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Abstract—This paper investigates the relationship between
network connectivity and associative memory performance
using high capacity associative memory models with different
types of sparse networks. We found that the clustering of the
network, measured by Clustering Coefficient and Local
Efficiency, have a strong linear correlation to its performance as
an associative memory. This result is important since a purely
static measure of network connectivity appears to determine an
important dynamic property of the network.

I. INTRODUCTION

HERE are many problems to be overcome before

artificial neural networks can be built that resemble the
mammalian cortex. Not the least of these problems is finding
a way to connect the neurons so that the network functions
well, and is physically realizable. In particular natural cortical
systems are very sparsely connected — in the mouse cortex
only approximately 1 in 100 million of all possible
connections are actually made. Yet at the level of an
individual neuron connectivity is very high with roughly
10000 incoming and outgoing connections being made. Of
course the connectivity in such systems is not random. In fact
the connectivity of the system will attempt to meet two
competing objectives. Firstly the amount of fiber used overall
will be minimized; connecting fiber is in several senses
expensive: it creates heat that must be dissipated, it needs
constant resource replenishment and it needs physical space.
Secondly information must be spread widely in the cortex for
its integration and for global computation to take place; and
this would appear to entail much distal connectivity.

In recent years scientists have successfully introduced
measures from graph theory into the investigation [1-5].
Most of them report the cortex to be a so-called “small world”
network, which has a short path length similar to a random
network, and a high clustering property similar to a locally
connected network [2]. Some further research investigates
the effects of network connectivity as associative memory
performance, suggesting that the connectivity of a network
indeed affects the performance significantly [6, 7]. However,
a conclusive relationship still has not been revealed.

In previous experiments we discovered that one of the
connectivity measures, the Local Efficiency of a network, has
a strong correlation with its associative memory performance
[6]. This finding inspired us to investigate how the
connectivity of a sparse associative memory affects its
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performance. Different connectivity measures were used in
different network types, including networks with more
biological plausibility such as a network with Gaussian
distribution of connections, and networks with modular
structure.

II. MEASURES OF THE NETWORK CONNECTIVITY

A.  Path Length and Clustering Coefficient

Watts and Strogatz [2] investigated a series of real world
networks and discovered that these networks were neither
completely regular nor completely random. Graph theoretical
measures were used to qualify the properties associated with
their connectivity. In particular, two measures, the mean Path
Length (L), and the Clustering Coefficient (C), were
introduced.

The Path Length is the minimum number of arc traversals
to get for one node to another. An average over all pairs of
vertices is used to produce L(G) for a graph G. Denoting the
length of the shortest path for each pair of vertices as dj;, the
Path Length of a graph G with N vertices is

1
HO=Fo Zd

It is notable that for a disconnected graph, L(G) is
problematic since dj; for any pair of disconnected vertices is
undefined.

The Clustering Coefficient C(G) of a graph G is defined as
follows. Firstly, define C; the local clustering coefficient of
node i, as

#of edgesin G;
maximum possible # of edges in G;

_ #of edgesin G;
k;(k; 1)
where G; is the subgraph of neighbours of i (excluding i itself),
and k; is the number of neighbours of vertex i. C; denotes the
fraction of every possible edge of G; which actually exist.
The Clustering Coefficient of G, C(G), is then defined as the
average of C; over all vertices i of G:
1
CG)=—)> C;
@)= Z(]j ;

Figure 1 gives a simple example of the calculation of Path
Length and Clustering Coefficient.

C, =
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Figure 1. Example of Path Length, Clustering Coefficient of a directed
graph. A,B,C,D: nodes; Solid line: existing connections. Arrows:
directions of the connections. Graph a: The whole graph. Graph b:
Subgraph of path from A to D. The red path (A-C-D) takes 2 steps and
is therefore the shortest one (A-B-C-D takes 3 steps), sodap=2. The
mean Path Length of this graph is (dag + dac+ dap +dsc + dgp + dep+
dga+ dca+ dpa+dcg+ dpg+ dpc) / 12 =18/12 = 3/2. Graph c: For the
Clustering Coefficient, we measure the subgraph of A’s neighbours (B
& C), There are two possible edges (B-to-C and C-to-B) but only one
exists, so Cx is 1/2. Dashed line: connections from A. Consequently,
C(G)=(Ca+ Cg+ Cc+ Cp)/4=3/8.

It is found [2] that a locally connected network has both
high mean Path Length and high Clustering Coefficient. On
the other hand, a random network has both low mean Path
Length and low Clustering Coefficient. Between these two
extreme cases there are a large number of networks which
have a low mean Path Length like the locally connected
network (the so-called small-world effect), as well as a high
Clustering Coefficient. This characteristic turns out to be a
common feature in real networks. Examples of such
networks are real neural networks (the cat’s cerebral cortex,
the neural network of C.elegans), social networks and the
World Wide Web [2, 5, 8].

B. Global and Local Efficiency

Watts and Strogatz [2] characterize the Path Length and the
Clustering Coefficient as two different measures. These
measures in fact can be unified, as shown by Latora and
Marchiori [4], to one single measure, the efficiency of a
network, as well as its subnetworks.

For a directed graph G (connected or disconnected), the
average efficiency E(G) is deﬁned by the following formula:

EO=3wo N(N 0 Z a4

i ]EG

In particular, the efficiency of a fully connected network,
which contains all N(N-1) edges, is named as E(G““). For a
topological, directed graph, E(G“““y = 1. Unlike the mean
Path Length, E(G) will not be divergent for a disconnected
graph because 1/d;; is defined as 0 for any disconnected pair
i.

To formalize the Path Length and the Clustering
Coefficient to a single measure, two new terms, the global
efficiency and the local efficiency are introduced. The global
efficiency of a graph G, Eg,;, is defined as
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__E©)
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In fact £ can be calculated for any subgraph of G.
Therefore the local properties of G can be characterized by
the local efficiency, E,., which is the average efficiency of
each node’s neighbour subgraphs,

EG
loc - /NZ ( m’ea)l
E(G

ieG
G, is defined as the subgraph of all the nelghbours of vertex i.
As before G“! is the ideal case of G, which contains all
possible edges. The small-world network is now
characterized as a set of networks with both high global and
local efficiency. Figure 2 is an example of calculating the
Global and Local Efficiency.
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Figure 2. Example of Global and Local Efficiency of a directed graph.
A,B,C,D: nodes; Solid line: existing connections. Graph a: The whole
graph. Graph b: Subgraph of path from A to D. The red path (A-C-D)
takes 2 steps which is the shortest one (A-B-C-D takes 3 steps), so
dap = 2. The Global Efficiency of this graph is (1/dag+ 1/dac+ 1/dap+
1/dsc+ 1/dgp + 1/dcp +1/dsa+ 1/dca+ 1/dpa+ 1/dcs + 1/dps + 1/dpc) /12 =
7/9. Graph c: For the Local Efficiency, we measure the subgraph of
A’s neighbours (B & C), so E(G¢) =(1/dgc + 1/dcg) / 2 = 1/2. Dashed
(E(Ga) + E(Gg) + E(Gc)
+ E(Gp)) / 4 = 3/8. Note: For a large sparse network the Clustering

line: connections from A. Consequently, Ec =

Coefficient and the Local Efficiency are usually not the same, see [4]
for details.

III. THE CONNECTIVITY OF THE REAL MAMMALIAN CORTEX

Braitenberg and Schiiz [9] investigated the connectivity of
the mammalian cerebral cortex and suggested a system with
two levels of connectivity. At a high level, the network is
constructed mainly from area-to-area excitatory connections
between pyramidal cells. At low level, the network within an
area is constructed from short range excitatory and inhibitory
connections of both pyramidal and non-pyramidal cells.

Much research [5, 8, 10] indicates that the area-to-area
connectivity has a low Path Length but high Clustering
Coefficient (high global and local efficiency), just as in a
small-world network. On the level of individual neurons, the
connectivity is so complex that only some general statistics
and hypotheses can be produced [9]. One important
hypothesis [11] suggests that the basic functional unit of the
mammalian cortex is the “minicolumn”, a columnar structure
constructed from several hundreds of neurons. Although this
hypothesis is still debatable [12], it suggests that the network
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of an associative memory model could be constructed as a set
of inter-connected modules.

IV. THE HIGH CAPACITY ASSOCIATIVE MEMORY MODEL

A. Dynamics
The units in the network are simple bipolar threshold devices,
summing their inputs and firing according to the threshold.
The net input, or local field of a unit, is defined

by A, =Zw!./.Sj , where S(+1)is the current state and w, is

J#i
the weight on the connection from unit j to unit . The update
rule of network dynamics is slightly different from the one
used in the canonical model
1 it h, >80
S/=4-1 ifh<-6
S, for other cases

where S/ is the new state of S,, and @is the update
threshold of the dynamics.

Unit may be wupdated synchronously or
asynchronously. The asynchronous update as well as a
symmetric weight matrix guarantees the network will evolve
to a fixed point. However, we found that without these
restrictions, the network could still achieve fairly similar
convergence properties.
asynchronous update with @ = ( for simplification.

If a trained pattern §” is one of the fixed points of the
network then it is successfully stored and is called a
fundamental memory.

states

In our experiment we used

B. Learning

A one-shot Hebbian training is commonly used as the
standard learning rule of the Hopfield Net. Although simple
to implement and also statistically tractable, this learning rule
has several drawbacks. The one-shot Hebbian rule does not
guarantee that all trained patterns are actually learnt (which
means they may not be fundamental memories). Furthermore
it is widely known that such a network has quite a low
theoretical maximum capacity (0.14N for a fully connected
network with N units[13]). In the standard Hopfield model
the connections are required to be symmetrical, which is
certainly not the case in real biological networks. Therefore
our networks have not symmetric constraint. The
performance of an associative memory can be improved
using other classes of learning rules [13]. In our experiments,
we adopted and modified Gardner’s perceptron learning rule
[14] which guarantees all trained patterns will be memorized,
as well as giving a significantly higher theoretical maximum
capacity of up to 2N for unbiased patterns. The detailed
training process is given as follows:

Denoting T as the learning threshold
Begin with a zero weight matrix
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Repeat until all units are correct

Set the state of the network to one of the §’
For each unit, 1,

Calculate its local field h’/

in turn:

If (EPhP <T ) then change the weight on
connections
into unit i according to:

L
S ;o iS5
Vi#j wy —W[/+C1/.T
Where{(}} is the connection matrix
End For
End
C. Performance Measure

It is important to investigate not only the capacity of the
associative memory model but also the ability of fundamental
memories to act as attractors in the state space of the network
dynamics.

To measure this we use the Effective Capacity of the
network, £EC [3, 15]. The Effective Capacity of a network is a
measure of the maximum number of patterns that can be
stored in the network with reasonable pattern correction still
taking place. We take a fairly arbitrary definition of
reasonable as correcting the addition of 60% uniform noise to
within an overlap of 95% with the original fundamental
memory. Varying these figures gives differing values for EC
but the values with these settings are robust for comparison
purposes (see [15] for the effect on Effective Capacity of
varying the degree of applied noise, and the required degree
of pattern completion). For large fully-connected networks
the EC value is about 0.1 of the maximum theoretical capacity
of the network, but for networks with sparse, structured
connectivity £C is dependent upon the actual connection
matrix C.

The Effective Capacity of a network is defined as
follows:

Initialise the number of patterns, P, to 0
Repeat
Increment P
Create a training set of P random patterns
Train the network
For each pattern in the training set

Degrade the pattern randomly by adding 60% of
noise With this noisy pattern as start state,
allow the network to converge

Calculate the overlap of the final
network state with the original pattern

End For

Calculate the mean pattern overlap over all
final states

Until the mean pattern overlap is less than 95%
The Effective Capacity is P-1
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V. MODELS EXAMINED

Four different types of sparse networks were examined.
These were two non-modular networks and two modular
ones. The first non-modular network is the well-studied
Watts-Strogatz small-world network [2].  The second
non-modular network is a network with Gaussian-distributed
connectivity. The third is a modular network which is
initialized from fully connected modules and then rewired
externally at different rewire rates. The final model is a
modular network constructed by creating modules with
Gaussian-distributed connectivity internally and random
intermodular connections.

The connectivity properties of a network were measured
using Global Efficiency, Clustering Coefficient, and Local
Efficiency. The first series of networks had 5000 units (N =
5000) and 249 connections per unit (k = 249); this value of £
is chosen so that in a modular network of 250 units it is fully
connected. The second series had 5000 units (N = 5000) and
499 connections per unit (k = 499). Experiments were
repeated 20 times and a mean value was reported.

A. Watts-Strogatz Small-world Network

This model followed Watts and Strogatz’s original idea
[10]. Nunits were arranged on a one dimensional ring. Each
unit was initially connected from its k nearest units. A
fraction g denoted the proportion of these connections which
were randomly rewired. Particularly, ¢ = 0 gave a locally
connected network and ¢ = 1 constructed a random network.
In the experiments, ¢ was increased from 0 to 0.5 by a step of
0.05, and then from 0.5 to 1 by a step of 0.1. This was due to
the fact that the performance of the network increased
significantly at low ¢ and tends to saturate when g exceeded
0.5. Figure 3 gives the transformation of a network from
regular local (¢ = 0) to Small World (¢ = 0.1) then to random

(g=1.

Figure 3. The W-S model [2]. Left: A lattice or locally connected
network (g = 0). Middle: A small-world network with rewiring g = 0.1.
Right: A random network (g = 1). In all three cases the number of
afferent connections is, k = 4. Diagrams generated with the Pajek
package [16]. The left network has both high L and C, whilst the right
network has both low L and C. The middle one has low L but high C (L:
mean Path Length; C: Clustering Coefficient).

B. Gaussian Distributed Network

In the mammalian cortex most of the connections are local,
with the probability of any two neurons in the same area being
connected, falling off in a Gaussian like manner [17] (also see
Figure 4). This was the main inspiration for our Gaussian
Distributed Network. In this model, all units were still
arranged on a one dimensional ring as in the W-S network.
However, the connections were constructed according to a
Gaussian distribution of distance between connected units.
The standard deviation, 0, was varied to get different
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distributions of connections. By increasing 0, the network
changed from a strongly locally connected network to an
almost randomly-connected network.
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Figure 4. The probability of a connection between any pair of neurons
in layer 3 of the rat visual cortex against cell separation. Taken from
[17], with permission .

C. Fully-Connected Modular network

In this model the postulated columnar structure of the
mammalian cortex [11] was adopted. The network initially
contained m internally fully connected networks, defined as
modules. At the beginning there were no interconnection
between the modules. Thus it can be treated as m fully
connected associative memories. The network was then
connected by rewiring the intramodular connections to
random connections anywhere in the whole network. A
fraction p denoted the proportion of rewired connections

(Figure 5).
P
=

Initial Network After Rewiring
Figure 5. The construction of a fully modular network. The network
was initialized as several discrete modules (left), and then gained
intermodular connections by rewiring the intramodular connections.
Note that the regularity of the network is maintained during the
rewiring (each node always has 3 incoming connections).

In the experiments the number of modules, m, was defined
as N/ (k+1), so that the modules could be fully connected to
keep the same degree of connectivity as the other models.
Therefore for the network with k£ = 249, m = 20. And for the
network with £ =499, m = 10. For simplification we denote
this network as the Modular Network in later sections.

D. Gaussian Distributed Modular Network

The final model examined was the most complex one of the
four models in this paper. This model was defined by two
levels of connectivity. The connections of a unit were
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classified as intramoduar connections (define intra-k as the
number of intramodular connections per unit) and
intermodular connections (define inter-k as the number of
intermodular connections per unit). At the intramodular
level, the connections were constructed using a Gaussian
distribution, characterised by the standard deviation 0. At the
intermodular level, the connections were connected
randomly. Although the proportions of intra/inter modular
connections varied, the total number of connections per unit
was maintained, that is, intra-k + inter-k = k for all networks.
We denote this network as the Gaussian Modular Network
followed by intra-k and inter-k. For example, a network with
intra-k = 49 and inter-k = 200 is denoted as “Gaussian
Modular 49 200”.

VI. RESULTS

A. General Results from Each Model

Here we give individual results for each type of network
based on their wiring strategies. For simplification only
results for S000N, 249k networks are presented. The results
for 5000N, 499k networks will be summarized at the end of
this section.

The first result is from the Watt-Strogatz network. Figure 6
gives the relationship between Effective Capacity and
rewiring rate of the network. The Effective Capacity
increases rapidly from ¢ = 0 to ¢ = 0.6 and then saturates.
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Figure 6. Effective Capacity against rewiring rate g in W-S network. N
= 5000, k=249. The Effective Capacity increases untill g = 0.6 and
saturates later.
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Figure 7. Global Efficiency against rewiring rate g in W-S network. N =
5000, k=249. The Global Efficiency increases rapidly untill g = 0.2 and
saturates in all others.
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Figure 7 and 8 show the way that Global Efficiency and
Clustering Coefficient vary with the rewiring of the network.
Global Efficiency saturates very quickly, much more quickly
than the Effective Capacity. However the Clustering
Coefficient declines less rapidly and appears to have an
inverse relationship with Effective Capacity. The Local
Efficiency shows a similar pattern as the Clustering
Coefficient (Figure 9). These correspondences are
investigated further in the next section.
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061 o
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04 -
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0.2 *

Clustering Coefficient

0.1+

Figure 8. Clustering Coefficient against rewiring rate g in W-S network.
N = 5000, k=249. The Clustering Coefficient decreases untill g = 0.6
and saturates later. Interestingly it has the same saturating point as
Figure 6 (g = 0.6).
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Figure 9. Local Efficiency against rewiring rate g in W-S network. N =
5000, k=249. The Local Efficiency decreases rapidly untill g = 0.6 and
saturates later. Again it has the same saturating point as Figure 6 (g =
0.6).

For the Gaussian network we plot the Effective Capacity
against the standard deviation of the connection distribution,
0 (Figure 10). The Effective Capacity increases with 0 and
reach a saturation value of about 110 when o is 1000. Note
that the maximum Effective Capacity of the Gaussian
network and the W-S network are the same. This is because
at the right hand extreme of both figures we have randomly
connected networks.
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Figure 10. Effective Capacity against sigma in Gaussian network. N:
5000, k=249. The Effective Capacity increases untill sigma is about
1000 and saturates later.

The results for the Modular Network are shown in Figure
11. Since the Modular Network starts from discrete modules
and is then rewired into a random network, its Effective
Capacity is initially lower than that of the previous two
models. But with rewiring it approaches the maximum value
obtained in the other two models.
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Figure 11. Effective Capacity against rewiring rate p in the Modular
network. N = 5000, k=249. The result is similar to the one in the W-S
network (Figure 6), despite the difference of initial value.

The final network we investigated is the Gaussian Modular
network. The results are shown in Figure 12. Interestingly the
Effective Capacity does not change very much as the
intraconnections are made less local. The Effective Capacity
is quite high throughout whatever the value of G.

2008 International Joint Conference on Neural Networks (IJCNN 2008)

100

80
70
60

50
40
30
20

Effective Capacity

70 150 200 250 300 350 400 600
Sigma

Figure 12. Effective Capacity against sigma of intraconnections
distribution in Gaussian Modular network. N = 5000, intra-k =
199,inter-k = 50. There is slight change when change the distribution
within modules but not significant.

B. Effective Capacity and Clustering

The above results suggest an interesting hypothesis: the
performance of associative memory models, measured by the
Effective Capacity, is clearly determined by some measures
of the network connectivity, such as clustering and the
efficiency of local sub-network. Therefore here we plot the
Effective Capacity against each connectivity measure in all
four types of networks. Figure 13 shows the relationship
between Effective Capacity and Global Efficiency in six
different networks. Obviously there is no simple relationship
between the two measures. However, Figure 14 gives our
more significant result. It shows that, in all six networks there
is a linear relationship between Effective Capacity and
Clustering Coefficient. Moreover this relationship is
independent of the detailed topology of the network. Figure
15 gives the linear regression for this data. The R-Square
measure is 0.99, so the fit is highly linear.
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Figure 13. Effective Capacity against Global Efficiency. N = 5000,
k=249. Results from four different types of networks are plotted
together. No clear relationship can be found in this figure.
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Figure 14. Effective Capacity against Clustering Coefficient. N =5000,
k=249. Results from four different types of networks are plotted
together. A clear linear relationship can be seen in this figure.
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Effective Capacity =111.59 +-71.06 * Clustering_Coefficient
R-Square =0.99

Figure 15. Linear fit to the data from Figure 14.

A similar analysis was then done for Effective Capacity
against Local Efficiency and the results can be seen in Figures
16 and 17. Here R-Square is 0.97, so again the fit is highly
linear.
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Figure 16. Effective Capacity against Local Efficiency. N = 5000,
k=249. Results from four different types of networks are plotted
together. A clear linear relationship can be seen in this figure.
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Effe ctive Capacity =172.10 + -129.89 * Local_Efficiency
R-Square =0.97

Figure 17. Linear fit to the data from Figure16.

The results for networks with N = 5000 and k& = 499 (therefore
a network with 10 modules) are very similar (Figure 18, 19).
A linear fit is obtained with R-Square = 0.99 for both
Effective Capacity against Clustering Coefficient and
Effective Capacity agianst Local Efficiency. The lines in
Figures 15, 17 are different from the ones in Figures 18, 19
because the level of connectivity is different (There are
networks with 249 connections per each unit for the first two
figures and networks with 499 connections per unit for the
second two figures).

200.00 . . 5%
Linear Regression >

175.007

150.00=

125.009

Effective Capacity

100.00=

Clustering Coefficient

Effective Capacity =214.10 + -119.64 * Clustering_Coefficient
R-Square =0.99

Figure 18. Effective Capacity against Clustering Coefficient. N = 5000,
k=499. Results from four different types of networks are plotted

together. A clear linear relationship can be seen in this figure.
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Figure 19. Effective Capacity against Local Efficiency. N = 5000,
k=499. Results from four different types of networks are plotted
together. A clear linear relationship can be seen in this figure.

VII. CONCLUSION

In this paper we investigated how different connectivities
affect the performance of high capacity associative memory
models. Four different types of networks were examined: a
Watt-Strogatz Small-World network, a Modular network, a
Gaussian network and a Gaussian Modular network. Several
measures of network connectivity were used in the
experiments in order to find out any potential correlation in
these measures.

Although global features of networks such as Path Length
or Global Efficiency are important in determining efficient
wiring in the mammalian cortex [4, 10], in the work presented
here they show no clear relationship with the associative
memory performance. On the other hand, the local clustering
(measured by Clustering Coefficient and Local Efficiency) is
here shown to have a strong linear relationship with the
associative memory performance.

As shown in this paper, this linear relationship seems
identical for different types of network models and
connectivity distributions. Of course a different connectivity
level produces different relationship. This result is potentially
important since a purely static measure of network
connectivity (clustering) appears to determine an important
dynamic property (pattern correction) of the network. One
may wonder if this relationship may also govern the
associative memory performance in a real mammalian
cerebral cortex. Therefore we are currently studying the effect
of network connectivity on performance of more biologically
plausible models such as spiking neural networks.
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