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Abstract—Given the limited current understanding of the
neural model of computation, hardware neural network archi-
tectures that impose a specific relationship between physical
connectivity and model topology are likely to be overly restric-
tive. Here we introduce, in the SpiNNaker chip, an alternative
approach: a mappable virtual topology using an asynchronous
network-on-chip (NoC) that decouples the “logical” connectivity
map from the physical wiring. Borrowing the established digital
RAM model for synapses, we develop a concurrent memory
access channel optimised for neural processing that allows each
processing node to perform its own synaptic updates as if
the synapses were local to the node. The highly concurrent
nature of interconnect access, however, requires careful design
of intermediate buffering and arbitration. We show here how a
locally buffered, one-transaction-per-node model with multiple
synapse updates per transaction enables the local node to
offload continuous burst traffic from the NoC, allowing for
a hardware-efficient design that supports biologically realistic
speeds. The design not only presents a flexible model for neural
connectivity but also suggests an ideal form for general-purpose
high-performance on-chip interconnect.

I. HOW TO MAP NEURAL NETWORKS TO HARDWARE?

WHILE the dynamics of spiking neural networks at the
neuron level are fairly well-understood, questions of

network organisation at the functional unit level, data rep-
resentation, and inter-system communication remain largely
unanswered [1]. Important biological discoveries [2] have
fuelled ongoing debates on the nature of neural structure and
dynamics [3], which seem unlikely to lead to any resolu-
tion without powerful and sophisticated modelling probably
incorporating dedicated hardware [4]. How to implement
this hardware, however, is an almost equally contentious
question.
One popular method is the “neuromorphic” chip, exempli-
fied by [5], using analogue circuits to model neural properties
directly. While these devices remain an important research
area since analogue circuits are in principle more biologically
accurate as well as more space-efficient, in practice ana-
logue circuitry suffers from a significant device and process
technology lag behind digital. The second method is the
“neural accelerator”, relying on carefully optimised digital
technologies with shared synaptic memory. MASPINN [6]
and SP2INN [7] are examples of this approach. In principle
digital devices are programmable and thus more flexible than
analogue, however, to date, the need to use bit-mapped inputs
over standard bus interfaces for synaptic memory access
limits model choice. Historically, both models, relying on
a direct mapping from the hardware to the physical structure
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of the neural network, encounter a severe limitation: decisive
commitment to the neural model at the point of instantiation.
More recently, FPGA’s [8] offer the possibility for con-
figurable topologies and processing functions, but use a
circuit-switched connectivity model that severely constrains
utilisation of routing resources. If the mapping of the neural
model to the FPGA remains one-to-one, then, just as in the
custom chip case there will be some networks the device can
model and others that it cannot. Lurking behind these limita-
tions is a challenging barrier: direct-mapped neural network
implementations rapidly become routing-area dominated.
Traditional bus-based interconnect designs scale poorly,
because centralised arbitration and a single shared data
channel constrains activity to an exclusive path. The packet-
switched Network-on-Chip (NoC) model overcomes this
scaling limitation while solving both the problem of routing
area and hardwired neural structure elegantly. We introduce a
routable asynchronous NoC onto which virtually any network
can be mapped with run-time remapping. The neural network
topology itself is then the virtual topology, impressed upon
the physical topology of the NoC wiring itself. The NoC
offers an additional significant advantage: it retains the
concurrent dynamics that is the essential feature of neural
computation. Such a network suggests a powerful model for
a universal neural network chip: an array of programmable
processors embedded in a sea of programmable connectivity.

Fig. 1. Chip architecture
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II. SPINNAKER: A UNIVERSAL SPIKING NEURAL
NETWORK CHIP

A. Parallel chip multiprocessor

SpiNNaker (fig. 1) is a chip designed to implement the
general-purpose programmable neural device model. It forms
a massively parallel computing system using chip multipro-
cessor (CMP) technology, where each chip contains about
20 ARM968 processing cores with on-chip and off-chip
resources. Each chip functions as an independent functional
unit, dynamically assigning one of the processor cores as a
monitor processor to run a microkernel for chip management
and configuring an on-chip routing mechanism to communi-
cate with other chips. Each processor has a dedicated local
memory attached to it: the tightly-coupled memory (TCM).
The TCM has 2 parts: a 32KB instruction memory that
contains the neuron modelling program itself, and a 64KB
data memory that contains local synapse weight information
and neuron activation information. When a neuron spikes, the
CPU issues a spike packet that travels to a communications
controller which then forwards the spike onto the network
fabric. A single CPU would not in general implement a single
neuron; rather it implements collections of neurons: in a
typical configuration it might model 1000 individual neurons.
Since the processor is programmable, it can implement
essentially any model that will fit into the 32K instruction
memory [9].

B. Virtual global network

Fig. 2. SpiNNaker system architecture

The chip can function either alone or as part of a large
parallel system of 1 to 65,536 interconnected SpiNNaker
chips communicating over a long-range NoC connection
fabric. When connected together, the chips form a closed
toroidal mesh of interconnected chips as shown in fig. 2.
SpiNNaker implements two distinct NoCs: a system NoC and
a communications NoC. In the model, the communications
NoC acts as the long-range connectivity fabric: the axonal
connections between different neurons. The axons transmit
purely spikes, which are simple events carried through the

network as neural event packets carrying only the address of
the source neuron that fired. The communications NoC has
a throughput of 6 Gb/s and is responsible for carrying neural
event packets between processing nodes, which can be in the
same or different chips. A reconfigurable on-board router,
capable of routing one packet per cycle at 200 MHz to its
six external and 20 internal outputs, is responsible for routing
packets containing spike events between nodes spread across
the network. Each core contains a communications controller
to formulate/decompose packets and send these to the router
over the NoC. Together the NoC and routers in a complete
system implement an arbitrary spiking neural network with
a distributed connectivity map spread over the entire array
of SpiNNaker chips.

C. Concurrent internal NoC

Where the communications NoC models axons, the second
network, the system NoC, models the synapses and their
dendritic connections. The system NoC provides a packet-
switching infrastructure for synaptic weight updating, and
replaces a conventional bus for on-chip component intercon-
nect. Using an asynchronous fabric preserves the unclocked
fire-and-forget dynamics of biological neural networks, iso-
lating each processor from the others so that unrelated groups
of neurons do not have implicit timing relations. It also
confers some power savings and reduction of chip-level
timing closure challenges [10]. As in fig. 1, the system NoC
consists of two physical links based on Silistix’ CHAIN tech-
nology [11]. The command link transmits address, control
information, and any write data from processing nodes, to
global memory and other system components. The response
link returns any read data generated by the global memory to
the nodes. Notice that any node can communicate with the
global memory while a different node communicates with
the other system components. With a large number of nodes,
it becomes particularly important to share the interconnect.

D. Shared synapse memory

In a “typical” model, each core in SpiNNaker might imple-
ment 1000 neurons with 1000 synapses each. If each synapse
requires 2-4 bytes to store its weight, this would mean each
core needed at least 106 words (4MB) of storage, which
would not be feasible using local memory alone. Synaptic
weights therefore use a large, concurrently-accessed global
memory for long-term storage. The memory is currently
an off-chip mobile DDR SDRAM with 1 GB capacity.
Since the SDRAM resides off-chip, it is easy to expand
available global memory simply by using a larger memory
device. Within SpiNNaker is a dedicated high-speed interface
with support for multiple simultaneous requests, out-of-order
request completion, and data buffering that can provide
1GB/s peak output bandwidth. This interface connects to the
System NoC directly with an advanced AXI interface that
allows concurrent multimaster access. Concurrent request
support ensures that SDRAM accesses maintain the parallel
processing model rather than imposing a sequential flow.
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III. VIRTUAL SYNAPTIC PROCESSING IMPLEMENTATION

A. Synapses mapped as hardware channels
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Fig. 3. The SpiNNaker synapse channel and its neural mapping

Within SpiNNaker, each processor performs the output and
weight update calculations for all the synapses that connect
to neurons resident in that particular processor. To imple-
ment these synapses, we introduce the hardware channel: a
linked chain of associated components that together make up
the synapse subsystem. While a shared SDRAM holds the
long-term synaptic weights, the channel makes all synapses
“virtually local” to the processor by swapping out the values
in the dedicated memory local to each processor, at the time
it performs the weight and output calculations for the synapse
group in concern. As long as the time to swap in and out
synapse values is small relative to the time between updates,
each weight appears to be locally available, even though its
stored value resides in SDRAM.
Fig. 3 details the channel and its correspondence to
synapses. The channel consists of the local memory, a DMA
controller for access to the SDRAM, an (AXI) interface to the
asynchronous NoC, the NoC itself, an off-the-shelf SDRAM
controller, and the SDRAM, together with their associated
connections. In the figure, the ARM968 processor models
neurons J1...Jn. A neuron I2 in another processor fires,
activating the communications controller-router-off-chip net-
work path in its chip. At the receiving chip, the processor
loads synapse values into local memory for neurons J1...Jn
sequentially. At any given time the local memory has values
for active neurons. Thus, if J2 fires, synapses S12..Sn2 will
reside in local memory, while synapses S11...Snx �=2 are in
global memory. The entire process would appear in the
software model like Listing 1.
Because a channel has fixed data path widths throughout
its system, the number of physical interconnect lines stays

constant for all the neurons the local processor models, rather
than scaling as a polynomial in the number of neurons. In
contrast to previous shared-memory approaches, the chan-
nel removes, through the asynchronous NoC, the need for
neurons to compete for serial synchronous access to shared
memory. Provided that the channel can provide synapse data
to the local memory before the time of the next update for
that synapse, it retains concurrent spiking dynamics without
introducing relative timing or data-dependent effects.

updateActivationLevels() {
receiveSpike(p);
//received packet p with source address
SDRAMB_lockBaseAddres=

lookupTable.read(p.SourceID);
//DMA operation to read a block of memory
//from SDRAM to DTCM memory
requestDMAOperation(SDRAMB_lockBaseAddres,
&LocalSynapseBlock, SynapticBlockSize, READ);

wait(DMACompletionInterrupt);
//for all neurons, update projected activation

//Level as per the synaptic and delay
//information

for (int i=0; i<SynapticBlockSize; i++)
{

int delay=LocalSynapseBlock[i].Delay;
//the real-time delay

int neuronIndex=synapseBlock[i].NeuronIndex;
//neuron index

int weight=synapseBlock[i].SynapseWeight;
//synaptic weight

neuronsState[NeuronIndex].ActivationLevel[
(currentTime+delay)] +=weight;

}}

Listing 1. Neuron update code

B. Biologically realistic synapse timescales

Firing rates for typical neurons are usually low. Although
the extreme observed rate variability in real neurons preclude
exact figures, upper limits for firing rates appear to be
≈ 100 Hz, with long-term averages being ∼ 10 Hz [14].
Furthermore, since neural networks use sparse population
coding to encode information, typically only a small fraction
of neurons are active at any one time - around 1 % in a typical
case, to about 10 % maximum. A synapse is active only
when the presynaptic neuron fires (although postsynaptic
firings contribute to plasticity calculations) and thus the mean
required update rate for the synapse is ∼ 0.1 Hz, rising
to ∼ 10 Hz with active populations, and peak firing rates
trending to the upper firing rate limit of 100 Hz. Meanwhile,
axon propagation occurs with significant delay: up to 20ms.
These time scales make it possible to exploit the great
differences in speed between electronic signalling and neural
response to achieve real-time modelling performance.

C. Synapse output calculations

The central function of the synapse is the input×weight
current injection function. In the case of the spiking model
this operation is trivial from the processor’s point of view:
look up the value of the synapse (from its local memory)
and accumulate it into the neuron’s activation level. Given
nonzero real axonal delays, if the processor can receive
notification of input spikes to affected neurons sufficiently
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in advance of their real-time arrival at the neuron that the
time to initiate a DMA request and load the synapses into
local memory is less than the time from ”electronic time”
notification to real-time update, it will be able to respond as
though the synapses had been continuously local. In the case
of a single neuron this implies that

δ + tDMA(Nν) ≤ tbiol/AνP (1)

where δ is the physical delay across the entire system,
tDMA(Nν) is the time to execute a block DMA equal in
size to the number of modelled synapses per neuron, tbiol

is the modelling time step, and AνP is the number of
active neurons modelled per processor time step. NoC wire
delay is insignificant compared to DMA block transfer time,
therefore a block transfer should take no more than 10 μs
worst-case, 250 μs average-case, if the system models 1000
neurons per processor. It requires 8 clock cycles to initiate
a block request, whereafter the system bursts data across
the channel in 16-beat doubleword (64-bit) bursts running at
133 MHz at the NoC interface, 200 MHz 32-bit at the local
memory interface. We see immediately that efficient DMA
transfers that minimise protocol overhead will be essential if
a processor is to have a realistic number of active neurons.

D. Weight updates

With spiking Hebbian models, synapse updates need only
be calculated when the output neuron fires. The neural
processor must be accumulating spike inputs in order to
calculate neuron output, and from the considerations above,
when it outputs a spike, the associated input synapses must
be in local memory (since it is only the arrival of an input
spike that can trigger the threshold-exceeding output spike).
It can therefore compute the weight updates during the same
processing cycle as it computes the neuron output, writing
the new values back to memory with a block transfer at the
end of the cycle. Spiking dynamics guarantees that synapses
whose weights are to be updated will be in local memory,
allowing the weight updates to occur rapidly and without
incurring costly memory read-modify-write operations.
One model for weight updates we have examined envi-
sions a row-compressed array of 16-bit weight values stored
in memory within a region addressed by neuron number.
Resident in the TCM for each processor is a neuron lookup
table that gives the start address of its weight matrix in the
SDRAM. When an input spike arrives, the local processor
used the source neuron table to index the start addresses
of the neurons connected to the source neuron. It then
performs a DMA transfer to load the weights into memory,
updates the output and weight values according to the weight
update scheme of the particular neural model loaded into the
local processor, and writes back the updated weights to the
SDRAM with a DMA transfer. Importantly, although this
model forms the basis of the design decisions, no aspect of
the hardware itself limits the potential synaptic models to this
specific implementation and thus it is possible to implement
weight update mechanisms in a wide variety of approaches.

We have performed simulations of the system performance
with 2 different neural network models. In one series we
have kept closely to the reference spiking model, whereas in
the other we have implemented a conventional feedforward
multilayer perceptron to demonstrate SpiNNaker’s capability
to support radically different models employing distinctly
different neuron and weight update mechanisms. Separate
papers [12], [13] describe these experiments, therefore we
will not repeat the details here. However, the main results
indicate the following. A given processor can hold the values
for approximately 1400 neurons within the local memory
space. Modelling 1000 neurons per processor appears fea-
sible and supported firing rates of up to 67 Hz, assuming
10% connectivity. The corresponding weight update rate
is 100,000/ms, with each weight update taking 110 ns.
We emphasize, however, that these are very preliminary
results. Much work remains to be done to verify learning
performance and develop effective dynamic-update schemes.

IV. NOC: ARCHITECTURAL CONSIDERATIONS

A. Local data pump: datapath configuration

Directly performing large, block-oriented transfers be-
tween local memory and system memory under CPU con-
trol would be inefficient. The obvious solution is a DMA
controller to manage the memory transfers. While virtual
synapse updates generally use DMA, shorter memory ac-
cesses, or accesses to other devices in the system, are,
conversely, inefficient using this mechanism. Furthermore,
they would require an expensive multichannel controller
if accesses were to be non-blocking. The DMA controller
therefore implements a second, pass-through channel that
permits direct processor access to the asynchronous NoC for
short transactions.
Design of the data buffer for the controller is critical.
Since the buffer must support both burst DMA transfers
and non-burst direct-access transfers, it consists in fact of
2 independent buffers. However, to increase flexibility the
buffers are both reversible in direction and in interface
identification. Therefore either buffer can act as a burst-
mode buffer or a direct-mode buffer, operating either for read
or for write. The buffer also supports an optional double-
buffered mode, allowing one interface to use both buffers at
the expense of blocking transactions on the other interface
until the current transaction completes. Both word width
and buffer depth, in number of entries, are configurable
parameters so it can adapt to different bus interfaces and
utilisation rates. Interconnect timings remain indeterminate;
therefore by designing the buffer as a synchronised dual-
clock FIFO, there need be no fixed relation between input and
output timings. Thus the design of the buffer structure itself
accommodates various rates and asymmetries of transfers
between different interfaces.

B. Local data pump: protocol translation

SpiNNaker’s asynchronous NoC uses ARM’s AXI inter-
face specification to connect to the DMA controller [15]. AXI
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supports multimaster burst-mode transactions with ”fire-and-
forget” out-of-order completion, ideal for an asynchronous
interconnect where responses from different requests arrive
independently of each other. The “back-end” interface to the
ARM and to local memory, however, is not AXI, and in
particular it does not have native support for “fire-and-forget”
out-of-order transaction completion. To translate between
bus protocols, we have developed a universal master/slave
controller designed to interface between the AXI bus and
a system device with minimal restrictions on the back-end
interface. Since this component is replicated multiple times
across the chip, it is essential to implement a “thin” interface,
occupying minimal area per device. This makes it especially
important that the size of data buffers and state-holding
registers stay small. By parameterising the implementation to
omit support for exclusive transactions and big-endian/little-
endian reordering, accept a maximum of 2 outstanding trans-
actions, and buffer only the current word in the transaction
(thus containing no internal burst buffering), the controller
retains AXI compliance while eliminating 3 area-expensive
register banks in both master and slave components.

C. Asynchronous NoC: fair bandwidth allocation

As we discussed in “Synapse output calculations”, for
synaptic output updates to retain real-time behaviour, a
neuron must not receive the next input until it completes
calculating the sum of synaptic weights. Because typical neu-
ral input-current models perform this calculation iteratively,
the transmission rate on the asynchronous NoC is crucial
for real-time synaptic output performance as well as weight
updating.
In the SpiNNaker chip, each processing node has a local
memory for storing weights and activation information cor-
responding to neurons of the neural network. The SDRAM
stores the long-term weights for the nodes, providing access
via the system NoC. To use computing resources fairly,
each node requires the asynchronous NoC to coordinate
bandwidth allocation to SDRAM in such a way as to ensure
fair sharing. This is nontrivial, because since the NoC is a
packet-switched, not a circuit-switched network infrastruc-
ture, packets have different physical transmission paths. The
asynchronous mutex arbiter is nondeterministic and therefore
by itself can provide no QoS guarantees. However, if the
depth of the SDRAM command FIFO is long enough to
accommodate all requests, and one processing node only
sends one outstanding request, the risk of unfair sharing
disappears. Consider a case where initially, all nodes have an
equal probability of gaining access to the SDRAM (with no
outstanding requests). Now, nodes initiate requests. Once the
SDRAM has buffered all current requests from processing
nodes, it dequeues the current request of a given node from
the SDRAM FIFO. At this point, that node cannot immedi-
ately access the SDRAM due to the first-come-first-served
servicing model in the FIFO. This node must wait until
the SDRAM controller has serviced current requests from
the other active processors. Therefore, all nodes gain equal
bandwidth allocation. This observation allows us confidently

to simplify the hardware design and decrease unnecessary
hardware overhead.

D. Asynchronous NoC: concurrent accessibility

The key feature of the asynchronous NoC is a partial
crossbar topology between processing nodes and SDRAM.
This topology enables multiple nodes to access SDRAM
simultaneously. However, the single SDRAM obviously be-
comes a bottleneck when all nodes require access to the
SDRAM interface.
We can ease the physical bottleneck by taking biologically
realistic values of the time step for synaptic output and
weight updating. Synapses do not only transmit the signals;
they may change their value during processing. Synaptic
weight updating reads a large amount of data (typically
∼ 2 − 4KB) from the global memory (SDRAM) into the
local memory and writes it back into the global memory
again when the neuron spikes. Hence, the bandwidth to
the local node dominates synaptic weight updating, instead
of the average bandwidth of the SDRAM. In addition, the
asynchronous NoC guarantees concurrent accessibility even
when the SDRAM interface is operating at capacity. In
other words, saturation of a single SDRAM can not have a
significant impact upon the asynchronous NoC because of the
two physical links in the NoC. For example, all processing
nodes require block reads to occur in bursts of 16 words.
The amount of read data is enough to saturate the response
link. However, the command link is not likely to be saturated
because each node only issues one command. Successive
commands can go through the asynchronous NoC to the
SDRAM interface without causing congestion. The SDRAM
interface can achieve full bandwidth utilisation because it can
still receive continuous commands.

V. NOC: IMPLEMENTATION ANALYSIS

A. Nonblocking throughput at the local node

Burst traffic on the asynchronous NoC sends only one
response (acknowledgement) at the end of the transaction. An
important consequence of this is that burst data is blocking
with respect to the fabric until the receiving device accepts
the data, and this would introduce the potential for severe
stalling in a high-utilisation scenario, with multiple masters
each attempting to compete for the same finite NoC resource.
In turn this means that individual masters must be able
to offload a complete data burst from the network without
stalling. Furthermore, requests on the back-end bus are
always blocking with respect to ARM instruction execution,
leading to the equally undesirable situation where the local
processor stalled awaiting an asynchronous response from a
DMA request in transit when it initiated a new direct-access
transfers. This combination of potential stall situations led to
the following implementation decisions.

• 1) Each of the 2 data buffers in the DMA controller
can support a full burst up to the maximum AXI burst
length: 16 64-bit doublewords.
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Fig. 4. Bandwidth Utilisation vs. Number of Processing Nodes

• 2). The AXI interface buffers a maximum of 2 double-
words, the second buffer only being used as an overflow
in the case of an AXI stall.

• 3) The direct request channel includes support for write
buffering so that the ARM can complete a pending write
even if the AXI interface is busy.

• 4) Direct transactions when the AXI interface is not
busy bypass the DMA buffer entirely and use only the
AXI interface buffer.

• 5) Transaction priority on the DMA controller’s AXI
interface is: first, buffered direct writes; second, un-
buffered direct transactions; third, DMA transactions.

Analysis of latencies under various transaction scenarios with
this combination of options revealed only one where potential
stalling could become severe: an ARM direct read request
when the AXI interface is busy on a DMA burst transaction;
other transactions had worst-case latencies of 4 local clock
cycles.

B. Interconnect performance evaluation

The asynchronous NoC is generated by the CHAINworks
tool suite, based on delay-insensitive communication links, as
described above, with an additional wire to encode an end-of-
packet symbol [11]. The implementation of the asynchronous
NoC employs multiple delay-insensitive links to deliver the
throughput required by the processing node [16]. On 130nm
process technology, simulations show a throughput of 1Gbit/s
per link(4 bit for 3-of-6 encoding). For a 48 bit wide network
it can reach 12Gbit/sec raw bandwidth.
In SpiNNaker, we use a single 1 Gbit external mobile DDR
SDRAM device, providing a large shared memory resource
for storing synaptic weights. The bandwidth available at the
SDRAM interface is around 1GByte/s - less than the asyn-
chronous raw bandwidth. Even though SDRAM capability
limits the average bandwidth, provided we can fully utilise
the SDRAM interface, the 1GByte/s SDRAM bandwidth is
sufficient communication for synaptic weight updates under
realistic biological time scales.
Figure 4 shows we can achieve 100% SDRAM bandwidth
utilisation as the number of processing nodes increases. It

is critical with larger numbers of nodes ( 5) that the spiking
neural model itself be maximally efficient.

C. Buffer placement

In theory, neural modelling is scalable in SpiNNaker,
both in terms of the number of neurons and the number of
synapses. In practice, silicon area overhead limits the scale
of achievable neural networks. With respect to area, buffers
dominate the overhead. It is necessary to consider tradeoffs
between system performance and silicon area overhead care-
fully: even though buffers could potentially speed up the
transmission, they come at considerable area cost.
In our system, there are two buffer placement possibilities:
one is in the asynchronous adapters; the other is in devices
connecting to the NoC. Adding request reordering buffers
in the asynchronous adapter connecting to the SDRAM con-
troller would improve data throughput by supporting multiple
addresses pending in the adapter before their acceptance
into the SDRAM FIFO. In table I, the number of reorder
buffers indicate the number of outstanding requests the target
device can support. If the number of processing nodes is
equal to the number of reorder buffers at the SDRAM
controller, concurrent read commands from all processors can
arrive at the SDRAM simultaneously, achieving fine-grained
parallelism.

No. of Reorder Buffers Cell Size
1 0.04mm2

3 0.24mm2

3 0.33mm2

4 0.43mm2

5 0.55mm2

TABLE I

COMPARISON OF NOC REORDER BUFFER NUMBER TO CELL AREA

Synthesis results, however, show that implementing buffers
in the adapter is inefficient. Per table I, under UMC 130nm
process technology, the cell size of the adapter with 2 reorder
buffers is approximately twice as large as that with 1 reorder
buffer. By contrast, placing the buffers in the DMA controller
is considerably more efficient. Table II shows that, even a
large buffer with 2 16-entry FIFOs, synthesized for 200MHz,
occupies about 0.055mm2. Therefore, most buffers should be
in the devices to achieve optimised bandwidth with minimal
area.

Number Of Buffers Area
1 9893μm

2

2 12699μm
2

4 19515μm
2

8 31642μm
2

16 55736μm
2

32 104198μm
2

TABLE II

DMA DATA BUFFER AREA SCALING
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D. Protocol implications and restrictions

AXI’s advanced transaction features create several poten-
tial deadlock scenarios, and these in combination with the
area and utilisation constraints we have already observed
make it necessary to impose certain additional protocol re-
strictions. One of the most unusual emerged during design of
the AXI interface. AXI has separate handshake and payload
channels for data and address. It is highly desirable to retain
AXI’s support for out-of-order processing, and this means
that requests, responses, and data may arrive in any sequence.
To associate responses and data with their corresponding re-
quests, slave AXI devices must have a transaction scoreboard
with a number of entries equal to the number of concurrent
requests the slave can handle. If, however, the scoreboard
is full, the slave would have to refuse new requests, and
with multiple masters communicating independently there
can be no guarantees such a new request would not arrive.
Meanwhile, the same slave device must accept incoming
data, for otherwise it would deadlock existing uncompleted
transactions that were in the scoreboard. Simulations con-
firmed that CHAIN does not supply master-sensitive data
acknowledge, so that if a master initiated a new request
to a slave whose scoreboard were full, presenting data and
addresses simultaneously, the slave would have to accept the
data while refusing the address, eventually deadlocking the
system.
NoC fair access considerations imply a restriction to one
outstanding DMA transaction per master, a condition already
guaranteed by the DMA controller design. Direct-request
transactions, however, are not intrinsically subject to this
restriction, and since such transactions are blocking on a
per-word basis, we impose the additional requirement that
direct requests be limited to a single word. By implementing
the AXI-side burst counter in the DMA as a shared counter
between the 2 sources of potential request we have been
able to enforce these restrictions in hardware. While the
protocol implications we have observed are nonintuitive, they
are consistent with the expected use of the 2 channels, the
DMA channel being used for dedicated synapse burst access
and the direct channel for general-purpose, but incidental,
non-burst requests.

E. Future Work

Where the implementation to date has focussed on devel-
oping a working basic system, future work will aim in the
first place at extending the model to larger and more complex
systems, and in the second on detailed investigation of
optimal mappings and translation of real neural architectures
onto the physical hardware. Thus far our considerations
have assumed a “reference” Izhikevich [17] model neuron
with simple STDP learning mechanisms, but it will be
essential to generalise the configuration methodology to other
neural network models. We are developing a configuration
framework that allows description of the neural model at an
abstract level and plan to demonstrate the implementation
of multiple different types of neural network exemplifying

radically different models to validate the ability of the design
to implement an arbitrary neural network.
More work remains on identifying efficient methods to
implement the weight updating. Of critical significance is the
timing, for if the synaptic values expire from local memory
before the end of a learning widow (e.g. in the case of
an input spike arriving after its target neuron has fired), it
will require an expensive second read to load the synapse
back into memory. The synapse channel also exists in the
context of a system whose global connectivity, through the
routing table, is in principle dynamically reconfigurable at
run time. How synapse updates may be maintained consistent
in such an environment remains an open issue. Meanwhile,
models exhibiting completely different update dynamics,
such as the MLP model we considered, require methods
to correlate weight update times with those synapses whose
values change in a given update epoch, since they do not have
the association with input events that the reference spiking
model does. How learning should be scheduled in a large,
complex system will therefore be a critical future research
focus.
Thus far the largest model size we have been able to con-
sider is a 500-chip system implementing approximately 4500
neurons, a function of memory limitations in the simulation
environment. We are implementing a fully-functional test
chip in advance of the full-scale device, and by migrating
the simulations to the test platform aim both to increase
the model size and identify potential future enhancements to
the hardware components. Work continues on performance
evaluation of the NoC under fully-loaded conditions, and we
intend to generate approximate upper bounds on numbers of
neurons and synapses per chip, and number of updates per
second. Future SpiNNaker devices may employ variant NoC
or DMA interfaces with capabilities and protocols optimised
for neural modelling applications. One important research
direction is topologies, memory update methods, and network
protocols for managing densely connected networks such
as cerebellar Purkinje cells which may require distributed
implementations spread over several processors on a chip
or several chips in a system. Work to date suggests certain
features of the optimal hardware architecture for parallel
applications like neural networks, and we plan to pursue
these ideas further.

VI. CONCLUSION: AN NOC MAP FOR SPIKING NEURONS

A. Asynchronous fire-and-forget interfacing

We have demonstrated here an architecture to circumvent
the problem of quadratically increasing wiring densities that
is adequate for synaptic processing in large neural networks
at biologically realistic speeds. Our multiprocessor system
was not only introduced in an attempt to provide large-
scale neural modelling, but also to solve the fundamental
computational problem of parallel communication for mul-
tiprocessor chips. Analysis of the tradeoffs to be made in
a real implementation of the architecture reveals general
insights that make it productive to ask: what would the
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ideal NoC look like? Given neural networks’ inherently
parallel structure, the key requirement on the NoC in neural
applications is to provide nonblocking concurrent access to
shared resources. If this is to be possible, transactions must
be fire-and-forget: once initiated, the initiator does not await
any response from the target. Ideally, indeed, both initiator
and target should not await any form of handshake from
another device: once ready to present data, they present it
and release the NoC immediately. One way to implement this
is for responders to accumulate requests in a buffer whose
depth is n + 2 ∗ δresp, n being a number of requests after
which the device must issue a response before continuing,
δresp being the propagation delay of the response to the most
distant requestor.

B. Out-of-order multimaster burst handling

Concurrent initiators can provide no ordering guarantees
to the NoC, and therefore if the NoC supports nonblocking
access it must interleave burst data from different sources of
request on the same fabric without regard to request order.
With no other way to identify a given request, slaves must be
able to decode the address before accepting write data, and
this in turn implies that addresses can arrive no earlier that
at the same time as the data. Ideally, then, the NoC should
combine address and data into a single channel, and likewise
the interface to devices should present this channel with a
single handshake (in contrast, e.g. to AXI which separates
address and data channels)

C. Symmetric dedicated transfer backoff

Utilisation and stalling can present severe concerns if a
given device can hog the interconnect fabric, while deadlock
is a risk with any system whose slave devices cannot simul-
taneously service every possible device. It should therefore
be possible for any given device in the system to refuse or
abandon a transaction from another given device, without
affecting its ability to service transactions from other de-
vices. Therefore masters and slaves must have the ability
to assert a request or acknowledge on a device-wise basis.
If, furthermore, both sides use asynchronous fire-and-forget
protocol, request/response lines should be a field, translating
to a packet on the NoC, containing the encoded device
address to which the other is responding, and the standard
request-acknowledge pair of bits. There is a correlation here
with Hebbian learning: in STDP mechanisms, postsynaptic
neurons weaken or strengthen individual connections de-
pending on whether they have just fired, just as NoC devices
that have reached the request limit suppress new inputs
while permitting data from existing requests, by selective
acknowledge assertion.

D. Neural networks, asynchronous NoC’s: models for each
other?

We conclude here with an interesting observation: if one
combines these properties for the ideal NoC, we arrive
at a structure remarkably analogous to spiking neurons.
Consider that asynchronous fire-and-forget corresponds well

to spike signalling, that out-of-order combined data/address
processing is comparable to the integration function of a
neuron, and that symmetric transfer backoff is a similar
process to Hebbian learning in synapses. Although far from
identical in function, as the airplane is to the bird, such
striking similarities suggest that in addition to being a useful
practical tool for synaptic interconnect implementation, the
virtual synapse channel may be a model for examining the
signalling dynamics of neural networks.
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