Face information processing by fast statistical learning algorithm | IEEE Conference Publication | IEEE Xplore

Face information processing by fast statistical learning algorithm


Abstract:

In this paper , we propose a new statistical learning algorithm. This study quantitatively verifies the effectiveness of its feature extraction performance for face infor...Show More

Abstract:

In this paper , we propose a new statistical learning algorithm. This study quantitatively verifies the effectiveness of its feature extraction performance for face information processing. Simple-FLDA is an algorithm based on a geometrical analysis of the Fisher linear discriminant analysis. As a high-speed feature extraction method, the present algorithm in this paper is the improved version of Simple-FLDA. First of all, the approximated principal component analysis (learning by Simple-PCA) that uses the mean vector of each class is calculated. Next, in order to adjust within-class variance in each class to 0, the vectors in the class are removed. By this processing, it becomes high-speed feature extraction method than Simple-FLDA. The effectiveness is verified by computer simulations using face images.
Date of Conference: 01-08 June 2008
Date Added to IEEE Xplore: 26 September 2008
ISBN Information:

ISSN Information:

Conference Location: Hong Kong, China

Contact IEEE to Subscribe

References

References is not available for this document.