPp,

J(B;) (19)
' B PtrB; BB
Therefore we obtain the following eigenvalue problem:
\i3; = P'WPB,. (20)

Once 3; are calculated, a; can be computed as a; =
P18,

To speed up the calculation of KDA, we can avoid the
eigenvalue decomposition as discussed in [15].

IV. SELECTION CRITERION AND ITS MONOTONICITY
A. Selection Criterion

The new feature selection criterion that we propose is the
sum of the locally maximum values of the objective function
of KDA. This is equivalent to the sum of the objective
function values associated with the largest n — 1 eigenvalues
obtained by KDA:

n—1
Z J(w;). @
i=1
We can show that (21) is equivalent to
n—1
(22)

>
i=1

Using (22) we need not calculate 3 and a.

Now we prove that (21) is equal to (22). First, we
show that the locally maximum value of (14) equals to the
eigenvalue A\ of (20). Taking the partial derivative of (14)
with respect to w and equating the resulting equation to zero,
we obtain

(WwtSrw)(2Spw) — (WiSpw)(2STwW)

o] =0. (23)
Thus
t
Spw = (Wt‘;fw Sr (24)
2458

Letting
wiSpw _
wtSTw
we obtain
Spw = A\Srw. (25)
Therefore,
local max{J(w)} = A. (26)
Thus, we obtain
n—1 n—1
(27)

EE:J(“”):ZE:IM.

B. Monotonicity

Monotonicity of the selection criterion is very important
because we can terminate the selection procedure by setting
a threshold. The proposed criterion is easily proved to be
monotonic for the deletion of features. Let x° be the m-
dimensional vector, in which the 7th element of x is replaced
with 0 and other elements are the same with those of x.
Then the resultant feature space S* = {g(x')|x! € R™}
is the subspace of S = {g(x)|x € R™}. Let the sums of
eigenvalues given by (22) obtained in S and S be Z;zll Aj

and 23:11 A}, respectively. Then

n—1 n—1

PIRVED DY
j=1 j=1

is satisfied. This is proved as follows. Assume that \; < )\2-
is satisfied. Then since Aj is obtained by maximizing the
objective function in S*, which is a subspace of S, the above
assumption cannot hold. Thus, (28) holds.

(28)

V. BACKWARD FEATURE SELECTION

We select features using backward feature selection. In the
backward feature selection, first we calculate the value of the
selection criterion using all the features. Then starting from
the initial set of features we temporarily delete each feature,
calculate the value of the selection criterion, and delete the
feature with the highest value of selection criterion from the
set. We iterate feature deletion so long as class separability is
higher than the prescribed level. It is difficult to set a proper
value but we set 0.95 in the following study.

Let the initial number of features be 7 and F* and FF
denote the set of kth feature and the set of jth element
temporarily deleted from the set. And let the selection
criterion for FJ" be TJ’” Then we define the normalized

selection criterion c;?:

. Iy
G =T 29)

The procedure of backward feature selection is as follows:

1) Using all the features, evaluate the selection criterion
™. And set k = m.

2008 International Joint Conference on Neural Networks (IJCNN 2008)



2) Delete the ith (i = 1,...,k) feature temporarily from
F* and calculate the selection criterion 7 and get
normalized selection criterion ¢, if

05 >0 for j = arg max c{—“ ,

i€ Fk
where 9§ is the threshold, go to Step 3. Otherwise stop
feature selection.

3) Delete j from £ and go to Step 2.

Instead of deleting one feature at a time, to speed up
feature selection we may use block deletion, namely we may
delete more than one feature at a time. But here we use
the conventional backward feature selection to demonstrate
usefulness of the propose selection criterion.

VI. EXPERIMENTS
A. Data Sets and Experimental Conditions

We evaluated performance of the selection criterion using
benchmark data sets listed in Table I, which shows the
numbers of input valuables, classes, training data, and test
data. We scaled the input ranges into [0, 1].

In feature selection, we selected the kernel and its param-
eter from among polynomial kernels with d = [1,2,3,4]
and RBF kernels with v = [0.1,1,10] so that the KDA
criterion is maximized. As a result, we selected v = 10 for
all the problems. As a classifier to evaluate the performance
of feature selection, we used the fuzzy pairwise SVM. There-
fore, to evaluate the effectiveness of parameter selection by
maximizing the KDA criterion, we also performed feature
selection with the kernel and its parameter determined by
the SVM using all the features.

Since the KDA criterion did not change much for the iris
problem, we set threshold § = 0.95 for all the classification
problems.

As the reference selection criterion we used the SVM-
based recognition rate evaluated by fivefold cross-validation.
We used the fuzzy pairwise L1-SVM. The feature se-
lection procedure was the same. The only difference
is the criterion. We determined the kernel, its parame-
ters and margin parameter C' by fivefold cross-validation.
The kernels, their parameter ranges were the same for
the KDA criterion and C was selected from C =
1,10, 50, 100, 500, 1000, 2000, 3000, 5000, 8000, 10000,
50000, 100000]. During feature selection, we used the same
kernel and kernel parameter as those for the initial feature
set and determined the value of C' by cross-validation.

After feature selection, we evaluated performance of the
selected features by the recognition rate of the test data using
the fuzzy pairwise L1-SVM. To evaluate the recognition
rate of the test data for the selected features, we fixed the
kernel, its parameter and the margin parameter C' with those
determined using all the features. Table II lists the selected
kernels and their parameters, where v = 10 means the RBF
kernel with v = 10 and d = 3 means the polynomial kernel
with degree 3. Fixing the kernel and its parameter, we deleted
one feature at a time from the set of features, determined

2008 International Joint Conference on Neural Networks (IJCNN 2008)

the margin parameter C' for selected feature set by cross-
validation, and evaluated the recognition rates of the training
and test data sets.

TABLE 1
BENCHMARK DATA SETS

Data Inputs Classes Train. data Test data
Iris 4 3 75 75
Numeral 12 10 810 820
Thyroid 21 3 3772 3428
Blood cell 13 12 3097 3100
Hiragana-13 13 38 8375 8375

TABLE I
SVM PARAMETERS

Data kernel
Iris v=0.1
Numeral d=3
Thyroid d=1
Blood cell v =10
Hiragana-13 v =10

B. Experimental Results

Table III shows the feature selection results using the
KDA criterion with the parameters determined by maxi-
mizing the KDA criterion. In the “Deleted” column, a list
without parentheses shows the deleted features and that in
parentheses shows the remaining features. The “C” column
lists the value of margin parameter C' selected by cross-
validation using the SVM. Using the determined C, the
SVM was trained and the recognition rates of the training
and test data sets were evaluated. The “Train.” and “Test”
columns list the recognition rates for the training and test
data sets, respectively. The “KDA” column lists the values
of the normalized KDA criterion.

For each data set the results are shown in two or three
lines. First we explain the three-line results. The first line
shows the recognition rates of the training and test data sets
when all the features are used. The second line shows the
recognition rates when all the features listed in the “Deleted”
column are deleted. In this case we mean that if the features
are deleted in the listed order, the recognition rates of the test
data are higher than that with all the features. The “Deleted”
column in the third line shows the features deleted so long as
the threshold ¢ is satisfied after the features in the second line
are deleted. In this case, the recognition rates of the test data
are lower than that of the initial set of features. For example,
for numeral data, the second, fifth, and third features were
deleted without deteriorating the recognition rate of the test
data, but afterwards, the recognition rate was decreased and
features were deleted until the eighth, first, ninth, and 10th
features remained.
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There are two cases for two-line results. In the first case,
the recognition rate is better than that with all the features
during feature selection. In the second case, deletion of a
feature results in deterioration of the recognition rate. For the
blood cell data, the recognition rate of the test data decreased
when the first feature was deleted and the recognition rate
was inferior to that using all the features.

Except for the thyroid data set, the KDA criterion was
monotonic for the deletion of features. Figure 1 shows the
value of the normalized selection criterion and the recogni-
tion rate of the numeral data set for each selection step. The
horizontal axis shows the deleted features and the vertical
axis shows the recognition rate of the training data set in the
left and that of the test data set in the right. The vertical axis
also shows the value of the normalized selection criterion in
the dotted line. Figure 2 shows the value of the normalized
selection criterion and the recognition rate of the blood cell
data set for each selection step. From Figs. 1 and 2, the
KDA criterion was monotonic for the deletion of features
but it is difficult to set a proper threshold value. Figure 3
shows the value of the normalized selection criterion and the
recognition rate of the thyroid data set for each selection
step. The value of the normalized selection criterion was not
monotonic and until 12 features were deleted it was higher
than 1.

In Table IV, we show the feature selection results with
kernel parameters determined by the SVM. Since the param-
eters were different for iris, numeral, and thyroid data sets,
we show results only for these data sets. For the iris data set,
the stopping threshold works better with the SVM parameter,
but for the numeral data set, three features were deleted by
the parameter determined by the KDA criterion, but two
by the SVM parameter. For the thyroid data set, from the
recognition rate of the test data, the stopping threshold works
better for the parameter determined by the KDA criterion.

Table V shows the feature selection results using the SVM-
based recognition rate with cross-validation. In the table,
“Validation” denotes the recognition rate for the validation
data sets in cross-validation. Comparing the results with
Table III and Table IV, the selection performance of KDA
criterion and that of SVM-based recognition rate are compa-
rable. For the iris data set, the selected features were different
but the recognition rates of the test data are the same for
the KDA criterion with the parameter determined by the
SVM and the SVM-based recognition rate. For the numeral
data set, the KDA criterion deleted more features than SVM-
based recognition rate with comparable performance. For the
thyroid data set, more features were deleted by the KDA
criterion but the recognition rate of test data was a little
worse. For the blood cell and hiragana-13 data sets, there is
not much difference in the generalization ability by the both
methods.

VII. CONCLUSIONS

In this paper, we proposed the feature selection criterion
for an n class problem: the KDA criterion, which is the sum
of n — 1 eigenvalues of KDA associated with the n — 1
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Fig. 2. Feature deletion for the blood cell data set

eigenvectors, on which the projected class data are locally
maximally separated.

We show that the KDA criterion is monotonic for the
deletion of features, which ensures termination of feature
selection when the KDA criterion is below the predetermined
threshold.

By computer experiments we compared the performance
of the selection criterion that is the recognition rate of the
SVM with cross-validation called SVM-based recognition
rate. The performance of KDA criterion is comparable to
that of the SVM-based recognition rate.
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TABLE IV
RECOGNITION PERFORMANCE FOR FEATURE SELECTION USING THE
KDA CRITERION WITH SVM PARAMETER. A LIST OF FEATURES IN
PARENTHESES IN “DELETED” COLUMN SHOWS THE REMAINING

FEATURES
Data Deleted C Train. Test KDA
Iris None 100 100  97.33 1
2 3000 97.33 97.33 0.97
Numeral None 10> 100  99.76 1
3,12 105 100 99.76 1
(1,6,8,9,11) 105 100 99.51 0.98
Thyroid  None 10° 98.83 97.64 1
(8,2,18,3,10,17,19,20) 10° 98.73 97.90 0.991
(10, 17,19, 20) 105 95.20 95.01 0.955
TABLE V

RECOGNITION PERFORMANCE FOR FEATURE SELECTION USING
SVM-BASED RECOGNITION RATE WITH CROSS-VALIDATION.

Data Deleted C Train. Test Validation
Iris None 100 100 97.33 98.67

1 50 100 97.33 100
Numeral None 10° 100 99.76 99.75

3 10° 100  99.76 99.88

7,12,10 10° 100 99.51 99.75
Thyroid None 10> 98.83 97.64 98.38

(3,8,17,19,20) 105 98.59 97.81 98.56
Blood cell ~ None 50 97.22 93.55 94.61

9,8,1,6 50  96.96 92.41 94.64
Hiragana-13 None 500 100  99.76 99.77

13 1000 100 99.72 99.78
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