Abstract:
A new hybrid algorithm based on particle swarm optimization (PSO), evolutionary algorithm (EA), and differential evolution (DE) is presented for training a recurrent neur...Show MoreMetadata
Abstract:
A new hybrid algorithm based on particle swarm optimization (PSO), evolutionary algorithm (EA), and differential evolution (DE) is presented for training a recurrent neural network (RNN) for multiple-input multiple-output (MIMO) channel prediction. The hybrid algorithm is shown to be superior in performance to PSO and differential evolution PSO (DEPSO) for different channel environments. The received signal-to-noise ratio is derived for un-coded and beam-forming MIMO systems to see how the RNN error affects the performance. This error is shown to deteriorate the accuracy of the weak singular modes, making beam-forming more desirable. Bit error rate simulations are performed to validate these results.
Published in: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)
Date of Conference: 01-08 June 2008
Date Added to IEEE Xplore: 26 September 2008
ISBN Information: